aboutsummaryrefslogtreecommitdiff
path: root/src/share/vm/oops/klass.cpp
blob: 06c644c347813c324b628dc232c749f98812116c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/javaClasses.hpp"
#include "classfile/dictionary.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "gc_implementation/shared/markSweep.inline.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "memory/heapInspection.hpp"
#include "memory/metadataFactory.hpp"
#include "memory/oopFactory.hpp"
#include "memory/resourceArea.hpp"
#include "oops/instanceKlass.hpp"
#include "oops/klass.inline.hpp"
#include "oops/oop.inline2.hpp"
#include "runtime/atomic.hpp"
#include "utilities/stack.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
#include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
#include "gc_implementation/parallelScavenge/psScavenge.hpp"
#endif // INCLUDE_ALL_GCS

void Klass::set_name(Symbol* n) {
  _name = n;
  if (_name != NULL) _name->increment_refcount();
}

bool Klass::is_subclass_of(Klass* k) const {
  // Run up the super chain and check
  if (this == k) return true;

  Klass* t = const_cast<Klass*>(this)->super();

  while (t != NULL) {
    if (t == k) return true;
    t = t->super();
  }
  return false;
}

bool Klass::search_secondary_supers(Klass* k) const {
  // Put some extra logic here out-of-line, before the search proper.
  // This cuts down the size of the inline method.

  // This is necessary, since I am never in my own secondary_super list.
  if (this == k)
    return true;
  // Scan the array-of-objects for a match
  int cnt = secondary_supers()->length();
  for (int i = 0; i < cnt; i++) {
    if (secondary_supers()->at(i) == k) {
      ((Klass*)this)->set_secondary_super_cache(k);
      return true;
    }
  }
  return false;
}

// Return self, except for abstract classes with exactly 1
// implementor.  Then return the 1 concrete implementation.
Klass *Klass::up_cast_abstract() {
  Klass *r = this;
  while( r->is_abstract() ) {   // Receiver is abstract?
    Klass *s = r->subklass();   // Check for exactly 1 subklass
    if( !s || s->next_sibling() ) // Oops; wrong count; give up
      return this;              // Return 'this' as a no-progress flag
    r = s;                    // Loop till find concrete class
  }
  return r;                   // Return the 1 concrete class
}

// Find LCA in class hierarchy
Klass *Klass::LCA( Klass *k2 ) {
  Klass *k1 = this;
  while( 1 ) {
    if( k1->is_subtype_of(k2) ) return k2;
    if( k2->is_subtype_of(k1) ) return k1;
    k1 = k1->super();
    k2 = k2->super();
  }
}


void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
  ResourceMark rm(THREAD);
  THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
            : vmSymbols::java_lang_InstantiationException(), external_name());
}


void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
  THROW(vmSymbols::java_lang_ArrayStoreException());
}


void Klass::initialize(TRAPS) {
  ShouldNotReachHere();
}

bool Klass::compute_is_subtype_of(Klass* k) {
  assert(k->is_klass(), "argument must be a class");
  return is_subclass_of(k);
}


Method* Klass::uncached_lookup_method(Symbol* name, Symbol* signature) const {
#ifdef ASSERT
  tty->print_cr("Error: uncached_lookup_method called on a klass oop."
                " Likely error: reflection method does not correctly"
                " wrap return value in a mirror object.");
#endif
  ShouldNotReachHere();
  return NULL;
}

void* Klass::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS) {
  return Metaspace::allocate(loader_data, word_size, /*read_only*/false,
                             Metaspace::ClassType, CHECK_NULL);
}

Klass::Klass() {
  Klass* k = this;

  // Preinitialize supertype information.
  // A later call to initialize_supers() may update these settings:
  set_super(NULL);
  for (juint i = 0; i < Klass::primary_super_limit(); i++) {
    _primary_supers[i] = NULL;
  }
  set_secondary_supers(NULL);
  set_secondary_super_cache(NULL);
  _primary_supers[0] = k;
  set_super_check_offset(in_bytes(primary_supers_offset()));

  set_java_mirror(NULL);
  set_modifier_flags(0);
  set_layout_helper(Klass::_lh_neutral_value);
  set_name(NULL);
  AccessFlags af;
  af.set_flags(0);
  set_access_flags(af);
  set_subklass(NULL);
  set_next_sibling(NULL);
  set_next_link(NULL);
  set_alloc_count(0);
  TRACE_SET_KLASS_TRACE_ID(this, 0);

  set_prototype_header(markOopDesc::prototype());
  set_biased_lock_revocation_count(0);
  set_last_biased_lock_bulk_revocation_time(0);

  // The klass doesn't have any references at this point.
  clear_modified_oops();
  clear_accumulated_modified_oops();
}

jint Klass::array_layout_helper(BasicType etype) {
  assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
  // Note that T_ARRAY is not allowed here.
  int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
  int  esize = type2aelembytes(etype);
  bool isobj = (etype == T_OBJECT);
  int  tag   =  isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
  int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));

  assert(lh < (int)_lh_neutral_value, "must look like an array layout");
  assert(layout_helper_is_array(lh), "correct kind");
  assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
  assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
  assert(layout_helper_header_size(lh) == hsize, "correct decode");
  assert(layout_helper_element_type(lh) == etype, "correct decode");
  assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");

  return lh;
}

bool Klass::can_be_primary_super_slow() const {
  if (super() == NULL)
    return true;
  else if (super()->super_depth() >= primary_super_limit()-1)
    return false;
  else
    return true;
}

void Klass::initialize_supers(Klass* k, TRAPS) {
  if (FastSuperclassLimit == 0) {
    // None of the other machinery matters.
    set_super(k);
    return;
  }
  if (k == NULL) {
    set_super(NULL);
    _primary_supers[0] = this;
    assert(super_depth() == 0, "Object must already be initialized properly");
  } else if (k != super() || k == SystemDictionary::Object_klass()) {
    assert(super() == NULL || super() == SystemDictionary::Object_klass(),
           "initialize this only once to a non-trivial value");
    set_super(k);
    Klass* sup = k;
    int sup_depth = sup->super_depth();
    juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
    if (!can_be_primary_super_slow())
      my_depth = primary_super_limit();
    for (juint i = 0; i < my_depth; i++) {
      _primary_supers[i] = sup->_primary_supers[i];
    }
    Klass* *super_check_cell;
    if (my_depth < primary_super_limit()) {
      _primary_supers[my_depth] = this;
      super_check_cell = &_primary_supers[my_depth];
    } else {
      // Overflow of the primary_supers array forces me to be secondary.
      super_check_cell = &_secondary_super_cache;
    }
    set_super_check_offset((address)super_check_cell - (address) this);

#ifdef ASSERT
    {
      juint j = super_depth();
      assert(j == my_depth, "computed accessor gets right answer");
      Klass* t = this;
      while (!t->can_be_primary_super()) {
        t = t->super();
        j = t->super_depth();
      }
      for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
        assert(primary_super_of_depth(j1) == NULL, "super list padding");
      }
      while (t != NULL) {
        assert(primary_super_of_depth(j) == t, "super list initialization");
        t = t->super();
        --j;
      }
      assert(j == (juint)-1, "correct depth count");
    }
#endif
  }

  if (secondary_supers() == NULL) {
    KlassHandle this_kh (THREAD, this);

    // Now compute the list of secondary supertypes.
    // Secondaries can occasionally be on the super chain,
    // if the inline "_primary_supers" array overflows.
    int extras = 0;
    Klass* p;
    for (p = super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
      ++extras;
    }

    ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below

    // Compute the "real" non-extra secondaries.
    GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras);
    if (secondaries == NULL) {
      // secondary_supers set by compute_secondary_supers
      return;
    }

    GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);

    for (p = this_kh->super(); !(p == NULL || p->can_be_primary_super()); p = p->super()) {
      int i;                    // Scan for overflow primaries being duplicates of 2nd'arys

      // This happens frequently for very deeply nested arrays: the
      // primary superclass chain overflows into the secondary.  The
      // secondary list contains the element_klass's secondaries with
      // an extra array dimension added.  If the element_klass's
      // secondary list already contains some primary overflows, they
      // (with the extra level of array-ness) will collide with the
      // normal primary superclass overflows.
      for( i = 0; i < secondaries->length(); i++ ) {
        if( secondaries->at(i) == p )
          break;
      }
      if( i < secondaries->length() )
        continue;               // It's a dup, don't put it in
      primaries->push(p);
    }
    // Combine the two arrays into a metadata object to pack the array.
    // The primaries are added in the reverse order, then the secondaries.
    int new_length = primaries->length() + secondaries->length();
    Array<Klass*>* s2 = MetadataFactory::new_array<Klass*>(
                                       class_loader_data(), new_length, CHECK);
    int fill_p = primaries->length();
    for (int j = 0; j < fill_p; j++) {
      s2->at_put(j, primaries->pop());  // add primaries in reverse order.
    }
    for( int j = 0; j < secondaries->length(); j++ ) {
      s2->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
    }

  #ifdef ASSERT
      // We must not copy any NULL placeholders left over from bootstrap.
    for (int j = 0; j < s2->length(); j++) {
      assert(s2->at(j) != NULL, "correct bootstrapping order");
    }
  #endif

    this_kh->set_secondary_supers(s2);
  }
}

GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots) {
  assert(num_extra_slots == 0, "override for complex klasses");
  set_secondary_supers(Universe::the_empty_klass_array());
  return NULL;
}


Klass* Klass::subklass() const {
  return _subklass == NULL ? NULL : _subklass;
}

InstanceKlass* Klass::superklass() const {
  assert(super() == NULL || super()->oop_is_instance(), "must be instance klass");
  return _super == NULL ? NULL : InstanceKlass::cast(_super);
}

Klass* Klass::next_sibling() const {
  return _next_sibling == NULL ? NULL : _next_sibling;
}

void Klass::set_subklass(Klass* s) {
  assert(s != this, "sanity check");
  _subklass = s;
}

void Klass::set_next_sibling(Klass* s) {
  assert(s != this, "sanity check");
  _next_sibling = s;
}

void Klass::append_to_sibling_list() {
  debug_only(verify();)
  // add ourselves to superklass' subklass list
  InstanceKlass* super = superklass();
  if (super == NULL) return;        // special case: class Object
  assert((!super->is_interface()    // interfaces cannot be supers
          && (super->superklass() == NULL || !is_interface())),
         "an interface can only be a subklass of Object");
  Klass* prev_first_subklass = super->subklass_oop();
  if (prev_first_subklass != NULL) {
    // set our sibling to be the superklass' previous first subklass
    set_next_sibling(prev_first_subklass);
  }
  // make ourselves the superklass' first subklass
  super->set_subklass(this);
  debug_only(verify();)
}

bool Klass::is_loader_alive(BoolObjectClosure* is_alive) {
  assert(is_metadata(), "p is not meta-data");
  assert(ClassLoaderDataGraph::contains((address)this), "is in the metaspace");

#ifdef ASSERT
  // The class is alive iff the class loader is alive.
  oop loader = class_loader();
  bool loader_alive = (loader == NULL) || is_alive->do_object_b(loader);
#endif // ASSERT

  // The class is alive if it's mirror is alive (which should be marked if the
  // loader is alive) unless it's an anoymous class.
  bool mirror_alive = is_alive->do_object_b(java_mirror());
  assert(!mirror_alive || loader_alive, "loader must be alive if the mirror is"
                        " but not the other way around with anonymous classes");
  return mirror_alive;
}

void Klass::clean_weak_klass_links(BoolObjectClosure* is_alive) {
  if (!ClassUnloading) {
    return;
  }

  Klass* root = SystemDictionary::Object_klass();
  Stack<Klass*, mtGC> stack;

  stack.push(root);
  while (!stack.is_empty()) {
    Klass* current = stack.pop();

    assert(current->is_loader_alive(is_alive), "just checking, this should be live");

    // Find and set the first alive subklass
    Klass* sub = current->subklass_oop();
    while (sub != NULL && !sub->is_loader_alive(is_alive)) {
#ifndef PRODUCT
      if (TraceClassUnloading && WizardMode) {
        ResourceMark rm;
        tty->print_cr("[Unlinking class (subclass) %s]", sub->external_name());
      }
#endif
      sub = sub->next_sibling_oop();
    }
    current->set_subklass(sub);
    if (sub != NULL) {
      stack.push(sub);
    }

    // Find and set the first alive sibling
    Klass* sibling = current->next_sibling_oop();
    while (sibling != NULL && !sibling->is_loader_alive(is_alive)) {
      if (TraceClassUnloading && WizardMode) {
        ResourceMark rm;
        tty->print_cr("[Unlinking class (sibling) %s]", sibling->external_name());
      }
      sibling = sibling->next_sibling_oop();
    }
    current->set_next_sibling(sibling);
    if (sibling != NULL) {
      stack.push(sibling);
    }

    // Clean the implementors list and method data.
    if (current->oop_is_instance()) {
      InstanceKlass* ik = InstanceKlass::cast(current);
      ik->clean_implementors_list(is_alive);
      ik->clean_method_data(is_alive);
    }
  }
}

void Klass::klass_update_barrier_set(oop v) {
  record_modified_oops();
}

void Klass::klass_update_barrier_set_pre(void* p, oop v) {
  // This barrier used by G1, where it's used remember the old oop values,
  // so that we don't forget any objects that were live at the snapshot at
  // the beginning. This function is only used when we write oops into
  // Klasses. Since the Klasses are used as roots in G1, we don't have to
  // do anything here.
}

void Klass::klass_oop_store(oop* p, oop v) {
  assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
  assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");

  // do the store
  if (always_do_update_barrier) {
    klass_oop_store((volatile oop*)p, v);
  } else {
    klass_update_barrier_set_pre((void*)p, v);
    *p = v;
    klass_update_barrier_set(v);
  }
}

void Klass::klass_oop_store(volatile oop* p, oop v) {
  assert(!Universe::heap()->is_in_reserved((void*)p), "Should store pointer into metadata");
  assert(v == NULL || Universe::heap()->is_in_reserved((void*)v), "Should store pointer to an object");

  klass_update_barrier_set_pre((void*)p, v);
  OrderAccess::release_store_ptr(p, v);
  klass_update_barrier_set(v);
}

void Klass::oops_do(OopClosure* cl) {
  cl->do_oop(&_java_mirror);
}

void Klass::remove_unshareable_info() {
  if (!DumpSharedSpaces) {
    // Clean up after OOM during class loading
    if (class_loader_data() != NULL) {
      class_loader_data()->remove_class(this);
    }
  }
  set_subklass(NULL);
  set_next_sibling(NULL);
  // Clear the java mirror
  set_java_mirror(NULL);
  set_next_link(NULL);

  // Null out class_loader_data because we don't share that yet.
  set_class_loader_data(NULL);
}

void Klass::restore_unshareable_info(TRAPS) {
  ClassLoaderData* loader_data = ClassLoaderData::the_null_class_loader_data();
  // Restore class_loader_data to the null class loader data
  set_class_loader_data(loader_data);

  // Add to null class loader list first before creating the mirror
  // (same order as class file parsing)
  loader_data->add_class(this);

  // Recreate the class mirror
  java_lang_Class::create_mirror(this, CHECK);
}

Klass* Klass::array_klass_or_null(int rank) {
  EXCEPTION_MARK;
  // No exception can be thrown by array_klass_impl when called with or_null == true.
  // (In anycase, the execption mark will fail if it do so)
  return array_klass_impl(true, rank, THREAD);
}


Klass* Klass::array_klass_or_null() {
  EXCEPTION_MARK;
  // No exception can be thrown by array_klass_impl when called with or_null == true.
  // (In anycase, the execption mark will fail if it do so)
  return array_klass_impl(true, THREAD);
}


Klass* Klass::array_klass_impl(bool or_null, int rank, TRAPS) {
  fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
  return NULL;
}


Klass* Klass::array_klass_impl(bool or_null, TRAPS) {
  fatal("array_klass should be dispatched to InstanceKlass, ObjArrayKlass or TypeArrayKlass");
  return NULL;
}


void Klass::with_array_klasses_do(void f(Klass* k)) {
  f(this);
}


oop Klass::class_loader() const { return class_loader_data()->class_loader(); }

const char* Klass::external_name() const {
  if (oop_is_instance()) {
    InstanceKlass* ik = (InstanceKlass*) this;
    if (ik->is_anonymous()) {
      assert(EnableInvokeDynamic, "");
      intptr_t hash = 0;
      if (ik->java_mirror() != NULL) {
        // java_mirror might not be created yet, return 0 as hash.
        hash = ik->java_mirror()->identity_hash();
      }
      char     hash_buf[40];
      sprintf(hash_buf, "/" UINTX_FORMAT, (uintx)hash);
      size_t   hash_len = strlen(hash_buf);

      size_t result_len = name()->utf8_length();
      char*  result     = NEW_RESOURCE_ARRAY(char, result_len + hash_len + 1);
      name()->as_klass_external_name(result, (int) result_len + 1);
      assert(strlen(result) == result_len, "");
      strcpy(result + result_len, hash_buf);
      assert(strlen(result) == result_len + hash_len, "");
      return result;
    }
  }
  if (name() == NULL)  return "<unknown>";
  return name()->as_klass_external_name();
}


const char* Klass::signature_name() const {
  if (name() == NULL)  return "<unknown>";
  return name()->as_C_string();
}

// Unless overridden, modifier_flags is 0.
jint Klass::compute_modifier_flags(TRAPS) const {
  return 0;
}

int Klass::atomic_incr_biased_lock_revocation_count() {
  return (int) Atomic::add(1, &_biased_lock_revocation_count);
}

// Unless overridden, jvmti_class_status has no flags set.
jint Klass::jvmti_class_status() const {
  return 0;
}


// Printing

void Klass::print_on(outputStream* st) const {
  ResourceMark rm;
  // print title
  st->print("%s", internal_name());
  print_address_on(st);
  st->cr();
}

void Klass::oop_print_on(oop obj, outputStream* st) {
  ResourceMark rm;
  // print title
  st->print_cr("%s ", internal_name());
  obj->print_address_on(st);

  if (WizardMode) {
     // print header
     obj->mark()->print_on(st);
  }

  // print class
  st->print(" - klass: ");
  obj->klass()->print_value_on(st);
  st->cr();
}

void Klass::oop_print_value_on(oop obj, outputStream* st) {
  // print title
  ResourceMark rm;              // Cannot print in debug mode without this
  st->print("%s", internal_name());
  obj->print_address_on(st);
}

#if INCLUDE_SERVICES
// Size Statistics
void Klass::collect_statistics(KlassSizeStats *sz) const {
  sz->_klass_bytes = sz->count(this);
  sz->_mirror_bytes = sz->count(java_mirror());
  sz->_secondary_supers_bytes = sz->count_array(secondary_supers());

  sz->_ro_bytes += sz->_secondary_supers_bytes;
  sz->_rw_bytes += sz->_klass_bytes + sz->_mirror_bytes;
}
#endif // INCLUDE_SERVICES

// Verification

void Klass::verify_on(outputStream* st) {
  guarantee(!Universe::heap()->is_in_reserved(this), "Shouldn't be");
  guarantee(this->is_metadata(), "should be in metaspace");

  assert(ClassLoaderDataGraph::contains((address)this), "Should be");

  guarantee(this->is_klass(),"should be klass");

  if (super() != NULL) {
    guarantee(super()->is_metadata(), "should be in metaspace");
    guarantee(super()->is_klass(), "should be klass");
  }
  if (secondary_super_cache() != NULL) {
    Klass* ko = secondary_super_cache();
    guarantee(ko->is_metadata(), "should be in metaspace");
    guarantee(ko->is_klass(), "should be klass");
  }
  for ( uint i = 0; i < primary_super_limit(); i++ ) {
    Klass* ko = _primary_supers[i];
    if (ko != NULL) {
      guarantee(ko->is_metadata(), "should be in metaspace");
      guarantee(ko->is_klass(), "should be klass");
    }
  }

  if (java_mirror() != NULL) {
    guarantee(java_mirror()->is_oop(), "should be instance");
  }
}

void Klass::oop_verify_on(oop obj, outputStream* st) {
  guarantee(obj->is_oop(),  "should be oop");
  guarantee(obj->klass()->is_metadata(), "should not be in Java heap");
  guarantee(obj->klass()->is_klass(), "klass field is not a klass");
}

#ifndef PRODUCT

void Klass::verify_vtable_index(int i) {
  if (oop_is_instance()) {
    assert(i>=0 && i<((InstanceKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
  } else {
    assert(oop_is_array(), "Must be");
    assert(i>=0 && i<((ArrayKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
  }
}

#endif