aboutsummaryrefslogtreecommitdiff
path: root/src/share/vm/utilities/taskqueue.hpp
blob: 565365924d05155f793ba053f8f24c465a3e0431 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
/*
 * Copyright (c) 2001, 2009, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

template <unsigned int N>
class TaskQueueSuper: public CHeapObj {
protected:
  // Internal type for indexing the queue; also used for the tag.
  typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;

  // The first free element after the last one pushed (mod N).
  volatile uint _bottom;

  enum { MOD_N_MASK = N - 1 };

  class Age {
  public:
    Age(size_t data = 0)         { _data = data; }
    Age(const Age& age)          { _data = age._data; }
    Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }

    Age   get()        const volatile { return _data; }
    void  set(Age age) volatile       { _data = age._data; }

    idx_t top()        const volatile { return _fields._top; }
    idx_t tag()        const volatile { return _fields._tag; }

    // Increment top; if it wraps, increment tag also.
    void increment() {
      _fields._top = increment_index(_fields._top);
      if (_fields._top == 0) ++_fields._tag;
    }

    Age cmpxchg(const Age new_age, const Age old_age) volatile {
      return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
                                          (volatile intptr_t *)&_data,
                                          (intptr_t)old_age._data);
    }

    bool operator ==(const Age& other) const { return _data == other._data; }

  private:
    struct fields {
      idx_t _top;
      idx_t _tag;
    };
    union {
      size_t _data;
      fields _fields;
    };
  };

  volatile Age _age;

  // These both operate mod N.
  static uint increment_index(uint ind) {
    return (ind + 1) & MOD_N_MASK;
  }
  static uint decrement_index(uint ind) {
    return (ind - 1) & MOD_N_MASK;
  }

  // Returns a number in the range [0..N).  If the result is "N-1", it should be
  // interpreted as 0.
  uint dirty_size(uint bot, uint top) const {
    return (bot - top) & MOD_N_MASK;
  }

  // Returns the size corresponding to the given "bot" and "top".
  uint size(uint bot, uint top) const {
    uint sz = dirty_size(bot, top);
    // Has the queue "wrapped", so that bottom is less than top?  There's a
    // complicated special case here.  A pair of threads could perform pop_local
    // and pop_global operations concurrently, starting from a state in which
    // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
    // and the pop_global in incrementing _top (in which case the pop_global
    // will be awarded the contested queue element.)  The resulting state must
    // be interpreted as an empty queue.  (We only need to worry about one such
    // event: only the queue owner performs pop_local's, and several concurrent
    // threads attempting to perform the pop_global will all perform the same
    // CAS, and only one can succeed.)  Any stealing thread that reads after
    // either the increment or decrement will see an empty queue, and will not
    // join the competitors.  The "sz == -1 || sz == N-1" state will not be
    // modified by concurrent queues, so the owner thread can reset the state to
    // _bottom == top so subsequent pushes will be performed normally.
    return (sz == N - 1) ? 0 : sz;
  }

public:
  TaskQueueSuper() : _bottom(0), _age() {}

  // Return true if the TaskQueue contains any tasks.
  bool peek() { return _bottom != _age.top(); }

  // Return an estimate of the number of elements in the queue.
  // The "careful" version admits the possibility of pop_local/pop_global
  // races.
  uint size() const {
    return size(_bottom, _age.top());
  }

  uint dirty_size() const {
    return dirty_size(_bottom, _age.top());
  }

  void set_empty() {
    _bottom = 0;
    _age.set(0);
  }

  // Maximum number of elements allowed in the queue.  This is two less
  // than the actual queue size, for somewhat complicated reasons.
  uint max_elems() const { return N - 2; }

  // Total size of queue.
  static const uint total_size() { return N; }
};

template<class E, unsigned int N = TASKQUEUE_SIZE>
class GenericTaskQueue: public TaskQueueSuper<N> {
protected:
  typedef typename TaskQueueSuper<N>::Age Age;
  typedef typename TaskQueueSuper<N>::idx_t idx_t;

  using TaskQueueSuper<N>::_bottom;
  using TaskQueueSuper<N>::_age;
  using TaskQueueSuper<N>::increment_index;
  using TaskQueueSuper<N>::decrement_index;
  using TaskQueueSuper<N>::dirty_size;

public:
  using TaskQueueSuper<N>::max_elems;
  using TaskQueueSuper<N>::size;

private:
  // Slow paths for push, pop_local.  (pop_global has no fast path.)
  bool push_slow(E t, uint dirty_n_elems);
  bool pop_local_slow(uint localBot, Age oldAge);

public:
  typedef E element_type;

  // Initializes the queue to empty.
  GenericTaskQueue();

  void initialize();

  // Push the task "t" on the queue.  Returns "false" iff the queue is
  // full.
  inline bool push(E t);

  // If succeeds in claiming a task (from the 'local' end, that is, the
  // most recently pushed task), returns "true" and sets "t" to that task.
  // Otherwise, the queue is empty and returns false.
  inline bool pop_local(E& t);

  // If succeeds in claiming a task (from the 'global' end, that is, the
  // least recently pushed task), returns "true" and sets "t" to that task.
  // Otherwise, the queue is empty and returns false.
  bool pop_global(E& t);

  // Delete any resource associated with the queue.
  ~GenericTaskQueue();

  // apply the closure to all elements in the task queue
  void oops_do(OopClosure* f);

private:
  // Element array.
  volatile E* _elems;
};

template<class E, unsigned int N>
GenericTaskQueue<E, N>::GenericTaskQueue() {
  assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
}

template<class E, unsigned int N>
void GenericTaskQueue<E, N>::initialize() {
  _elems = NEW_C_HEAP_ARRAY(E, N);
  guarantee(_elems != NULL, "Allocation failed.");
}

template<class E, unsigned int N>
void GenericTaskQueue<E, N>::oops_do(OopClosure* f) {
  // tty->print_cr("START OopTaskQueue::oops_do");
  uint iters = size();
  uint index = _bottom;
  for (uint i = 0; i < iters; ++i) {
    index = decrement_index(index);
    // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
    //            index, &_elems[index], _elems[index]);
    E* t = (E*)&_elems[index];      // cast away volatility
    oop* p = (oop*)t;
    assert((*t)->is_oop_or_null(), "Not an oop or null");
    f->do_oop(p);
  }
  // tty->print_cr("END OopTaskQueue::oops_do");
}

template<class E, unsigned int N>
bool GenericTaskQueue<E, N>::push_slow(E t, uint dirty_n_elems) {
  if (dirty_n_elems == N - 1) {
    // Actually means 0, so do the push.
    uint localBot = _bottom;
    // g++ complains if the volatile result of the assignment is unused.
    const_cast<E&>(_elems[localBot] = t);
    OrderAccess::release_store(&_bottom, increment_index(localBot));
    return true;
  }
  return false;
}

template<class E, unsigned int N>
bool GenericTaskQueue<E, N>::
pop_local_slow(uint localBot, Age oldAge) {
  // This queue was observed to contain exactly one element; either this
  // thread will claim it, or a competing "pop_global".  In either case,
  // the queue will be logically empty afterwards.  Create a new Age value
  // that represents the empty queue for the given value of "_bottom".  (We
  // must also increment "tag" because of the case where "bottom == 1",
  // "top == 0".  A pop_global could read the queue element in that case,
  // then have the owner thread do a pop followed by another push.  Without
  // the incrementing of "tag", the pop_global's CAS could succeed,
  // allowing it to believe it has claimed the stale element.)
  Age newAge((idx_t)localBot, oldAge.tag() + 1);
  // Perhaps a competing pop_global has already incremented "top", in which
  // case it wins the element.
  if (localBot == oldAge.top()) {
    // No competing pop_global has yet incremented "top"; we'll try to
    // install new_age, thus claiming the element.
    Age tempAge = _age.cmpxchg(newAge, oldAge);
    if (tempAge == oldAge) {
      // We win.
      assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
      return true;
    }
  }
  // We lose; a completing pop_global gets the element.  But the queue is empty
  // and top is greater than bottom.  Fix this representation of the empty queue
  // to become the canonical one.
  _age.set(newAge);
  assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
  return false;
}

template<class E, unsigned int N>
bool GenericTaskQueue<E, N>::pop_global(E& t) {
  Age oldAge = _age.get();
  uint localBot = _bottom;
  uint n_elems = size(localBot, oldAge.top());
  if (n_elems == 0) {
    return false;
  }

  const_cast<E&>(t = _elems[oldAge.top()]);
  Age newAge(oldAge);
  newAge.increment();
  Age resAge = _age.cmpxchg(newAge, oldAge);

  // Note that using "_bottom" here might fail, since a pop_local might
  // have decremented it.
  assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
  return resAge == oldAge;
}

template<class E, unsigned int N>
GenericTaskQueue<E, N>::~GenericTaskQueue() {
  FREE_C_HEAP_ARRAY(E, _elems);
}

// Inherits the typedef of "Task" from above.
class TaskQueueSetSuper: public CHeapObj {
protected:
  static int randomParkAndMiller(int* seed0);
public:
  // Returns "true" if some TaskQueue in the set contains a task.
  virtual bool peek() = 0;
};

template<class T>
class GenericTaskQueueSet: public TaskQueueSetSuper {
private:
  uint _n;
  T** _queues;

public:
  typedef typename T::element_type E;

  GenericTaskQueueSet(int n) : _n(n) {
    typedef T* GenericTaskQueuePtr;
    _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
    for (int i = 0; i < n; i++) {
      _queues[i] = NULL;
    }
  }

  bool steal_1_random(uint queue_num, int* seed, E& t);
  bool steal_best_of_2(uint queue_num, int* seed, E& t);
  bool steal_best_of_all(uint queue_num, int* seed, E& t);

  void register_queue(uint i, T* q);

  T* queue(uint n);

  // The thread with queue number "queue_num" (and whose random number seed
  // is at "seed") is trying to steal a task from some other queue.  (It
  // may try several queues, according to some configuration parameter.)
  // If some steal succeeds, returns "true" and sets "t" the stolen task,
  // otherwise returns false.
  bool steal(uint queue_num, int* seed, E& t);

  bool peek();
};

template<class T> void
GenericTaskQueueSet<T>::register_queue(uint i, T* q) {
  assert(i < _n, "index out of range.");
  _queues[i] = q;
}

template<class T> T*
GenericTaskQueueSet<T>::queue(uint i) {
  return _queues[i];
}

template<class T> bool
GenericTaskQueueSet<T>::steal(uint queue_num, int* seed, E& t) {
  for (uint i = 0; i < 2 * _n; i++)
    if (steal_best_of_2(queue_num, seed, t))
      return true;
  return false;
}

template<class T> bool
GenericTaskQueueSet<T>::steal_best_of_all(uint queue_num, int* seed, E& t) {
  if (_n > 2) {
    int best_k;
    uint best_sz = 0;
    for (uint k = 0; k < _n; k++) {
      if (k == queue_num) continue;
      uint sz = _queues[k]->size();
      if (sz > best_sz) {
        best_sz = sz;
        best_k = k;
      }
    }
    return best_sz > 0 && _queues[best_k]->pop_global(t);
  } else if (_n == 2) {
    // Just try the other one.
    int k = (queue_num + 1) % 2;
    return _queues[k]->pop_global(t);
  } else {
    assert(_n == 1, "can't be zero.");
    return false;
  }
}

template<class T> bool
GenericTaskQueueSet<T>::steal_1_random(uint queue_num, int* seed, E& t) {
  if (_n > 2) {
    uint k = queue_num;
    while (k == queue_num) k = randomParkAndMiller(seed) % _n;
    return _queues[2]->pop_global(t);
  } else if (_n == 2) {
    // Just try the other one.
    int k = (queue_num + 1) % 2;
    return _queues[k]->pop_global(t);
  } else {
    assert(_n == 1, "can't be zero.");
    return false;
  }
}

template<class T> bool
GenericTaskQueueSet<T>::steal_best_of_2(uint queue_num, int* seed, E& t) {
  if (_n > 2) {
    uint k1 = queue_num;
    while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
    uint k2 = queue_num;
    while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
    // Sample both and try the larger.
    uint sz1 = _queues[k1]->size();
    uint sz2 = _queues[k2]->size();
    if (sz2 > sz1) return _queues[k2]->pop_global(t);
    else return _queues[k1]->pop_global(t);
  } else if (_n == 2) {
    // Just try the other one.
    uint k = (queue_num + 1) % 2;
    return _queues[k]->pop_global(t);
  } else {
    assert(_n == 1, "can't be zero.");
    return false;
  }
}

template<class T>
bool GenericTaskQueueSet<T>::peek() {
  // Try all the queues.
  for (uint j = 0; j < _n; j++) {
    if (_queues[j]->peek())
      return true;
  }
  return false;
}

// When to terminate from the termination protocol.
class TerminatorTerminator: public CHeapObj {
public:
  virtual bool should_exit_termination() = 0;
};

// A class to aid in the termination of a set of parallel tasks using
// TaskQueueSet's for work stealing.

#undef TRACESPINNING

class ParallelTaskTerminator: public StackObj {
private:
  int _n_threads;
  TaskQueueSetSuper* _queue_set;
  int _offered_termination;

#ifdef TRACESPINNING
  static uint _total_yields;
  static uint _total_spins;
  static uint _total_peeks;
#endif

  bool peek_in_queue_set();
protected:
  virtual void yield();
  void sleep(uint millis);

public:

  // "n_threads" is the number of threads to be terminated.  "queue_set" is a
  // queue sets of work queues of other threads.
  ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);

  // The current thread has no work, and is ready to terminate if everyone
  // else is.  If returns "true", all threads are terminated.  If returns
  // "false", available work has been observed in one of the task queues,
  // so the global task is not complete.
  bool offer_termination() {
    return offer_termination(NULL);
  }

  // As above, but it also terminates if the should_exit_termination()
  // method of the terminator parameter returns true. If terminator is
  // NULL, then it is ignored.
  bool offer_termination(TerminatorTerminator* terminator);

  // Reset the terminator, so that it may be reused again.
  // The caller is responsible for ensuring that this is done
  // in an MT-safe manner, once the previous round of use of
  // the terminator is finished.
  void reset_for_reuse();

#ifdef TRACESPINNING
  static uint total_yields() { return _total_yields; }
  static uint total_spins() { return _total_spins; }
  static uint total_peeks() { return _total_peeks; }
  static void print_termination_counts();
#endif
};

template<class E, unsigned int N> inline bool
GenericTaskQueue<E, N>::push(E t) {
  uint localBot = _bottom;
  assert((localBot >= 0) && (localBot < N), "_bottom out of range.");
  idx_t top = _age.top();
  uint dirty_n_elems = dirty_size(localBot, top);
  assert(dirty_n_elems < N, "n_elems out of range.");
  if (dirty_n_elems < max_elems()) {
    // g++ complains if the volatile result of the assignment is unused.
    const_cast<E&>(_elems[localBot] = t);
    OrderAccess::release_store(&_bottom, increment_index(localBot));
    return true;
  } else {
    return push_slow(t, dirty_n_elems);
  }
}

template<class E, unsigned int N> inline bool
GenericTaskQueue<E, N>::pop_local(E& t) {
  uint localBot = _bottom;
  // This value cannot be N-1.  That can only occur as a result of
  // the assignment to bottom in this method.  If it does, this method
  // resets the size( to 0 before the next call (which is sequential,
  // since this is pop_local.)
  uint dirty_n_elems = dirty_size(localBot, _age.top());
  assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
  if (dirty_n_elems == 0) return false;
  localBot = decrement_index(localBot);
  _bottom = localBot;
  // This is necessary to prevent any read below from being reordered
  // before the store just above.
  OrderAccess::fence();
  const_cast<E&>(t = _elems[localBot]);
  // This is a second read of "age"; the "size()" above is the first.
  // If there's still at least one element in the queue, based on the
  // "_bottom" and "age" we've read, then there can be no interference with
  // a "pop_global" operation, and we're done.
  idx_t tp = _age.top();    // XXX
  if (size(localBot, tp) > 0) {
    assert(dirty_size(localBot, tp) != N - 1, "sanity");
    return true;
  } else {
    // Otherwise, the queue contained exactly one element; we take the slow
    // path.
    return pop_local_slow(localBot, _age.get());
  }
}

typedef oop Task;
typedef GenericTaskQueue<Task>            OopTaskQueue;
typedef GenericTaskQueueSet<OopTaskQueue> OopTaskQueueSet;

#ifdef _MSC_VER
#pragma warning(push)
// warning C4522: multiple assignment operators specified
#pragma warning(disable:4522)
#endif

// This is a container class for either an oop* or a narrowOop*.
// Both are pushed onto a task queue and the consumer will test is_narrow()
// to determine which should be processed.
class StarTask {
  void*  _holder;        // either union oop* or narrowOop*

  enum { COMPRESSED_OOP_MASK = 1 };

 public:
  StarTask(narrowOop* p) {
    assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
    _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
  }
  StarTask(oop* p)       {
    assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
    _holder = (void*)p;
  }
  StarTask()             { _holder = NULL; }
  operator oop*()        { return (oop*)_holder; }
  operator narrowOop*()  {
    return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
  }

  StarTask& operator=(const StarTask& t) {
    _holder = t._holder;
    return *this;
  }
  volatile StarTask& operator=(const volatile StarTask& t) volatile {
    _holder = t._holder;
    return *this;
  }

  bool is_narrow() const {
    return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
  }
};

class ObjArrayTask
{
public:
  ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
  ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
    assert(idx <= size_t(max_jint), "too big");
  }
  ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }

  ObjArrayTask& operator =(const ObjArrayTask& t) {
    _obj = t._obj;
    _index = t._index;
    return *this;
  }
  volatile ObjArrayTask&
  operator =(const volatile ObjArrayTask& t) volatile {
    _obj = t._obj;
    _index = t._index;
    return *this;
  }

  inline oop obj()   const { return _obj; }
  inline int index() const { return _index; }

  DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.

private:
  oop _obj;
  int _index;
};

#ifdef _MSC_VER
#pragma warning(pop)
#endif

typedef GenericTaskQueue<StarTask>            OopStarTaskQueue;
typedef GenericTaskQueueSet<OopStarTaskQueue> OopStarTaskQueueSet;

typedef size_t RegionTask;  // index for region
typedef GenericTaskQueue<RegionTask>         RegionTaskQueue;
typedef GenericTaskQueueSet<RegionTaskQueue> RegionTaskQueueSet;

class RegionTaskQueueWithOverflow: public CHeapObj {
 protected:
  RegionTaskQueue              _region_queue;
  GrowableArray<RegionTask>*   _overflow_stack;

 public:
  RegionTaskQueueWithOverflow() : _overflow_stack(NULL) {}
  // Initialize both stealable queue and overflow
  void initialize();
  // Save first to stealable queue and then to overflow
  void save(RegionTask t);
  // Retrieve first from overflow and then from stealable queue
  bool retrieve(RegionTask& region_index);
  // Retrieve from stealable queue
  bool retrieve_from_stealable_queue(RegionTask& region_index);
  // Retrieve from overflow
  bool retrieve_from_overflow(RegionTask& region_index);
  bool is_empty();
  bool stealable_is_empty();
  bool overflow_is_empty();
  uint stealable_size() { return _region_queue.size(); }
  RegionTaskQueue* task_queue() { return &_region_queue; }
};

#define USE_RegionTaskQueueWithOverflow