aboutsummaryrefslogtreecommitdiff
path: root/src/share/vm/memory/space.hpp
blob: f055638e8dd750a2859910b17478d81e8c189fb4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
/*
 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

// A space is an abstraction for the "storage units" backing
// up the generation abstraction. It includes specific
// implementations for keeping track of free and used space,
// for iterating over objects and free blocks, etc.

// Here's the Space hierarchy:
//
// - Space               -- an asbtract base class describing a heap area
//   - CompactibleSpace  -- a space supporting compaction
//     - CompactibleFreeListSpace -- (used for CMS generation)
//     - ContiguousSpace -- a compactible space in which all free space
//                          is contiguous
//       - EdenSpace     -- contiguous space used as nursery
//         - ConcEdenSpace -- contiguous space with a 'soft end safe' allocation
//       - OffsetTableContigSpace -- contiguous space with a block offset array
//                          that allows "fast" block_start calls
//         - TenuredSpace -- (used for TenuredGeneration)
//         - ContigPermSpace -- an offset table contiguous space for perm gen

// Forward decls.
class Space;
class BlockOffsetArray;
class BlockOffsetArrayContigSpace;
class Generation;
class CompactibleSpace;
class BlockOffsetTable;
class GenRemSet;
class CardTableRS;
class DirtyCardToOopClosure;

// An oop closure that is circumscribed by a filtering memory region.
class SpaceMemRegionOopsIterClosure: public OopClosure {
 private:
  OopClosure* _cl;
  MemRegion   _mr;
 protected:
  template <class T> void do_oop_work(T* p) {
    if (_mr.contains(p)) {
      _cl->do_oop(p);
    }
  }
 public:
  SpaceMemRegionOopsIterClosure(OopClosure* cl, MemRegion mr):
    _cl(cl), _mr(mr) {}
  virtual void do_oop(oop* p);
  virtual void do_oop(narrowOop* p);
};

// A Space describes a heap area. Class Space is an abstract
// base class.
//
// Space supports allocation, size computation and GC support is provided.
//
// Invariant: bottom() and end() are on page_size boundaries and
// bottom() <= top() <= end()
// top() is inclusive and end() is exclusive.

class Space: public CHeapObj {
  friend class VMStructs;
 protected:
  HeapWord* _bottom;
  HeapWord* _end;

  // Used in support of save_marks()
  HeapWord* _saved_mark_word;

  MemRegionClosure* _preconsumptionDirtyCardClosure;

  // A sequential tasks done structure. This supports
  // parallel GC, where we have threads dynamically
  // claiming sub-tasks from a larger parallel task.
  SequentialSubTasksDone _par_seq_tasks;

  Space():
    _bottom(NULL), _end(NULL), _preconsumptionDirtyCardClosure(NULL) { }

 public:
  // Accessors
  HeapWord* bottom() const         { return _bottom; }
  HeapWord* end() const            { return _end;    }
  virtual void set_bottom(HeapWord* value) { _bottom = value; }
  virtual void set_end(HeapWord* value)    { _end = value; }

  virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
  void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }

  MemRegionClosure* preconsumptionDirtyCardClosure() const {
    return _preconsumptionDirtyCardClosure;
  }
  void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) {
    _preconsumptionDirtyCardClosure = cl;
  }

  // Returns a subregion of the space containing all the objects in
  // the space.
  virtual MemRegion used_region() const { return MemRegion(bottom(), end()); }

  // Returns a region that is guaranteed to contain (at least) all objects
  // allocated at the time of the last call to "save_marks".  If the space
  // initializes its DirtyCardToOopClosure's specifying the "contig" option
  // (that is, if the space is contiguous), then this region must contain only
  // such objects: the memregion will be from the bottom of the region to the
  // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
  // the space must distiguish between objects in the region allocated before
  // and after the call to save marks.
  virtual MemRegion used_region_at_save_marks() const {
    return MemRegion(bottom(), saved_mark_word());
  }

  // Initialization.
  // "initialize" should be called once on a space, before it is used for
  // any purpose.  The "mr" arguments gives the bounds of the space, and
  // the "clear_space" argument should be true unless the memory in "mr" is
  // known to be zeroed.
  virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);

  // The "clear" method must be called on a region that may have
  // had allocation performed in it, but is now to be considered empty.
  virtual void clear(bool mangle_space);

  // For detecting GC bugs.  Should only be called at GC boundaries, since
  // some unused space may be used as scratch space during GC's.
  // Default implementation does nothing. We also call this when expanding
  // a space to satisfy an allocation request. See bug #4668531
  virtual void mangle_unused_area() {}
  virtual void mangle_unused_area_complete() {}
  virtual void mangle_region(MemRegion mr) {}

  // Testers
  bool is_empty() const              { return used() == 0; }
  bool not_empty() const             { return used() > 0; }

  // Returns true iff the given the space contains the
  // given address as part of an allocated object. For
  // ceratin kinds of spaces, this might be a potentially
  // expensive operation. To prevent performance problems
  // on account of its inadvertent use in product jvm's,
  // we restrict its use to assertion checks only.
  virtual bool is_in(const void* p) const;

  // Returns true iff the given reserved memory of the space contains the
  // given address.
  bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }

  // Returns true iff the given block is not allocated.
  virtual bool is_free_block(const HeapWord* p) const = 0;

  // Test whether p is double-aligned
  static bool is_aligned(void* p) {
    return ((intptr_t)p & (sizeof(double)-1)) == 0;
  }

  // Size computations.  Sizes are in bytes.
  size_t capacity()     const { return byte_size(bottom(), end()); }
  virtual size_t used() const = 0;
  virtual size_t free() const = 0;

  // Iterate over all the ref-containing fields of all objects in the
  // space, calling "cl.do_oop" on each.  Fields in objects allocated by
  // applications of the closure are not included in the iteration.
  virtual void oop_iterate(OopClosure* cl);

  // Same as above, restricted to the intersection of a memory region and
  // the space.  Fields in objects allocated by applications of the closure
  // are not included in the iteration.
  virtual void oop_iterate(MemRegion mr, OopClosure* cl) = 0;

  // Iterate over all objects in the space, calling "cl.do_object" on
  // each.  Objects allocated by applications of the closure are not
  // included in the iteration.
  virtual void object_iterate(ObjectClosure* blk) = 0;
  // Similar to object_iterate() except only iterates over
  // objects whose internal references point to objects in the space.
  virtual void safe_object_iterate(ObjectClosure* blk) = 0;

  // Iterate over all objects that intersect with mr, calling "cl->do_object"
  // on each.  There is an exception to this: if this closure has already
  // been invoked on an object, it may skip such objects in some cases.  This is
  // Most likely to happen in an "upwards" (ascending address) iteration of
  // MemRegions.
  virtual void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);

  // Iterate over as many initialized objects in the space as possible,
  // calling "cl.do_object_careful" on each. Return NULL if all objects
  // in the space (at the start of the iteration) were iterated over.
  // Return an address indicating the extent of the iteration in the
  // event that the iteration had to return because of finding an
  // uninitialized object in the space, or if the closure "cl"
  // signalled early termination.
  virtual HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
  virtual HeapWord* object_iterate_careful_m(MemRegion mr,
                                             ObjectClosureCareful* cl);

  // Create and return a new dirty card to oop closure. Can be
  // overriden to return the appropriate type of closure
  // depending on the type of space in which the closure will
  // operate. ResourceArea allocated.
  virtual DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
                                             CardTableModRefBS::PrecisionStyle precision,
                                             HeapWord* boundary = NULL);

  // If "p" is in the space, returns the address of the start of the
  // "block" that contains "p".  We say "block" instead of "object" since
  // some heaps may not pack objects densely; a chunk may either be an
  // object or a non-object.  If "p" is not in the space, return NULL.
  virtual HeapWord* block_start_const(const void* p) const = 0;

  // The non-const version may have benevolent side effects on the data
  // structure supporting these calls, possibly speeding up future calls.
  // The default implementation, however, is simply to call the const
  // version.
  inline virtual HeapWord* block_start(const void* p);

  // Requires "addr" to be the start of a chunk, and returns its size.
  // "addr + size" is required to be the start of a new chunk, or the end
  // of the active area of the heap.
  virtual size_t block_size(const HeapWord* addr) const = 0;

  // Requires "addr" to be the start of a block, and returns "TRUE" iff
  // the block is an object.
  virtual bool block_is_obj(const HeapWord* addr) const = 0;

  // Requires "addr" to be the start of a block, and returns "TRUE" iff
  // the block is an object and the object is alive.
  virtual bool obj_is_alive(const HeapWord* addr) const;

  // Allocation (return NULL if full).  Assumes the caller has established
  // mutually exclusive access to the space.
  virtual HeapWord* allocate(size_t word_size) = 0;

  // Allocation (return NULL if full).  Enforces mutual exclusion internally.
  virtual HeapWord* par_allocate(size_t word_size) = 0;

  // Returns true if this object has been allocated since a
  // generation's "save_marks" call.
  virtual bool obj_allocated_since_save_marks(const oop obj) const = 0;

  // Mark-sweep-compact support: all spaces can update pointers to objects
  // moving as a part of compaction.
  virtual void adjust_pointers();

  // PrintHeapAtGC support
  virtual void print() const;
  virtual void print_on(outputStream* st) const;
  virtual void print_short() const;
  virtual void print_short_on(outputStream* st) const;


  // Accessor for parallel sequential tasks.
  SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }

  // IF "this" is a ContiguousSpace, return it, else return NULL.
  virtual ContiguousSpace* toContiguousSpace() {
    return NULL;
  }

  // Debugging
  virtual void verify(bool allow_dirty) const = 0;
};

// A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
// OopClosure to (the addresses of) all the ref-containing fields that could
// be modified by virtue of the given MemRegion being dirty. (Note that
// because of the imprecise nature of the write barrier, this may iterate
// over oops beyond the region.)
// This base type for dirty card to oop closures handles memory regions
// in non-contiguous spaces with no boundaries, and should be sub-classed
// to support other space types. See ContiguousDCTOC for a sub-class
// that works with ContiguousSpaces.

class DirtyCardToOopClosure: public MemRegionClosureRO {
protected:
  OopClosure* _cl;
  Space* _sp;
  CardTableModRefBS::PrecisionStyle _precision;
  HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
                                // pointing below boundary.
  HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
                                // a downwards traversal; this is the
                                // lowest location already done (or,
                                // alternatively, the lowest address that
                                // shouldn't be done again.  NULL means infinity.)
  NOT_PRODUCT(HeapWord* _last_bottom;)
  NOT_PRODUCT(HeapWord* _last_explicit_min_done;)

  // Get the actual top of the area on which the closure will
  // operate, given where the top is assumed to be (the end of the
  // memory region passed to do_MemRegion) and where the object
  // at the top is assumed to start. For example, an object may
  // start at the top but actually extend past the assumed top,
  // in which case the top becomes the end of the object.
  virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);

  // Walk the given memory region from bottom to (actual) top
  // looking for objects and applying the oop closure (_cl) to
  // them. The base implementation of this treats the area as
  // blocks, where a block may or may not be an object. Sub-
  // classes should override this to provide more accurate
  // or possibly more efficient walking.
  virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);

public:
  DirtyCardToOopClosure(Space* sp, OopClosure* cl,
                        CardTableModRefBS::PrecisionStyle precision,
                        HeapWord* boundary) :
    _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
    _min_done(NULL) {
    NOT_PRODUCT(_last_bottom = NULL);
    NOT_PRODUCT(_last_explicit_min_done = NULL);
  }

  void do_MemRegion(MemRegion mr);

  void set_min_done(HeapWord* min_done) {
    _min_done = min_done;
    NOT_PRODUCT(_last_explicit_min_done = _min_done);
  }
#ifndef PRODUCT
  void set_last_bottom(HeapWord* last_bottom) {
    _last_bottom = last_bottom;
  }
#endif
};

// A structure to represent a point at which objects are being copied
// during compaction.
class CompactPoint : public StackObj {
public:
  Generation* gen;
  CompactibleSpace* space;
  HeapWord* threshold;
  CompactPoint(Generation* _gen, CompactibleSpace* _space,
               HeapWord* _threshold) :
    gen(_gen), space(_space), threshold(_threshold) {}
};


// A space that supports compaction operations.  This is usually, but not
// necessarily, a space that is normally contiguous.  But, for example, a
// free-list-based space whose normal collection is a mark-sweep without
// compaction could still support compaction in full GC's.

class CompactibleSpace: public Space {
  friend class VMStructs;
  friend class CompactibleFreeListSpace;
  friend class CompactingPermGenGen;
  friend class CMSPermGenGen;
private:
  HeapWord* _compaction_top;
  CompactibleSpace* _next_compaction_space;

public:
  CompactibleSpace() :
   _compaction_top(NULL), _next_compaction_space(NULL) {}

  virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
  virtual void clear(bool mangle_space);

  // Used temporarily during a compaction phase to hold the value
  // top should have when compaction is complete.
  HeapWord* compaction_top() const { return _compaction_top;    }

  void set_compaction_top(HeapWord* value) {
    assert(value == NULL || (value >= bottom() && value <= end()),
      "should point inside space");
    _compaction_top = value;
  }

  // Perform operations on the space needed after a compaction
  // has been performed.
  virtual void reset_after_compaction() {}

  // Returns the next space (in the current generation) to be compacted in
  // the global compaction order.  Also is used to select the next
  // space into which to compact.

  virtual CompactibleSpace* next_compaction_space() const {
    return _next_compaction_space;
  }

  void set_next_compaction_space(CompactibleSpace* csp) {
    _next_compaction_space = csp;
  }

  // MarkSweep support phase2

  // Start the process of compaction of the current space: compute
  // post-compaction addresses, and insert forwarding pointers.  The fields
  // "cp->gen" and "cp->compaction_space" are the generation and space into
  // which we are currently compacting.  This call updates "cp" as necessary,
  // and leaves the "compaction_top" of the final value of
  // "cp->compaction_space" up-to-date.  Offset tables may be updated in
  // this phase as if the final copy had occurred; if so, "cp->threshold"
  // indicates when the next such action should be taken.
  virtual void prepare_for_compaction(CompactPoint* cp);
  // MarkSweep support phase3
  virtual void adjust_pointers();
  // MarkSweep support phase4
  virtual void compact();

  // The maximum percentage of objects that can be dead in the compacted
  // live part of a compacted space ("deadwood" support.)
  virtual size_t allowed_dead_ratio() const { return 0; };

  // Some contiguous spaces may maintain some data structures that should
  // be updated whenever an allocation crosses a boundary.  This function
  // returns the first such boundary.
  // (The default implementation returns the end of the space, so the
  // boundary is never crossed.)
  virtual HeapWord* initialize_threshold() { return end(); }

  // "q" is an object of the given "size" that should be forwarded;
  // "cp" names the generation ("gen") and containing "this" (which must
  // also equal "cp->space").  "compact_top" is where in "this" the
  // next object should be forwarded to.  If there is room in "this" for
  // the object, insert an appropriate forwarding pointer in "q".
  // If not, go to the next compaction space (there must
  // be one, since compaction must succeed -- we go to the first space of
  // the previous generation if necessary, updating "cp"), reset compact_top
  // and then forward.  In either case, returns the new value of "compact_top".
  // If the forwarding crosses "cp->threshold", invokes the "cross_threhold"
  // function of the then-current compaction space, and updates "cp->threshold
  // accordingly".
  virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
                    HeapWord* compact_top);

  // Return a size with adjusments as required of the space.
  virtual size_t adjust_object_size_v(size_t size) const { return size; }

protected:
  // Used during compaction.
  HeapWord* _first_dead;
  HeapWord* _end_of_live;

  // Minimum size of a free block.
  virtual size_t minimum_free_block_size() const = 0;

  // This the function is invoked when an allocation of an object covering
  // "start" to "end occurs crosses the threshold; returns the next
  // threshold.  (The default implementation does nothing.)
  virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
    return end();
  }

  // Requires "allowed_deadspace_words > 0", that "q" is the start of a
  // free block of the given "word_len", and that "q", were it an object,
  // would not move if forwared.  If the size allows, fill the free
  // block with an object, to prevent excessive compaction.  Returns "true"
  // iff the free region was made deadspace, and modifies
  // "allowed_deadspace_words" to reflect the number of available deadspace
  // words remaining after this operation.
  bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
                        size_t word_len);
};

#define SCAN_AND_FORWARD(cp,scan_limit,block_is_obj,block_size) {            \
  /* Compute the new addresses for the live objects and store it in the mark \
   * Used by universe::mark_sweep_phase2()                                   \
   */                                                                        \
  HeapWord* compact_top; /* This is where we are currently compacting to. */ \
                                                                             \
  /* We're sure to be here before any objects are compacted into this        \
   * space, so this is a good time to initialize this:                       \
   */                                                                        \
  set_compaction_top(bottom());                                              \
                                                                             \
  if (cp->space == NULL) {                                                   \
    assert(cp->gen != NULL, "need a generation");                            \
    assert(cp->threshold == NULL, "just checking");                          \
    assert(cp->gen->first_compaction_space() == this, "just checking");      \
    cp->space = cp->gen->first_compaction_space();                           \
    compact_top = cp->space->bottom();                                       \
    cp->space->set_compaction_top(compact_top);                              \
    cp->threshold = cp->space->initialize_threshold();                       \
  } else {                                                                   \
    compact_top = cp->space->compaction_top();                               \
  }                                                                          \
                                                                             \
  /* We allow some amount of garbage towards the bottom of the space, so     \
   * we don't start compacting before there is a significant gain to be made.\
   * Occasionally, we want to ensure a full compaction, which is determined  \
   * by the MarkSweepAlwaysCompactCount parameter.                           \
   */                                                                        \
  int invocations = SharedHeap::heap()->perm_gen()->stat_record()->invocations;\
  bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0);       \
                                                                             \
  size_t allowed_deadspace = 0;                                              \
  if (skip_dead) {                                                           \
    const size_t ratio = allowed_dead_ratio();                               \
    allowed_deadspace = (capacity() * ratio / 100) / HeapWordSize;           \
  }                                                                          \
                                                                             \
  HeapWord* q = bottom();                                                    \
  HeapWord* t = scan_limit();                                                \
                                                                             \
  HeapWord*  end_of_live= q;    /* One byte beyond the last byte of the last \
                                   live object. */                           \
  HeapWord*  first_dead = end();/* The first dead object. */                 \
  LiveRange* liveRange  = NULL; /* The current live range, recorded in the   \
                                   first header of preceding free area. */   \
  _first_dead = first_dead;                                                  \
                                                                             \
  const intx interval = PrefetchScanIntervalInBytes;                         \
                                                                             \
  while (q < t) {                                                            \
    assert(!block_is_obj(q) ||                                               \
           oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() ||   \
           oop(q)->mark()->has_bias_pattern(),                               \
           "these are the only valid states during a mark sweep");           \
    if (block_is_obj(q) && oop(q)->is_gc_marked()) {                         \
      /* prefetch beyond q */                                                \
      Prefetch::write(q, interval);                                          \
      /* size_t size = oop(q)->size();  changing this for cms for perm gen */\
      size_t size = block_size(q);                                           \
      compact_top = cp->space->forward(oop(q), size, cp, compact_top);       \
      q += size;                                                             \
      end_of_live = q;                                                       \
    } else {                                                                 \
      /* run over all the contiguous dead objects */                         \
      HeapWord* end = q;                                                     \
      do {                                                                   \
        /* prefetch beyond end */                                            \
        Prefetch::write(end, interval);                                      \
        end += block_size(end);                                              \
      } while (end < t && (!block_is_obj(end) || !oop(end)->is_gc_marked()));\
                                                                             \
      /* see if we might want to pretend this object is alive so that        \
       * we don't have to compact quite as often.                            \
       */                                                                    \
      if (allowed_deadspace > 0 && q == compact_top) {                       \
        size_t sz = pointer_delta(end, q);                                   \
        if (insert_deadspace(allowed_deadspace, q, sz)) {                    \
          compact_top = cp->space->forward(oop(q), sz, cp, compact_top);     \
          q = end;                                                           \
          end_of_live = end;                                                 \
          continue;                                                          \
        }                                                                    \
      }                                                                      \
                                                                             \
      /* otherwise, it really is a free region. */                           \
                                                                             \
      /* for the previous LiveRange, record the end of the live objects. */  \
      if (liveRange) {                                                       \
        liveRange->set_end(q);                                               \
      }                                                                      \
                                                                             \
      /* record the current LiveRange object.                                \
       * liveRange->start() is overlaid on the mark word.                    \
       */                                                                    \
      liveRange = (LiveRange*)q;                                             \
      liveRange->set_start(end);                                             \
      liveRange->set_end(end);                                               \
                                                                             \
      /* see if this is the first dead region. */                            \
      if (q < first_dead) {                                                  \
        first_dead = q;                                                      \
      }                                                                      \
                                                                             \
      /* move on to the next object */                                       \
      q = end;                                                               \
    }                                                                        \
  }                                                                          \
                                                                             \
  assert(q == t, "just checking");                                           \
  if (liveRange != NULL) {                                                   \
    liveRange->set_end(q);                                                   \
  }                                                                          \
  _end_of_live = end_of_live;                                                \
  if (end_of_live < first_dead) {                                            \
    first_dead = end_of_live;                                                \
  }                                                                          \
  _first_dead = first_dead;                                                  \
                                                                             \
  /* save the compaction_top of the compaction space. */                     \
  cp->space->set_compaction_top(compact_top);                                \
}

#define SCAN_AND_ADJUST_POINTERS(adjust_obj_size) {                             \
  /* adjust all the interior pointers to point at the new locations of objects  \
   * Used by MarkSweep::mark_sweep_phase3() */                                  \
                                                                                \
  HeapWord* q = bottom();                                                       \
  HeapWord* t = _end_of_live;  /* Established by "prepare_for_compaction". */   \
                                                                                \
  assert(_first_dead <= _end_of_live, "Stands to reason, no?");                 \
                                                                                \
  if (q < t && _first_dead > q &&                                               \
      !oop(q)->is_gc_marked()) {                                                \
    /* we have a chunk of the space which hasn't moved and we've                \
     * reinitialized the mark word during the previous pass, so we can't        \
     * use is_gc_marked for the traversal. */                                   \
    HeapWord* end = _first_dead;                                                \
                                                                                \
    while (q < end) {                                                           \
      /* I originally tried to conjoin "block_start(q) == q" to the             \
       * assertion below, but that doesn't work, because you can't              \
       * accurately traverse previous objects to get to the current one         \
       * after their pointers (including pointers into permGen) have been       \
       * updated, until the actual compaction is done.  dld, 4/00 */            \
      assert(block_is_obj(q),                                                   \
             "should be at block boundaries, and should be looking at objs");   \
                                                                                \
      VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));     \
                                                                                \
      /* point all the oops to the new location */                              \
      size_t size = oop(q)->adjust_pointers();                                  \
      size = adjust_obj_size(size);                                             \
                                                                                \
      VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());           \
                                                                                \
      VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));     \
                                                                                \
      q += size;                                                                \
    }                                                                           \
                                                                                \
    if (_first_dead == t) {                                                     \
      q = t;                                                                    \
    } else {                                                                    \
      /* $$$ This is funky.  Using this to read the previously written          \
       * LiveRange.  See also use below. */                                     \
      q = (HeapWord*)oop(_first_dead)->mark()->decode_pointer();                \
    }                                                                           \
  }                                                                             \
                                                                                \
  const intx interval = PrefetchScanIntervalInBytes;                            \
                                                                                \
  debug_only(HeapWord* prev_q = NULL);                                          \
  while (q < t) {                                                               \
    /* prefetch beyond q */                                                     \
    Prefetch::write(q, interval);                                               \
    if (oop(q)->is_gc_marked()) {                                               \
      /* q is alive */                                                          \
      VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));     \
      /* point all the oops to the new location */                              \
      size_t size = oop(q)->adjust_pointers();                                  \
      size = adjust_obj_size(size);                                             \
      VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());           \
      VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));     \
      debug_only(prev_q = q);                                                   \
      q += size;                                                                \
    } else {                                                                    \
      /* q is not a live object, so its mark should point at the next           \
       * live object */                                                         \
      debug_only(prev_q = q);                                                   \
      q = (HeapWord*) oop(q)->mark()->decode_pointer();                         \
      assert(q > prev_q, "we should be moving forward through memory");         \
    }                                                                           \
  }                                                                             \
                                                                                \
  assert(q == t, "just checking");                                              \
}

#define SCAN_AND_COMPACT(obj_size) {                                            \
  /* Copy all live objects to their new location                                \
   * Used by MarkSweep::mark_sweep_phase4() */                                  \
                                                                                \
  HeapWord*       q = bottom();                                                 \
  HeapWord* const t = _end_of_live;                                             \
  debug_only(HeapWord* prev_q = NULL);                                          \
                                                                                \
  if (q < t && _first_dead > q &&                                               \
      !oop(q)->is_gc_marked()) {                                                \
    debug_only(                                                                 \
    /* we have a chunk of the space which hasn't moved and we've reinitialized  \
     * the mark word during the previous pass, so we can't use is_gc_marked for \
     * the traversal. */                                                        \
    HeapWord* const end = _first_dead;                                          \
                                                                                \
    while (q < end) {                                                           \
      size_t size = obj_size(q);                                                \
      assert(!oop(q)->is_gc_marked(),                                           \
             "should be unmarked (special dense prefix handling)");             \
      VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size, q));       \
      debug_only(prev_q = q);                                                   \
      q += size;                                                                \
    }                                                                           \
    )  /* debug_only */                                                         \
                                                                                \
    if (_first_dead == t) {                                                     \
      q = t;                                                                    \
    } else {                                                                    \
      /* $$$ Funky */                                                           \
      q = (HeapWord*) oop(_first_dead)->mark()->decode_pointer();               \
    }                                                                           \
  }                                                                             \
                                                                                \
  const intx scan_interval = PrefetchScanIntervalInBytes;                       \
  const intx copy_interval = PrefetchCopyIntervalInBytes;                       \
  while (q < t) {                                                               \
    if (!oop(q)->is_gc_marked()) {                                              \
      /* mark is pointer to next marked oop */                                  \
      debug_only(prev_q = q);                                                   \
      q = (HeapWord*) oop(q)->mark()->decode_pointer();                         \
      assert(q > prev_q, "we should be moving forward through memory");         \
    } else {                                                                    \
      /* prefetch beyond q */                                                   \
      Prefetch::read(q, scan_interval);                                         \
                                                                                \
      /* size and destination */                                                \
      size_t size = obj_size(q);                                                \
      HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee();                \
                                                                                \
      /* prefetch beyond compaction_top */                                      \
      Prefetch::write(compaction_top, copy_interval);                           \
                                                                                \
      /* copy object and reinit its mark */                                     \
      VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size,            \
                                                            compaction_top));   \
      assert(q != compaction_top, "everything in this pass should be moving");  \
      Copy::aligned_conjoint_words(q, compaction_top, size);                    \
      oop(compaction_top)->init_mark();                                         \
      assert(oop(compaction_top)->klass() != NULL, "should have a class");      \
                                                                                \
      debug_only(prev_q = q);                                                   \
      q += size;                                                                \
    }                                                                           \
  }                                                                             \
                                                                                \
  /* Let's remember if we were empty before we did the compaction. */           \
  bool was_empty = used_region().is_empty();                                    \
  /* Reset space after compaction is complete */                                \
  reset_after_compaction();                                                     \
  /* We do this clear, below, since it has overloaded meanings for some */      \
  /* space subtypes.  For example, OffsetTableContigSpace's that were   */      \
  /* compacted into will have had their offset table thresholds updated */      \
  /* continuously, but those that weren't need to have their thresholds */      \
  /* re-initialized.  Also mangles unused area for debugging.           */      \
  if (used_region().is_empty()) {                                               \
    if (!was_empty) clear(SpaceDecorator::Mangle);                              \
  } else {                                                                      \
    if (ZapUnusedHeapArea) mangle_unused_area();                                \
  }                                                                             \
}

class GenSpaceMangler;

// A space in which the free area is contiguous.  It therefore supports
// faster allocation, and compaction.
class ContiguousSpace: public CompactibleSpace {
  friend class OneContigSpaceCardGeneration;
  friend class VMStructs;
 protected:
  HeapWord* _top;
  HeapWord* _concurrent_iteration_safe_limit;
  // A helper for mangling the unused area of the space in debug builds.
  GenSpaceMangler* _mangler;

  GenSpaceMangler* mangler() { return _mangler; }

  // Allocation helpers (return NULL if full).
  inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
  inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);

 public:
  ContiguousSpace();
  ~ContiguousSpace();

  virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
  virtual void clear(bool mangle_space);

  // Accessors
  HeapWord* top() const            { return _top;    }
  void set_top(HeapWord* value)    { _top = value; }

  virtual void set_saved_mark()    { _saved_mark_word = top();    }
  void reset_saved_mark()          { _saved_mark_word = bottom(); }

  WaterMark bottom_mark()     { return WaterMark(this, bottom()); }
  WaterMark top_mark()        { return WaterMark(this, top()); }
  WaterMark saved_mark()      { return WaterMark(this, saved_mark_word()); }
  bool saved_mark_at_top() const { return saved_mark_word() == top(); }

  // In debug mode mangle (write it with a particular bit
  // pattern) the unused part of a space.

  // Used to save the an address in a space for later use during mangling.
  void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
  // Used to save the space's current top for later use during mangling.
  void set_top_for_allocations() PRODUCT_RETURN;

  // Mangle regions in the space from the current top up to the
  // previously mangled part of the space.
  void mangle_unused_area() PRODUCT_RETURN;
  // Mangle [top, end)
  void mangle_unused_area_complete() PRODUCT_RETURN;
  // Mangle the given MemRegion.
  void mangle_region(MemRegion mr) PRODUCT_RETURN;

  // Do some sparse checking on the area that should have been mangled.
  void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
  // Check the complete area that should have been mangled.
  // This code may be NULL depending on the macro DEBUG_MANGLING.
  void check_mangled_unused_area_complete() PRODUCT_RETURN;

  // Size computations: sizes in bytes.
  size_t capacity() const        { return byte_size(bottom(), end()); }
  size_t used() const            { return byte_size(bottom(), top()); }
  size_t free() const            { return byte_size(top(),    end()); }

  // Override from space.
  bool is_in(const void* p) const;

  virtual bool is_free_block(const HeapWord* p) const;

  // In a contiguous space we have a more obvious bound on what parts
  // contain objects.
  MemRegion used_region() const { return MemRegion(bottom(), top()); }

  MemRegion used_region_at_save_marks() const {
    return MemRegion(bottom(), saved_mark_word());
  }

  // Allocation (return NULL if full)
  virtual HeapWord* allocate(size_t word_size);
  virtual HeapWord* par_allocate(size_t word_size);

  virtual bool obj_allocated_since_save_marks(const oop obj) const {
    return (HeapWord*)obj >= saved_mark_word();
  }

  // Iteration
  void oop_iterate(OopClosure* cl);
  void oop_iterate(MemRegion mr, OopClosure* cl);
  void object_iterate(ObjectClosure* blk);
  // For contiguous spaces this method will iterate safely over objects
  // in the space (i.e., between bottom and top) when at a safepoint.
  void safe_object_iterate(ObjectClosure* blk);
  void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
  // iterates on objects up to the safe limit
  HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
  inline HeapWord* concurrent_iteration_safe_limit();
  // changes the safe limit, all objects from bottom() to the new
  // limit should be properly initialized
  inline void set_concurrent_iteration_safe_limit(HeapWord* new_limit);

#ifndef SERIALGC
  // In support of parallel oop_iterate.
  #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix)  \
    void par_oop_iterate(MemRegion mr, OopClosureType* blk);

    ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
  #undef ContigSpace_PAR_OOP_ITERATE_DECL
#endif // SERIALGC

  // Compaction support
  virtual void reset_after_compaction() {
    assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
    set_top(compaction_top());
    // set new iteration safe limit
    set_concurrent_iteration_safe_limit(compaction_top());
  }
  virtual size_t minimum_free_block_size() const { return 0; }

  // Override.
  DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
                                     CardTableModRefBS::PrecisionStyle precision,
                                     HeapWord* boundary = NULL);

  // Apply "blk->do_oop" to the addresses of all reference fields in objects
  // starting with the _saved_mark_word, which was noted during a generation's
  // save_marks and is required to denote the head of an object.
  // Fields in objects allocated by applications of the closure
  // *are* included in the iteration.
  // Updates _saved_mark_word to point to just after the last object
  // iterated over.
#define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
  void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);

  ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
#undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL

  // Same as object_iterate, but starting from "mark", which is required
  // to denote the start of an object.  Objects allocated by
  // applications of the closure *are* included in the iteration.
  virtual void object_iterate_from(WaterMark mark, ObjectClosure* blk);

  // Very inefficient implementation.
  virtual HeapWord* block_start_const(const void* p) const;
  size_t block_size(const HeapWord* p) const;
  // If a block is in the allocated area, it is an object.
  bool block_is_obj(const HeapWord* p) const { return p < top(); }

  // Addresses for inlined allocation
  HeapWord** top_addr() { return &_top; }
  HeapWord** end_addr() { return &_end; }

  // Overrides for more efficient compaction support.
  void prepare_for_compaction(CompactPoint* cp);

  // PrintHeapAtGC support.
  virtual void print_on(outputStream* st) const;

  // Checked dynamic downcasts.
  virtual ContiguousSpace* toContiguousSpace() {
    return this;
  }

  // Debugging
  virtual void verify(bool allow_dirty) const;

  // Used to increase collection frequency.  "factor" of 0 means entire
  // space.
  void allocate_temporary_filler(int factor);

};


// A dirty card to oop closure that does filtering.
// It knows how to filter out objects that are outside of the _boundary.
class Filtering_DCTOC : public DirtyCardToOopClosure {
protected:
  // Override.
  void walk_mem_region(MemRegion mr,
                       HeapWord* bottom, HeapWord* top);

  // Walk the given memory region, from bottom to top, applying
  // the given oop closure to (possibly) all objects found. The
  // given oop closure may or may not be the same as the oop
  // closure with which this closure was created, as it may
  // be a filtering closure which makes use of the _boundary.
  // We offer two signatures, so the FilteringClosure static type is
  // apparent.
  virtual void walk_mem_region_with_cl(MemRegion mr,
                                       HeapWord* bottom, HeapWord* top,
                                       OopClosure* cl) = 0;
  virtual void walk_mem_region_with_cl(MemRegion mr,
                                       HeapWord* bottom, HeapWord* top,
                                       FilteringClosure* cl) = 0;

public:
  Filtering_DCTOC(Space* sp, OopClosure* cl,
                  CardTableModRefBS::PrecisionStyle precision,
                  HeapWord* boundary) :
    DirtyCardToOopClosure(sp, cl, precision, boundary) {}
};

// A dirty card to oop closure for contiguous spaces
// (ContiguousSpace and sub-classes).
// It is a FilteringClosure, as defined above, and it knows:
//
// 1. That the actual top of any area in a memory region
//    contained by the space is bounded by the end of the contiguous
//    region of the space.
// 2. That the space is really made up of objects and not just
//    blocks.

class ContiguousSpaceDCTOC : public Filtering_DCTOC {
protected:
  // Overrides.
  HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);

  virtual void walk_mem_region_with_cl(MemRegion mr,
                                       HeapWord* bottom, HeapWord* top,
                                       OopClosure* cl);
  virtual void walk_mem_region_with_cl(MemRegion mr,
                                       HeapWord* bottom, HeapWord* top,
                                       FilteringClosure* cl);

public:
  ContiguousSpaceDCTOC(ContiguousSpace* sp, OopClosure* cl,
                       CardTableModRefBS::PrecisionStyle precision,
                       HeapWord* boundary) :
    Filtering_DCTOC(sp, cl, precision, boundary)
  {}
};


// Class EdenSpace describes eden-space in new generation.

class DefNewGeneration;

class EdenSpace : public ContiguousSpace {
  friend class VMStructs;
 private:
  DefNewGeneration* _gen;

  // _soft_end is used as a soft limit on allocation.  As soft limits are
  // reached, the slow-path allocation code can invoke other actions and then
  // adjust _soft_end up to a new soft limit or to end().
  HeapWord* _soft_end;

 public:
  EdenSpace(DefNewGeneration* gen) :
   _gen(gen), _soft_end(NULL) {}

  // Get/set just the 'soft' limit.
  HeapWord* soft_end()               { return _soft_end; }
  HeapWord** soft_end_addr()         { return &_soft_end; }
  void set_soft_end(HeapWord* value) { _soft_end = value; }

  // Override.
  void clear(bool mangle_space);

  // Set both the 'hard' and 'soft' limits (_end and _soft_end).
  void set_end(HeapWord* value) {
    set_soft_end(value);
    ContiguousSpace::set_end(value);
  }

  // Allocation (return NULL if full)
  HeapWord* allocate(size_t word_size);
  HeapWord* par_allocate(size_t word_size);
};

// Class ConcEdenSpace extends EdenSpace for the sake of safe
// allocation while soft-end is being modified concurrently

class ConcEdenSpace : public EdenSpace {
 public:
  ConcEdenSpace(DefNewGeneration* gen) : EdenSpace(gen) { }

  // Allocation (return NULL if full)
  HeapWord* par_allocate(size_t word_size);
};


// A ContigSpace that Supports an efficient "block_start" operation via
// a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
// other spaces.)  This is the abstract base class for old generation
// (tenured, perm) spaces.

class OffsetTableContigSpace: public ContiguousSpace {
  friend class VMStructs;
 protected:
  BlockOffsetArrayContigSpace _offsets;
  Mutex _par_alloc_lock;

 public:
  // Constructor
  OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
                         MemRegion mr);

  void set_bottom(HeapWord* value);
  void set_end(HeapWord* value);

  void clear(bool mangle_space);

  inline HeapWord* block_start_const(const void* p) const;

  // Add offset table update.
  virtual inline HeapWord* allocate(size_t word_size);
  inline HeapWord* par_allocate(size_t word_size);

  // MarkSweep support phase3
  virtual HeapWord* initialize_threshold();
  virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);

  virtual void print_on(outputStream* st) const;

  // Debugging
  void verify(bool allow_dirty) const;

  // Shared space support
  void serialize_block_offset_array_offsets(SerializeOopClosure* soc);
};


// Class TenuredSpace is used by TenuredGeneration

class TenuredSpace: public OffsetTableContigSpace {
  friend class VMStructs;
 protected:
  // Mark sweep support
  size_t allowed_dead_ratio() const;
 public:
  // Constructor
  TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
               MemRegion mr) :
    OffsetTableContigSpace(sharedOffsetArray, mr) {}
};


// Class ContigPermSpace is used by CompactingPermGen

class ContigPermSpace: public OffsetTableContigSpace {
  friend class VMStructs;
 protected:
  // Mark sweep support
  size_t allowed_dead_ratio() const;
 public:
  // Constructor
  ContigPermSpace(BlockOffsetSharedArray* sharedOffsetArray, MemRegion mr) :
    OffsetTableContigSpace(sharedOffsetArray, mr) {}
};