aboutsummaryrefslogtreecommitdiff
path: root/src/share/vm/oops/klass.hpp
blob: 46ce42eabd955c455fb2815774b9f5548c4506e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
/*
 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_OOPS_KLASS_HPP
#define SHARE_VM_OOPS_KLASS_HPP

#include "memory/genOopClosures.hpp"
#include "memory/iterator.hpp"
#include "memory/memRegion.hpp"
#include "memory/specialized_oop_closures.hpp"
#include "oops/klassOop.hpp"
#include "oops/klassPS.hpp"
#include "oops/oop.hpp"
#include "runtime/orderAccess.hpp"
#include "utilities/accessFlags.hpp"
#ifndef SERIALGC
#include "gc_implementation/concurrentMarkSweep/cmsOopClosures.hpp"
#include "gc_implementation/g1/g1OopClosures.hpp"
#include "gc_implementation/parNew/parOopClosures.hpp"
#endif

// A Klass is the part of the klassOop that provides:
//  1: language level class object (method dictionary etc.)
//  2: provide vm dispatch behavior for the object
// Both functions are combined into one C++ class. The toplevel class "Klass"
// implements purpose 1 whereas all subclasses provide extra virtual functions
// for purpose 2.

// One reason for the oop/klass dichotomy in the implementation is
// that we don't want a C++ vtbl pointer in every object.  Thus,
// normal oops don't have any virtual functions.  Instead, they
// forward all "virtual" functions to their klass, which does have
// a vtbl and does the C++ dispatch depending on the object's
// actual type.  (See oop.inline.hpp for some of the forwarding code.)
// ALL FUNCTIONS IMPLEMENTING THIS DISPATCH ARE PREFIXED WITH "oop_"!

//  Klass layout:
//    [header        ] klassOop
//    [klass pointer ] klassOop
//    [C++ vtbl ptr  ] (contained in Klass_vtbl)
//    [layout_helper ]
//    [super_check_offset   ] for fast subtype checks
//    [secondary_super_cache] for fast subtype checks
//    [secondary_supers     ] array of 2ndary supertypes
//    [primary_supers 0]
//    [primary_supers 1]
//    [primary_supers 2]
//    ...
//    [primary_supers 7]
//    [java_mirror   ]
//    [super         ]
//    [name          ]
//    [first subklass]
//    [next_sibling  ] link to chain additional subklasses
//    [modifier_flags]
//    [access_flags  ]
//    [verify_count  ] - not in product
//    [alloc_count   ]
//    [last_biased_lock_bulk_revocation_time] (64 bits)
//    [prototype_header]
//    [biased_lock_revocation_count]


// Forward declarations.
class klassVtable;
class KlassHandle;
class OrderAccess;

// Holder (or cage) for the C++ vtable of each kind of Klass.
// We want to tightly constrain the location of the C++ vtable in the overall layout.
class Klass_vtbl {
 protected:
  // The following virtual exists only to force creation of a C++ vtable,
  // so that this class truly is the location of the vtable of all Klasses.
  virtual void unused_initial_virtual() { }

 public:
  // The following virtual makes Klass_vtbl play a second role as a
  // factory protocol for subclasses of Klass ("sub-Klasses").
  // Here's how it works....
  //
  // This VM uses metaobjects as factories for their instances.
  //
  // In order to initialize the C++ vtable of a new instance, its
  // metaobject is forced to use the C++ placed new operator to
  // allocate the instance.  In a typical C++-based system, each
  // sub-class would have its own factory routine which
  // directly uses the placed new operator on the desired class,
  // and then calls the appropriate chain of C++ constructors.
  //
  // However, this system uses shared code to performs the first
  // allocation and initialization steps for all sub-Klasses.
  // (See base_create_klass() and base_create_array_klass().)
  // This does not factor neatly into a hierarchy of C++ constructors.
  // Each caller of these shared "base_create" routines knows
  // exactly which sub-Klass it is creating, but the shared routine
  // does not, even though it must perform the actual allocation.
  //
  // Therefore, the caller of the shared "base_create" must wrap
  // the specific placed new call in a virtual function which
  // performs the actual allocation and vtable set-up.  That
  // virtual function is here, Klass_vtbl::allocate_permanent.
  //
  // The arguments to Universe::allocate_permanent() are passed
  // straight through the placed new operator, which in turn
  // obtains them directly from this virtual call.
  //
  // This virtual is called on a temporary "example instance" of the
  // sub-Klass being instantiated, a C++ auto variable.  The "real"
  // instance created by this virtual is on the VM heap, where it is
  // equipped with a klassOopDesc header.
  //
  // It is merely an accident of implementation that we use "example
  // instances", but that is why the virtual function which implements
  // each sub-Klass factory happens to be defined by the same sub-Klass
  // for which it creates instances.
  //
  // The vtbl_value() call (see below) is used to strip away the
  // accidental Klass-ness from an "example instance" and present it as
  // a factory.  Think of each factory object as a mere container of the
  // C++ vtable for the desired sub-Klass.  Since C++ does not allow
  // direct references to vtables, the factory must also be delegated
  // the task of allocating the instance, but the essential point is
  // that the factory knows how to initialize the C++ vtable with the
  // right pointer value.  All other common initializations are handled
  // by the shared "base_create" subroutines.
  //
  virtual void* allocate_permanent(KlassHandle& klass, int size, TRAPS) const = 0;
  void post_new_init_klass(KlassHandle& klass, klassOop obj, int size) const;

  // Every subclass on which vtbl_value is called must include this macro.
  // Delay the installation of the klassKlass pointer until after the
  // the vtable for a new klass has been installed (after the call to new()).
#define DEFINE_ALLOCATE_PERMANENT(thisKlass)                                  \
  void* allocate_permanent(KlassHandle& klass_klass, int size, TRAPS) const { \
    void* result = new(klass_klass, size, THREAD) thisKlass();                \
    if (HAS_PENDING_EXCEPTION) return NULL;                                   \
    klassOop new_klass = ((Klass*) result)->as_klassOop();                    \
    OrderAccess::storestore();                                                \
    post_new_init_klass(klass_klass, new_klass, size);                        \
    return result;                                                            \
  }

  bool null_vtbl() { return *(intptr_t*)this == 0; }

 protected:
  void* operator new(size_t ignored, KlassHandle& klass, int size, TRAPS);
};


class Klass : public Klass_vtbl {
  friend class VMStructs;
 protected:
  // note: put frequently-used fields together at start of klass structure
  // for better cache behavior (may not make much of a difference but sure won't hurt)
  enum { _primary_super_limit = 8 };

  // The "layout helper" is a combined descriptor of object layout.
  // For klasses which are neither instance nor array, the value is zero.
  //
  // For instances, layout helper is a positive number, the instance size.
  // This size is already passed through align_object_size and scaled to bytes.
  // The low order bit is set if instances of this class cannot be
  // allocated using the fastpath.
  //
  // For arrays, layout helper is a negative number, containing four
  // distinct bytes, as follows:
  //    MSB:[tag, hsz, ebt, log2(esz)]:LSB
  // where:
  //    tag is 0x80 if the elements are oops, 0xC0 if non-oops
  //    hsz is array header size in bytes (i.e., offset of first element)
  //    ebt is the BasicType of the elements
  //    esz is the element size in bytes
  // This packed word is arranged so as to be quickly unpacked by the
  // various fast paths that use the various subfields.
  //
  // The esz bits can be used directly by a SLL instruction, without masking.
  //
  // Note that the array-kind tag looks like 0x00 for instance klasses,
  // since their length in bytes is always less than 24Mb.
  //
  // Final note:  This comes first, immediately after Klass_vtbl,
  // because it is frequently queried.
  jint        _layout_helper;

  // The fields _super_check_offset, _secondary_super_cache, _secondary_supers
  // and _primary_supers all help make fast subtype checks.  See big discussion
  // in doc/server_compiler/checktype.txt
  //
  // Where to look to observe a supertype (it is &_secondary_super_cache for
  // secondary supers, else is &_primary_supers[depth()].
  juint       _super_check_offset;

 public:
  oop* oop_block_beg() const { return adr_secondary_super_cache(); }
  oop* oop_block_end() const { return adr_next_sibling() + 1; }

 protected:
  //
  // The oop block.  All oop fields must be declared here and only oop fields
  // may be declared here.  In addition, the first and last fields in this block
  // must remain first and last, unless oop_block_beg() and/or oop_block_end()
  // are updated.  Grouping the oop fields in a single block simplifies oop
  // iteration.
  //

  // Cache of last observed secondary supertype
  klassOop    _secondary_super_cache;
  // Array of all secondary supertypes
  objArrayOop _secondary_supers;
  // Ordered list of all primary supertypes
  klassOop    _primary_supers[_primary_super_limit];
  // java/lang/Class instance mirroring this class
  oop       _java_mirror;
  // Superclass
  klassOop  _super;
  // Class name.  Instance classes: java/lang/String, etc.  Array classes: [I,
  // [Ljava/lang/String;, etc.  Set to zero for all other kinds of classes.
  symbolOop _name;
  // First subclass (NULL if none); _subklass->next_sibling() is next one
  klassOop _subklass;
  // Sibling link (or NULL); links all subklasses of a klass
  klassOop _next_sibling;

  //
  // End of the oop block.
  //

  jint        _modifier_flags;  // Processed access flags, for use by Class.getModifiers.
  AccessFlags _access_flags;    // Access flags. The class/interface distinction is stored here.

#ifndef PRODUCT
  int           _verify_count;  // to avoid redundant verifies
#endif

  juint    _alloc_count;        // allocation profiling support - update klass_size_in_bytes() if moved/deleted

  // Biased locking implementation and statistics
  // (the 64-bit chunk goes first, to avoid some fragmentation)
  jlong    _last_biased_lock_bulk_revocation_time;
  markOop  _prototype_header;   // Used when biased locking is both enabled and disabled for this type
  jint     _biased_lock_revocation_count;

 public:

  // returns the enclosing klassOop
  klassOop as_klassOop() const {
    // see klassOop.hpp for layout.
    return (klassOop) (((char*) this) - sizeof(klassOopDesc));
  }

 public:
  // Allocation
  const Klass_vtbl& vtbl_value() const { return *this; }  // used only on "example instances"
  static KlassHandle base_create_klass(KlassHandle& klass, int size, const Klass_vtbl& vtbl, TRAPS);
  static klassOop base_create_klass_oop(KlassHandle& klass, int size, const Klass_vtbl& vtbl, TRAPS);

  // super
  klassOop super() const               { return _super; }
  void set_super(klassOop k)           { oop_store_without_check((oop*) &_super, (oop) k); }

  // initializes _super link, _primary_supers & _secondary_supers arrays
  void initialize_supers(klassOop k, TRAPS);
  void initialize_supers_impl1(klassOop k);
  void initialize_supers_impl2(klassOop k);

  // klass-specific helper for initializing _secondary_supers
  virtual objArrayOop compute_secondary_supers(int num_extra_slots, TRAPS);

  // java_super is the Java-level super type as specified by Class.getSuperClass.
  virtual klassOop java_super() const  { return NULL; }

  juint    super_check_offset() const  { return _super_check_offset; }
  void set_super_check_offset(juint o) { _super_check_offset = o; }

  klassOop secondary_super_cache() const     { return _secondary_super_cache; }
  void set_secondary_super_cache(klassOop k) { oop_store_without_check((oop*) &_secondary_super_cache, (oop) k); }

  objArrayOop secondary_supers() const { return _secondary_supers; }
  void set_secondary_supers(objArrayOop k) { oop_store_without_check((oop*) &_secondary_supers, (oop) k); }

  // Return the element of the _super chain of the given depth.
  // If there is no such element, return either NULL or this.
  klassOop primary_super_of_depth(juint i) const {
    assert(i < primary_super_limit(), "oob");
    klassOop super = _primary_supers[i];
    assert(super == NULL || super->klass_part()->super_depth() == i, "correct display");
    return super;
  }

  // Can this klass be a primary super?  False for interfaces and arrays of
  // interfaces.  False also for arrays or classes with long super chains.
  bool can_be_primary_super() const {
    const juint secondary_offset = secondary_super_cache_offset_in_bytes() + sizeof(oopDesc);
    return super_check_offset() != secondary_offset;
  }
  virtual bool can_be_primary_super_slow() const;

  // Returns number of primary supers; may be a number in the inclusive range [0, primary_super_limit].
  juint super_depth() const {
    if (!can_be_primary_super()) {
      return primary_super_limit();
    } else {
      juint d = (super_check_offset() - (primary_supers_offset_in_bytes() + sizeof(oopDesc))) / sizeof(klassOop);
      assert(d < primary_super_limit(), "oob");
      assert(_primary_supers[d] == as_klassOop(), "proper init");
      return d;
    }
  }

  // java mirror
  oop java_mirror() const              { return _java_mirror; }
  void set_java_mirror(oop m)          { oop_store((oop*) &_java_mirror, m); }

  // modifier flags
  jint modifier_flags() const          { return _modifier_flags; }
  void set_modifier_flags(jint flags)  { _modifier_flags = flags; }

  // size helper
  int layout_helper() const            { return _layout_helper; }
  void set_layout_helper(int lh)       { _layout_helper = lh; }

  // Note: for instances layout_helper() may include padding.
  // Use instanceKlass::contains_field_offset to classify field offsets.

  // sub/superklass links
  instanceKlass* superklass() const;
  Klass* subklass() const;
  Klass* next_sibling() const;
  void append_to_sibling_list();           // add newly created receiver to superklass' subklass list
  void remove_from_sibling_list();         // remove receiver from sibling list
 protected:                                // internal accessors
  klassOop subklass_oop() const            { return _subklass; }
  klassOop next_sibling_oop() const        { return _next_sibling; }
  void     set_subklass(klassOop s);
  void     set_next_sibling(klassOop s);

  oop* adr_super()           const { return (oop*)&_super;             }
  oop* adr_primary_supers()  const { return (oop*)&_primary_supers[0]; }
  oop* adr_secondary_super_cache() const { return (oop*)&_secondary_super_cache; }
  oop* adr_secondary_supers()const { return (oop*)&_secondary_supers;  }
  oop* adr_java_mirror()     const { return (oop*)&_java_mirror;       }
  oop* adr_name()            const { return (oop*)&_name;              }
  oop* adr_subklass()        const { return (oop*)&_subklass;          }
  oop* adr_next_sibling()    const { return (oop*)&_next_sibling;      }

 public:
  // Allocation profiling support
  juint alloc_count() const          { return _alloc_count; }
  void set_alloc_count(juint n)      { _alloc_count = n; }
  virtual juint alloc_size() const = 0;
  virtual void set_alloc_size(juint n) = 0;

  // Compiler support
  static int super_offset_in_bytes()         { return offset_of(Klass, _super); }
  static int super_check_offset_offset_in_bytes() { return offset_of(Klass, _super_check_offset); }
  static int primary_supers_offset_in_bytes(){ return offset_of(Klass, _primary_supers); }
  static int secondary_super_cache_offset_in_bytes() { return offset_of(Klass, _secondary_super_cache); }
  static int secondary_supers_offset_in_bytes() { return offset_of(Klass, _secondary_supers); }
  static int java_mirror_offset_in_bytes()   { return offset_of(Klass, _java_mirror); }
  static int modifier_flags_offset_in_bytes(){ return offset_of(Klass, _modifier_flags); }
  static int layout_helper_offset_in_bytes() { return offset_of(Klass, _layout_helper); }
  static int access_flags_offset_in_bytes()  { return offset_of(Klass, _access_flags); }

  // Unpacking layout_helper:
  enum {
    _lh_neutral_value           = 0,  // neutral non-array non-instance value
    _lh_instance_slow_path_bit  = 0x01,
    _lh_log2_element_size_shift = BitsPerByte*0,
    _lh_log2_element_size_mask  = BitsPerLong-1,
    _lh_element_type_shift      = BitsPerByte*1,
    _lh_element_type_mask       = right_n_bits(BitsPerByte),  // shifted mask
    _lh_header_size_shift       = BitsPerByte*2,
    _lh_header_size_mask        = right_n_bits(BitsPerByte),  // shifted mask
    _lh_array_tag_bits          = 2,
    _lh_array_tag_shift         = BitsPerInt - _lh_array_tag_bits,
    _lh_array_tag_type_value    = ~0x00,  // 0xC0000000 >> 30
    _lh_array_tag_obj_value     = ~0x01   // 0x80000000 >> 30
  };

  static int layout_helper_size_in_bytes(jint lh) {
    assert(lh > (jint)_lh_neutral_value, "must be instance");
    return (int) lh & ~_lh_instance_slow_path_bit;
  }
  static bool layout_helper_needs_slow_path(jint lh) {
    assert(lh > (jint)_lh_neutral_value, "must be instance");
    return (lh & _lh_instance_slow_path_bit) != 0;
  }
  static bool layout_helper_is_instance(jint lh) {
    return (jint)lh > (jint)_lh_neutral_value;
  }
  static bool layout_helper_is_javaArray(jint lh) {
    return (jint)lh < (jint)_lh_neutral_value;
  }
  static bool layout_helper_is_typeArray(jint lh) {
    // _lh_array_tag_type_value == (lh >> _lh_array_tag_shift);
    return (juint)lh >= (juint)(_lh_array_tag_type_value << _lh_array_tag_shift);
  }
  static bool layout_helper_is_objArray(jint lh) {
    // _lh_array_tag_obj_value == (lh >> _lh_array_tag_shift);
    return (jint)lh < (jint)(_lh_array_tag_type_value << _lh_array_tag_shift);
  }
  static int layout_helper_header_size(jint lh) {
    assert(lh < (jint)_lh_neutral_value, "must be array");
    int hsize = (lh >> _lh_header_size_shift) & _lh_header_size_mask;
    assert(hsize > 0 && hsize < (int)sizeof(oopDesc)*3, "sanity");
    return hsize;
  }
  static BasicType layout_helper_element_type(jint lh) {
    assert(lh < (jint)_lh_neutral_value, "must be array");
    int btvalue = (lh >> _lh_element_type_shift) & _lh_element_type_mask;
    assert(btvalue >= T_BOOLEAN && btvalue <= T_OBJECT, "sanity");
    return (BasicType) btvalue;
  }
  static int layout_helper_log2_element_size(jint lh) {
    assert(lh < (jint)_lh_neutral_value, "must be array");
    int l2esz = (lh >> _lh_log2_element_size_shift) & _lh_log2_element_size_mask;
    assert(l2esz <= LogBitsPerLong, "sanity");
    return l2esz;
  }
  static jint array_layout_helper(jint tag, int hsize, BasicType etype, int log2_esize) {
    return (tag        << _lh_array_tag_shift)
      |    (hsize      << _lh_header_size_shift)
      |    ((int)etype << _lh_element_type_shift)
      |    (log2_esize << _lh_log2_element_size_shift);
  }
  static jint instance_layout_helper(jint size, bool slow_path_flag) {
    return (size << LogHeapWordSize)
      |    (slow_path_flag ? _lh_instance_slow_path_bit : 0);
  }
  static int layout_helper_to_size_helper(jint lh) {
    assert(lh > (jint)_lh_neutral_value, "must be instance");
    // Note that the following expression discards _lh_instance_slow_path_bit.
    return lh >> LogHeapWordSize;
  }
  // Out-of-line version computes everything based on the etype:
  static jint array_layout_helper(BasicType etype);

  // What is the maximum number of primary superclasses any klass can have?
#ifdef PRODUCT
  static juint primary_super_limit()         { return _primary_super_limit; }
#else
  static juint primary_super_limit() {
    assert(FastSuperclassLimit <= _primary_super_limit, "parameter oob");
    return FastSuperclassLimit;
  }
#endif

  // vtables
  virtual klassVtable* vtable() const        { return NULL; }

  static int klass_size_in_bytes()           { return offset_of(Klass, _alloc_count) + sizeof(juint); }  // all "visible" fields

  // subclass check
  bool is_subclass_of(klassOop k) const;
  // subtype check: true if is_subclass_of, or if k is interface and receiver implements it
  bool is_subtype_of(klassOop k) const {
    juint    off = k->klass_part()->super_check_offset();
    klassOop sup = *(klassOop*)( (address)as_klassOop() + off );
    const juint secondary_offset = secondary_super_cache_offset_in_bytes() + sizeof(oopDesc);
    if (sup == k) {
      return true;
    } else if (off != secondary_offset) {
      return false;
    } else {
      return search_secondary_supers(k);
    }
  }
  bool search_secondary_supers(klassOop k) const;

  // Find LCA in class hierarchy
  Klass *LCA( Klass *k );

  // Check whether reflection/jni/jvm code is allowed to instantiate this class;
  // if not, throw either an Error or an Exception.
  virtual void check_valid_for_instantiation(bool throwError, TRAPS);

  // Casting
  static Klass* cast(klassOop k) {
    assert(k->is_klass(), "cast to Klass");
    return k->klass_part();
  }

  // array copying
  virtual void  copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS);

  // tells if the class should be initialized
  virtual bool should_be_initialized() const    { return false; }
  // initializes the klass
  virtual void initialize(TRAPS);
  // lookup operation for MethodLookupCache
  friend class MethodLookupCache;
  virtual methodOop uncached_lookup_method(symbolOop name, symbolOop signature) const;
 public:
  methodOop lookup_method(symbolOop name, symbolOop signature) const {
    return uncached_lookup_method(name, signature);
  }

  // array class with specific rank
  klassOop array_klass(int rank, TRAPS)         {  return array_klass_impl(false, rank, THREAD); }

  // array class with this klass as element type
  klassOop array_klass(TRAPS)                   {  return array_klass_impl(false, THREAD); }

  // These will return NULL instead of allocating on the heap:
  // NB: these can block for a mutex, like other functions with TRAPS arg.
  klassOop array_klass_or_null(int rank);
  klassOop array_klass_or_null();

  virtual oop protection_domain()       { return NULL; }
  virtual oop class_loader()  const     { return NULL; }

 protected:
  virtual klassOop array_klass_impl(bool or_null, int rank, TRAPS);
  virtual klassOop array_klass_impl(bool or_null, TRAPS);

 public:
  virtual void remove_unshareable_info();

 protected:
  // computes the subtype relationship
  virtual bool compute_is_subtype_of(klassOop k);
 public:
  // subclass accessor (here for convenience; undefined for non-klass objects)
  virtual bool is_leaf_class() const { fatal("not a class"); return false; }
 public:
  // ALL FUNCTIONS BELOW THIS POINT ARE DISPATCHED FROM AN OOP
  // These functions describe behavior for the oop not the KLASS.

  // actual oop size of obj in memory
  virtual int oop_size(oop obj) const = 0;

  // actual oop size of this klass in memory
  virtual int klass_oop_size() const = 0;

  // Returns the Java name for a class (Resource allocated)
  // For arrays, this returns the name of the element with a leading '['.
  // For classes, this returns the name with the package separators
  //     turned into '.'s.
  const char* external_name() const;
  // Returns the name for a class (Resource allocated) as the class
  // would appear in a signature.
  // For arrays, this returns the name of the element with a leading '['.
  // For classes, this returns the name with a leading 'L' and a trailing ';'
  //     and the package separators as '/'.
  virtual const char* signature_name() const;

  // garbage collection support
  virtual void oop_follow_contents(oop obj) = 0;
  virtual int  oop_adjust_pointers(oop obj) = 0;

  // Parallel Scavenge and Parallel Old
  PARALLEL_GC_DECLS_PV

 public:
  // type testing operations
  virtual bool oop_is_instance_slow()       const { return false; }
  virtual bool oop_is_instanceRef()         const { return false; }
  virtual bool oop_is_array()               const { return false; }
  virtual bool oop_is_objArray_slow()       const { return false; }
  virtual bool oop_is_symbol()              const { return false; }
  virtual bool oop_is_klass()               const { return false; }
  virtual bool oop_is_thread()              const { return false; }
  virtual bool oop_is_method()              const { return false; }
  virtual bool oop_is_constMethod()         const { return false; }
  virtual bool oop_is_methodData()          const { return false; }
  virtual bool oop_is_constantPool()        const { return false; }
  virtual bool oop_is_constantPoolCache()   const { return false; }
  virtual bool oop_is_typeArray_slow()      const { return false; }
  virtual bool oop_is_arrayKlass()          const { return false; }
  virtual bool oop_is_objArrayKlass()       const { return false; }
  virtual bool oop_is_typeArrayKlass()      const { return false; }
  virtual bool oop_is_compiledICHolder()    const { return false; }
  virtual bool oop_is_instanceKlass()       const { return false; }

  bool oop_is_javaArray_slow() const {
    return oop_is_objArray_slow() || oop_is_typeArray_slow();
  }

  // Fast non-virtual versions, used by oop.inline.hpp and elsewhere:
  #ifndef ASSERT
  #define assert_same_query(xval, xcheck) xval
  #else
 private:
  static bool assert_same_query(bool xval, bool xslow) {
    assert(xval == xslow, "slow and fast queries agree");
    return xval;
  }
 public:
  #endif
  inline  bool oop_is_instance()            const { return assert_same_query(
                                                    layout_helper_is_instance(layout_helper()),
                                                    oop_is_instance_slow()); }
  inline  bool oop_is_javaArray()           const { return assert_same_query(
                                                    layout_helper_is_javaArray(layout_helper()),
                                                    oop_is_javaArray_slow()); }
  inline  bool oop_is_objArray()            const { return assert_same_query(
                                                    layout_helper_is_objArray(layout_helper()),
                                                    oop_is_objArray_slow()); }
  inline  bool oop_is_typeArray()           const { return assert_same_query(
                                                    layout_helper_is_typeArray(layout_helper()),
                                                    oop_is_typeArray_slow()); }
  #undef assert_same_query

  // Unless overridden, oop is parsable if it has a klass pointer.
  // Parsability of an object is object specific.
  virtual bool oop_is_parsable(oop obj) const { return true; }

  // Unless overridden, oop is safe for concurrent GC processing
  // after its allocation is complete.  The exception to
  // this is the case where objects are changed after allocation.
  // Class redefinition is one of the known exceptions. During
  // class redefinition, an allocated class can changed in order
  // order to create a merged class (the combiniation of the
  // old class definition that has to be perserved and the new class
  // definition which is being created.
  virtual bool oop_is_conc_safe(oop obj) const { return true; }

  // Access flags
  AccessFlags access_flags() const         { return _access_flags;  }
  void set_access_flags(AccessFlags flags) { _access_flags = flags; }

  bool is_public() const                { return _access_flags.is_public(); }
  bool is_final() const                 { return _access_flags.is_final(); }
  bool is_interface() const             { return _access_flags.is_interface(); }
  bool is_abstract() const              { return _access_flags.is_abstract(); }
  bool is_super() const                 { return _access_flags.is_super(); }
  bool is_synthetic() const             { return _access_flags.is_synthetic(); }
  void set_is_synthetic()               { _access_flags.set_is_synthetic(); }
  bool has_finalizer() const            { return _access_flags.has_finalizer(); }
  bool has_final_method() const         { return _access_flags.has_final_method(); }
  void set_has_finalizer()              { _access_flags.set_has_finalizer(); }
  void set_has_final_method()           { _access_flags.set_has_final_method(); }
  bool is_cloneable() const             { return _access_flags.is_cloneable(); }
  void set_is_cloneable()               { _access_flags.set_is_cloneable(); }
  bool has_vanilla_constructor() const  { return _access_flags.has_vanilla_constructor(); }
  void set_has_vanilla_constructor()    { _access_flags.set_has_vanilla_constructor(); }
  bool has_miranda_methods () const     { return access_flags().has_miranda_methods(); }
  void set_has_miranda_methods()        { _access_flags.set_has_miranda_methods(); }

  // Biased locking support
  // Note: the prototype header is always set up to be at least the
  // prototype markOop. If biased locking is enabled it may further be
  // biasable and have an epoch.
  markOop prototype_header() const      { return _prototype_header; }
  // NOTE: once instances of this klass are floating around in the
  // system, this header must only be updated at a safepoint.
  // NOTE 2: currently we only ever set the prototype header to the
  // biasable prototype for instanceKlasses. There is no technical
  // reason why it could not be done for arrayKlasses aside from
  // wanting to reduce the initial scope of this optimization. There
  // are potential problems in setting the bias pattern for
  // JVM-internal oops.
  inline void set_prototype_header(markOop header);
  static int prototype_header_offset_in_bytes() { return offset_of(Klass, _prototype_header); }

  int  biased_lock_revocation_count() const { return (int) _biased_lock_revocation_count; }
  // Atomically increments biased_lock_revocation_count and returns updated value
  int atomic_incr_biased_lock_revocation_count();
  void set_biased_lock_revocation_count(int val) { _biased_lock_revocation_count = (jint) val; }
  jlong last_biased_lock_bulk_revocation_time() { return _last_biased_lock_bulk_revocation_time; }
  void  set_last_biased_lock_bulk_revocation_time(jlong cur_time) { _last_biased_lock_bulk_revocation_time = cur_time; }


  // garbage collection support
  virtual void follow_weak_klass_links(
    BoolObjectClosure* is_alive, OopClosure* keep_alive);

  // Prefetch within oop iterators.  This is a macro because we
  // can't guarantee that the compiler will inline it.  In 64-bit
  // it generally doesn't.  Signature is
  //
  // static void prefetch_beyond(oop* const start,
  //                             oop* const end,
  //                             const intx foffset,
  //                             const Prefetch::style pstyle);
#define prefetch_beyond(start, end, foffset, pstyle) {   \
    const intx foffset_ = (foffset);                     \
    const Prefetch::style pstyle_ = (pstyle);            \
    assert(foffset_ > 0, "prefetch beyond, not behind"); \
    if (pstyle_ != Prefetch::do_none) {                  \
      oop* ref = (start);                                \
      if (ref < (end)) {                                 \
        switch (pstyle_) {                               \
        case Prefetch::do_read:                          \
          Prefetch::read(*ref, foffset_);                \
          break;                                         \
        case Prefetch::do_write:                         \
          Prefetch::write(*ref, foffset_);               \
          break;                                         \
        default:                                         \
          ShouldNotReachHere();                          \
          break;                                         \
        }                                                \
      }                                                  \
    }                                                    \
  }

  // iterators
  virtual int oop_oop_iterate(oop obj, OopClosure* blk) = 0;
  virtual int oop_oop_iterate_v(oop obj, OopClosure* blk) {
    return oop_oop_iterate(obj, blk);
  }

#ifndef SERIALGC
  // In case we don't have a specialized backward scanner use forward
  // iteration.
  virtual int oop_oop_iterate_backwards_v(oop obj, OopClosure* blk) {
    return oop_oop_iterate_v(obj, blk);
  }
#endif // !SERIALGC

  // Iterates "blk" over all the oops in "obj" (of type "this") within "mr".
  // (I don't see why the _m should be required, but without it the Solaris
  // C++ gives warning messages about overridings of the "oop_oop_iterate"
  // defined above "hiding" this virtual function.  (DLD, 6/20/00)) */
  virtual int oop_oop_iterate_m(oop obj, OopClosure* blk, MemRegion mr) = 0;
  virtual int oop_oop_iterate_v_m(oop obj, OopClosure* blk, MemRegion mr) {
    return oop_oop_iterate_m(obj, blk, mr);
  }

  // Versions of the above iterators specialized to particular subtypes
  // of OopClosure, to avoid closure virtual calls.
#define Klass_OOP_OOP_ITERATE_DECL(OopClosureType, nv_suffix)                \
  virtual int oop_oop_iterate##nv_suffix(oop obj, OopClosureType* blk) {     \
    /* Default implementation reverts to general version. */                 \
    return oop_oop_iterate(obj, blk);                                        \
  }                                                                          \
                                                                             \
  /* Iterates "blk" over all the oops in "obj" (of type "this") within "mr". \
     (I don't see why the _m should be required, but without it the Solaris  \
     C++ gives warning messages about overridings of the "oop_oop_iterate"   \
     defined above "hiding" this virtual function.  (DLD, 6/20/00)) */       \
  virtual int oop_oop_iterate##nv_suffix##_m(oop obj,                        \
                                             OopClosureType* blk,            \
                                             MemRegion mr) {                 \
    return oop_oop_iterate_m(obj, blk, mr);                                  \
  }

  SPECIALIZED_OOP_OOP_ITERATE_CLOSURES_1(Klass_OOP_OOP_ITERATE_DECL)
  SPECIALIZED_OOP_OOP_ITERATE_CLOSURES_2(Klass_OOP_OOP_ITERATE_DECL)

#ifndef SERIALGC
#define Klass_OOP_OOP_ITERATE_BACKWARDS_DECL(OopClosureType, nv_suffix)      \
  virtual int oop_oop_iterate_backwards##nv_suffix(oop obj,                  \
                                                   OopClosureType* blk) {    \
    /* Default implementation reverts to general version. */                 \
    return oop_oop_iterate_backwards_v(obj, blk);                            \
  }

  SPECIALIZED_OOP_OOP_ITERATE_CLOSURES_1(Klass_OOP_OOP_ITERATE_BACKWARDS_DECL)
  SPECIALIZED_OOP_OOP_ITERATE_CLOSURES_2(Klass_OOP_OOP_ITERATE_BACKWARDS_DECL)
#endif // !SERIALGC

  virtual void array_klasses_do(void f(klassOop k)) {}
  virtual void with_array_klasses_do(void f(klassOop k));

  // Return self, except for abstract classes with exactly 1
  // implementor.  Then return the 1 concrete implementation.
  Klass *up_cast_abstract();

  // klass name
  symbolOop name() const                   { return _name; }
  void set_name(symbolOop n)               { oop_store_without_check((oop*) &_name, (oop) n); }

  friend class klassKlass;

 public:
  // jvm support
  virtual jint compute_modifier_flags(TRAPS) const;

  // JVMTI support
  virtual jint jvmti_class_status() const;

  // Printing
  virtual void oop_print_value_on(oop obj, outputStream* st);
  virtual void oop_print_on      (oop obj, outputStream* st);

  // Verification
  virtual const char* internal_name() const = 0;
  virtual void oop_verify_on(oop obj, outputStream* st);
  virtual void oop_verify_old_oop(oop obj, oop* p, bool allow_dirty);
  virtual void oop_verify_old_oop(oop obj, narrowOop* p, bool allow_dirty);
  // tells whether obj is partially constructed (gc during class loading)
  virtual bool oop_partially_loaded(oop obj) const { return false; }
  virtual void oop_set_partially_loaded(oop obj) {};

#ifndef PRODUCT
  void verify_vtable_index(int index);
#endif
};

#endif // SHARE_VM_OOPS_KLASS_HPP