aboutsummaryrefslogtreecommitdiff
path: root/src/share/vm/memory/binaryTreeDictionary.cpp
blob: 725a71925dc1047e87f2868df48e2556e6456f89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
/*
 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "gc_implementation/shared/allocationStats.hpp"
#include "memory/binaryTreeDictionary.hpp"
#include "memory/freeList.hpp"
#include "memory/freeBlockDictionary.hpp"
#include "memory/metablock.hpp"
#include "memory/metachunk.hpp"
#include "runtime/globals.hpp"
#include "utilities/ostream.hpp"
#ifndef SERIALGC
#include "gc_implementation/concurrentMarkSweep/adaptiveFreeList.hpp"
#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
#include "gc_implementation/shared/spaceDecorator.hpp"
#include "gc_implementation/concurrentMarkSweep/freeChunk.hpp"
#endif // SERIALGC

////////////////////////////////////////////////////////////////////////////////
// A binary tree based search structure for free blocks.
// This is currently used in the Concurrent Mark&Sweep implementation.
////////////////////////////////////////////////////////////////////////////////

template <class Chunk_t, template <class> class FreeList_t>
size_t TreeChunk<Chunk_t, FreeList_t>::_min_tree_chunk_size = sizeof(TreeChunk<Chunk_t,  FreeList_t>)/HeapWordSize;

template <class Chunk_t, template <class> class FreeList_t>
TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
  // Do some assertion checking here.
  return (TreeChunk<Chunk_t, FreeList_t>*) fc;
}

template <class Chunk_t, template <class> class FreeList_t>
void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
  TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
  if (prev() != NULL) { // interior list node shouldn'r have tree fields
    guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
              embedded_list()->right()  == NULL, "should be clear");
  }
  if (nextTC != NULL) {
    guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
    guarantee(nextTC->size() == size(), "wrong size");
    nextTC->verify_tree_chunk_list();
  }
}

template <class Chunk_t, template <class> class FreeList_t>
TreeList<Chunk_t, FreeList_t>::TreeList() : _parent(NULL),
  _left(NULL), _right(NULL) {}

template <class Chunk_t, template <class> class FreeList_t>
TreeList<Chunk_t, FreeList_t>*
TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
  // This first free chunk in the list will be the tree list.
  assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
    "Chunk is too small for a TreeChunk");
  TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
  tl->initialize();
  tc->set_list(tl);
  tl->set_size(tc->size());
  tl->link_head(tc);
  tl->link_tail(tc);
  tl->set_count(1);
  assert(tl->parent() == NULL, "Should be clear");
  return tl;
}


template <class Chunk_t, template <class> class FreeList_t>
TreeList<Chunk_t, FreeList_t>*
get_chunk(size_t size, enum FreeBlockDictionary<Chunk_t>::Dither dither) {
  FreeBlockDictionary<Chunk_t>::verify_par_locked();
  Chunk_t* res = get_chunk_from_tree(size, dither);
  assert(res == NULL || res->is_free(),
         "Should be returning a free chunk");
  assert(dither != FreeBlockDictionary<Chunk_t>::exactly ||
         res->size() == size, "Not correct size");
  return res;
}

template <class Chunk_t, template <class> class FreeList_t>
TreeList<Chunk_t, FreeList_t>*
TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
  TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
  assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
    "Chunk is too small for a TreeChunk");
  // The space will have been mangled initially but
  // is not remangled when a Chunk_t is returned to the free list
  // (since it is used to maintain the chunk on the free list).
  tc->assert_is_mangled();
  tc->set_size(size);
  tc->link_prev(NULL);
  tc->link_next(NULL);
  TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
  return tl;
}


#ifndef SERIALGC
// Specialize for AdaptiveFreeList which tries to avoid
// splitting a chunk of a size that is under populated in favor of
// an over populated size.  The general get_better_list() just returns
// the current list.
template <>
TreeList<FreeChunk, AdaptiveFreeList>*
TreeList<FreeChunk, AdaptiveFreeList>::get_better_list(
  BinaryTreeDictionary<FreeChunk, ::AdaptiveFreeList>* dictionary) {
  // A candidate chunk has been found.  If it is already under
  // populated, get a chunk associated with the hint for this
  // chunk.

  TreeList<FreeChunk, ::AdaptiveFreeList>* curTL = this;
  if (surplus() <= 0) {
    /* Use the hint to find a size with a surplus, and reset the hint. */
    TreeList<FreeChunk, ::AdaptiveFreeList>* hintTL = this;
    while (hintTL->hint() != 0) {
      assert(hintTL->hint() > hintTL->size(),
        "hint points in the wrong direction");
      hintTL = dictionary->find_list(hintTL->hint());
      assert(curTL != hintTL, "Infinite loop");
      if (hintTL == NULL ||
          hintTL == curTL /* Should not happen but protect against it */ ) {
        // No useful hint.  Set the hint to NULL and go on.
        curTL->set_hint(0);
        break;
      }
      assert(hintTL->size() > curTL->size(), "hint is inconsistent");
      if (hintTL->surplus() > 0) {
        // The hint led to a list that has a surplus.  Use it.
        // Set the hint for the candidate to an overpopulated
        // size.
        curTL->set_hint(hintTL->size());
        // Change the candidate.
        curTL = hintTL;
        break;
      }
    }
  }
  return curTL;
}
#endif // SERIALGC

template <class Chunk_t, template <class> class FreeList_t>
TreeList<Chunk_t, FreeList_t>*
TreeList<Chunk_t, FreeList_t>::get_better_list(
  BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
  return this;
}

template <class Chunk_t, template <class> class FreeList_t>
TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {

  TreeList<Chunk_t, FreeList_t>* retTL = this;
  Chunk_t* list = head();
  assert(!list || list != list->next(), "Chunk on list twice");
  assert(tc != NULL, "Chunk being removed is NULL");
  assert(parent() == NULL || this == parent()->left() ||
    this == parent()->right(), "list is inconsistent");
  assert(tc->is_free(), "Header is not marked correctly");
  assert(head() == NULL || head()->prev() == NULL, "list invariant");
  assert(tail() == NULL || tail()->next() == NULL, "list invariant");

  Chunk_t* prevFC = tc->prev();
  TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
  assert(list != NULL, "should have at least the target chunk");

  // Is this the first item on the list?
  if (tc == list) {
    // The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
    // first chunk in the list unless it is the last chunk in the list
    // because the first chunk is also acting as the tree node.
    // When coalescing happens, however, the first chunk in the a tree
    // list can be the start of a free range.  Free ranges are removed
    // from the free lists so that they are not available to be
    // allocated when the sweeper yields (giving up the free list lock)
    // to allow mutator activity.  If this chunk is the first in the
    // list and is not the last in the list, do the work to copy the
    // TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
    // the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
    if (nextTC == NULL) {
      assert(prevFC == NULL, "Not last chunk in the list");
      set_tail(NULL);
      set_head(NULL);
    } else {
      // copy embedded list.
      nextTC->set_embedded_list(tc->embedded_list());
      retTL = nextTC->embedded_list();
      // Fix the pointer to the list in each chunk in the list.
      // This can be slow for a long list.  Consider having
      // an option that does not allow the first chunk on the
      // list to be coalesced.
      for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
          curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
        curTC->set_list(retTL);
      }
      // Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
      if (retTL->parent() != NULL) {
        if (this == retTL->parent()->left()) {
          retTL->parent()->set_left(retTL);
        } else {
          assert(this == retTL->parent()->right(), "Parent is incorrect");
          retTL->parent()->set_right(retTL);
        }
      }
      // Fix the children's parent pointers to point to the
      // new list.
      assert(right() == retTL->right(), "Should have been copied");
      if (retTL->right() != NULL) {
        retTL->right()->set_parent(retTL);
      }
      assert(left() == retTL->left(), "Should have been copied");
      if (retTL->left() != NULL) {
        retTL->left()->set_parent(retTL);
      }
      retTL->link_head(nextTC);
      assert(nextTC->is_free(), "Should be a free chunk");
    }
  } else {
    if (nextTC == NULL) {
      // Removing chunk at tail of list
      this->link_tail(prevFC);
    }
    // Chunk is interior to the list
    prevFC->link_after(nextTC);
  }

  // Below this point the embeded TreeList<Chunk_t, FreeList_t> being used for the
  // tree node may have changed. Don't use "this"
  // TreeList<Chunk_t, FreeList_t>*.
  // chunk should still be a free chunk (bit set in _prev)
  assert(!retTL->head() || retTL->size() == retTL->head()->size(),
    "Wrong sized chunk in list");
  debug_only(
    tc->link_prev(NULL);
    tc->link_next(NULL);
    tc->set_list(NULL);
    bool prev_found = false;
    bool next_found = false;
    for (Chunk_t* curFC = retTL->head();
         curFC != NULL; curFC = curFC->next()) {
      assert(curFC != tc, "Chunk is still in list");
      if (curFC == prevFC) {
        prev_found = true;
      }
      if (curFC == nextTC) {
        next_found = true;
      }
    }
    assert(prevFC == NULL || prev_found, "Chunk was lost from list");
    assert(nextTC == NULL || next_found, "Chunk was lost from list");
    assert(retTL->parent() == NULL ||
           retTL == retTL->parent()->left() ||
           retTL == retTL->parent()->right(),
           "list is inconsistent");
  )
  retTL->decrement_count();

  assert(tc->is_free(), "Should still be a free chunk");
  assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
    "list invariant");
  assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
    "list invariant");
  return retTL;
}

template <class Chunk_t, template <class> class FreeList_t>
void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
  assert(chunk != NULL, "returning NULL chunk");
  assert(chunk->list() == this, "list should be set for chunk");
  assert(tail() != NULL, "The tree list is embedded in the first chunk");
  // which means that the list can never be empty.
  assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
  assert(head() == NULL || head()->prev() == NULL, "list invariant");
  assert(tail() == NULL || tail()->next() == NULL, "list invariant");

  Chunk_t* fc = tail();
  fc->link_after(chunk);
  this->link_tail(chunk);

  assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
  FreeList_t<Chunk_t>::increment_count();
  debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
  assert(head() == NULL || head()->prev() == NULL, "list invariant");
  assert(tail() == NULL || tail()->next() == NULL, "list invariant");
}

// Add this chunk at the head of the list.  "At the head of the list"
// is defined to be after the chunk pointer to by head().  This is
// because the TreeList<Chunk_t, FreeList_t> is embedded in the first TreeChunk<Chunk_t, FreeList_t> in the
// list.  See the definition of TreeChunk<Chunk_t, FreeList_t>.
template <class Chunk_t, template <class> class FreeList_t>
void TreeList<Chunk_t, FreeList_t>::return_chunk_at_head(TreeChunk<Chunk_t, FreeList_t>* chunk) {
  assert(chunk->list() == this, "list should be set for chunk");
  assert(head() != NULL, "The tree list is embedded in the first chunk");
  assert(chunk != NULL, "returning NULL chunk");
  assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
  assert(head() == NULL || head()->prev() == NULL, "list invariant");
  assert(tail() == NULL || tail()->next() == NULL, "list invariant");

  Chunk_t* fc = head()->next();
  if (fc != NULL) {
    chunk->link_after(fc);
  } else {
    assert(tail() == NULL, "List is inconsistent");
    this->link_tail(chunk);
  }
  head()->link_after(chunk);
  assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
  FreeList_t<Chunk_t>::increment_count();
  debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
  assert(head() == NULL || head()->prev() == NULL, "list invariant");
  assert(tail() == NULL || tail()->next() == NULL, "list invariant");
}

template <class Chunk_t, template <class> class FreeList_t>
void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
  assert((ZapUnusedHeapArea &&
          SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
          SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
          SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
          (size() == 0 && prev() == NULL && next() == NULL),
    "Space should be clear or mangled");
}

template <class Chunk_t, template <class> class FreeList_t>
TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
  assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
    "Wrong type of chunk?");
  return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
}

template <class Chunk_t, template <class> class FreeList_t>
TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
  assert(head() != NULL, "The head of the list cannot be NULL");
  Chunk_t* fc = head()->next();
  TreeChunk<Chunk_t, FreeList_t>* retTC;
  if (fc == NULL) {
    retTC = head_as_TreeChunk();
  } else {
    retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
  }
  assert(retTC->list() == this, "Wrong type of chunk.");
  return retTC;
}

// Returns the block with the largest heap address amongst
// those in the list for this size; potentially slow and expensive,
// use with caution!
template <class Chunk_t, template <class> class FreeList_t>
TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
  assert(head() != NULL, "The head of the list cannot be NULL");
  Chunk_t* fc = head()->next();
  TreeChunk<Chunk_t, FreeList_t>* retTC;
  if (fc == NULL) {
    retTC = head_as_TreeChunk();
  } else {
    // walk down the list and return the one with the highest
    // heap address among chunks of this size.
    Chunk_t* last = fc;
    while (fc->next() != NULL) {
      if ((HeapWord*)last < (HeapWord*)fc) {
        last = fc;
      }
      fc = fc->next();
    }
    retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
  }
  assert(retTC->list() == this, "Wrong type of chunk.");
  return retTC;
}

template <class Chunk_t, template <class> class FreeList_t>
BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
  assert((mr.byte_size() > min_size()), "minimum chunk size");

  reset(mr);
  assert(root()->left() == NULL, "reset check failed");
  assert(root()->right() == NULL, "reset check failed");
  assert(root()->head()->next() == NULL, "reset check failed");
  assert(root()->head()->prev() == NULL, "reset check failed");
  assert(total_size() == root()->size(), "reset check failed");
  assert(total_free_blocks() == 1, "reset check failed");
}

template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
  _total_size = _total_size + inc;
}

template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
  _total_size = _total_size - dec;
}

template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
  assert((mr.byte_size() > min_size()), "minimum chunk size");
  set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
  set_total_size(mr.word_size());
  set_total_free_blocks(1);
}

template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
  MemRegion mr(addr, heap_word_size(byte_size));
  reset(mr);
}

template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
  set_root(NULL);
  set_total_size(0);
  set_total_free_blocks(0);
}

// Get a free block of size at least size from tree, or NULL.
template <class Chunk_t, template <class> class FreeList_t>
TreeChunk<Chunk_t, FreeList_t>*
BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(
                              size_t size,
                              enum FreeBlockDictionary<Chunk_t>::Dither dither)
{
  TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
  TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;

  assert((size >= min_size()), "minimum chunk size");
  if (FLSVerifyDictionary) {
    verify_tree();
  }
  // starting at the root, work downwards trying to find match.
  // Remember the last node of size too great or too small.
  for (prevTL = curTL = root(); curTL != NULL;) {
    if (curTL->size() == size) {        // exact match
      break;
    }
    prevTL = curTL;
    if (curTL->size() < size) {        // proceed to right sub-tree
      curTL = curTL->right();
    } else {                           // proceed to left sub-tree
      assert(curTL->size() > size, "size inconsistency");
      curTL = curTL->left();
    }
  }
  if (curTL == NULL) { // couldn't find exact match

    if (dither == FreeBlockDictionary<Chunk_t>::exactly) return NULL;

    // try and find the next larger size by walking back up the search path
    for (curTL = prevTL; curTL != NULL;) {
      if (curTL->size() >= size) break;
      else curTL = curTL->parent();
    }
    assert(curTL == NULL || curTL->count() > 0,
      "An empty list should not be in the tree");
  }
  if (curTL != NULL) {
    assert(curTL->size() >= size, "size inconsistency");

    curTL = curTL->get_better_list(this);

    retTC = curTL->first_available();
    assert((retTC != NULL) && (curTL->count() > 0),
      "A list in the binary tree should not be NULL");
    assert(retTC->size() >= size,
      "A chunk of the wrong size was found");
    remove_chunk_from_tree(retTC);
    assert(retTC->is_free(), "Header is not marked correctly");
  }

  if (FLSVerifyDictionary) {
    verify();
  }
  return retTC;
}

template <class Chunk_t, template <class> class FreeList_t>
TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
  TreeList<Chunk_t, FreeList_t>* curTL;
  for (curTL = root(); curTL != NULL;) {
    if (curTL->size() == size) {        // exact match
      break;
    }

    if (curTL->size() < size) {        // proceed to right sub-tree
      curTL = curTL->right();
    } else {                           // proceed to left sub-tree
      assert(curTL->size() > size, "size inconsistency");
      curTL = curTL->left();
    }
  }
  return curTL;
}


template <class Chunk_t, template <class> class FreeList_t>
bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
  size_t size = tc->size();
  TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
  if (tl == NULL) {
    return false;
  } else {
    return tl->verify_chunk_in_free_list(tc);
  }
}

template <class Chunk_t, template <class> class FreeList_t>
Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
  TreeList<Chunk_t, FreeList_t> *curTL = root();
  if (curTL != NULL) {
    while(curTL->right() != NULL) curTL = curTL->right();
    return curTL->largest_address();
  } else {
    return NULL;
  }
}

// Remove the current chunk from the tree.  If it is not the last
// chunk in a list on a tree node, just unlink it.
// If it is the last chunk in the list (the next link is NULL),
// remove the node and repair the tree.
template <class Chunk_t, template <class> class FreeList_t>
TreeChunk<Chunk_t, FreeList_t>*
BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
  assert(tc != NULL, "Should not call with a NULL chunk");
  assert(tc->is_free(), "Header is not marked correctly");

  TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
  TreeChunk<Chunk_t, FreeList_t>* retTC;
  TreeList<Chunk_t, FreeList_t>* tl = tc->list();
  debug_only(
    bool removing_only_chunk = false;
    if (tl == _root) {
      if ((_root->left() == NULL) && (_root->right() == NULL)) {
        if (_root->count() == 1) {
          assert(_root->head() == tc, "Should only be this one chunk");
          removing_only_chunk = true;
        }
      }
    }
  )
  assert(tl != NULL, "List should be set");
  assert(tl->parent() == NULL || tl == tl->parent()->left() ||
         tl == tl->parent()->right(), "list is inconsistent");

  bool complicated_splice = false;

  retTC = tc;
  // Removing this chunk can have the side effect of changing the node
  // (TreeList<Chunk_t, FreeList_t>*) in the tree.  If the node is the root, update it.
  TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
  assert(tc->is_free(), "Chunk should still be free");
  assert(replacementTL->parent() == NULL ||
         replacementTL == replacementTL->parent()->left() ||
         replacementTL == replacementTL->parent()->right(),
         "list is inconsistent");
  if (tl == root()) {
    assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
    set_root(replacementTL);
  }
#ifdef ASSERT
    if (tl != replacementTL) {
      assert(replacementTL->head() != NULL,
        "If the tree list was replaced, it should not be a NULL list");
      TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
      TreeList<Chunk_t, FreeList_t>* rtl =
        TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
      assert(rhl == replacementTL, "Broken head");
      assert(rtl == replacementTL, "Broken tail");
      assert(replacementTL->size() == tc->size(),  "Broken size");
    }
#endif

  // Does the tree need to be repaired?
  if (replacementTL->count() == 0) {
    assert(replacementTL->head() == NULL &&
           replacementTL->tail() == NULL, "list count is incorrect");
    // Find the replacement node for the (soon to be empty) node being removed.
    // if we have a single (or no) child, splice child in our stead
    if (replacementTL->left() == NULL) {
      // left is NULL so pick right.  right may also be NULL.
      newTL = replacementTL->right();
      debug_only(replacementTL->clear_right();)
    } else if (replacementTL->right() == NULL) {
      // right is NULL
      newTL = replacementTL->left();
      debug_only(replacementTL->clear_left();)
    } else {  // we have both children, so, by patriarchal convention,
              // my replacement is least node in right sub-tree
      complicated_splice = true;
      newTL = remove_tree_minimum(replacementTL->right());
      assert(newTL != NULL && newTL->left() == NULL &&
             newTL->right() == NULL, "sub-tree minimum exists");
    }
    // newTL is the replacement for the (soon to be empty) node.
    // newTL may be NULL.
    // should verify; we just cleanly excised our replacement
    if (FLSVerifyDictionary) {
      verify_tree();
    }
    // first make newTL my parent's child
    if ((parentTL = replacementTL->parent()) == NULL) {
      // newTL should be root
      assert(tl == root(), "Incorrectly replacing root");
      set_root(newTL);
      if (newTL != NULL) {
        newTL->clear_parent();
      }
    } else if (parentTL->right() == replacementTL) {
      // replacementTL is a right child
      parentTL->set_right(newTL);
    } else {                                // replacementTL is a left child
      assert(parentTL->left() == replacementTL, "should be left child");
      parentTL->set_left(newTL);
    }
    debug_only(replacementTL->clear_parent();)
    if (complicated_splice) {  // we need newTL to get replacementTL's
                              // two children
      assert(newTL != NULL &&
             newTL->left() == NULL && newTL->right() == NULL,
            "newTL should not have encumbrances from the past");
      // we'd like to assert as below:
      // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
      //       "else !complicated_splice");
      // ... however, the above assertion is too strong because we aren't
      // guaranteed that replacementTL->right() is still NULL.
      // Recall that we removed
      // the right sub-tree minimum from replacementTL.
      // That may well have been its right
      // child! So we'll just assert half of the above:
      assert(replacementTL->left() != NULL, "else !complicated_splice");
      newTL->set_left(replacementTL->left());
      newTL->set_right(replacementTL->right());
      debug_only(
        replacementTL->clear_right();
        replacementTL->clear_left();
      )
    }
    assert(replacementTL->right() == NULL &&
           replacementTL->left() == NULL &&
           replacementTL->parent() == NULL,
        "delete without encumbrances");
  }

  assert(total_size() >= retTC->size(), "Incorrect total size");
  dec_total_size(retTC->size());     // size book-keeping
  assert(total_free_blocks() > 0, "Incorrect total count");
  set_total_free_blocks(total_free_blocks() - 1);

  assert(retTC != NULL, "null chunk?");
  assert(retTC->prev() == NULL && retTC->next() == NULL,
         "should return without encumbrances");
  if (FLSVerifyDictionary) {
    verify_tree();
  }
  assert(!removing_only_chunk || _root == NULL, "root should be NULL");
  return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
}

// Remove the leftmost node (lm) in the tree and return it.
// If lm has a right child, link it to the left node of
// the parent of lm.
template <class Chunk_t, template <class> class FreeList_t>
TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
  assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
  // locate the subtree minimum by walking down left branches
  TreeList<Chunk_t, FreeList_t>* curTL = tl;
  for (; curTL->left() != NULL; curTL = curTL->left());
  // obviously curTL now has at most one child, a right child
  if (curTL != root()) {  // Should this test just be removed?
    TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
    if (parentTL->left() == curTL) { // curTL is a left child
      parentTL->set_left(curTL->right());
    } else {
      // If the list tl has no left child, then curTL may be
      // the right child of parentTL.
      assert(parentTL->right() == curTL, "should be a right child");
      parentTL->set_right(curTL->right());
    }
  } else {
    // The only use of this method would not pass the root of the
    // tree (as indicated by the assertion above that the tree list
    // has a parent) but the specification does not explicitly exclude the
    // passing of the root so accomodate it.
    set_root(NULL);
  }
  debug_only(
    curTL->clear_parent();  // Test if this needs to be cleared
    curTL->clear_right();    // recall, above, left child is already null
  )
  // we just excised a (non-root) node, we should still verify all tree invariants
  if (FLSVerifyDictionary) {
    verify_tree();
  }
  return curTL;
}

template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
  TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
  size_t size = fc->size();

  assert((size >= min_size()),
    err_msg(SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
      size, min_size()));
  if (FLSVerifyDictionary) {
    verify_tree();
  }

  fc->clear_next();
  fc->link_prev(NULL);

  // work down from the _root, looking for insertion point
  for (prevTL = curTL = root(); curTL != NULL;) {
    if (curTL->size() == size)  // exact match
      break;
    prevTL = curTL;
    if (curTL->size() > size) { // follow left branch
      curTL = curTL->left();
    } else {                    // follow right branch
      assert(curTL->size() < size, "size inconsistency");
      curTL = curTL->right();
    }
  }
  TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
  // This chunk is being returned to the binary tree.  Its embedded
  // TreeList<Chunk_t, FreeList_t> should be unused at this point.
  tc->initialize();
  if (curTL != NULL) {          // exact match
    tc->set_list(curTL);
    curTL->return_chunk_at_tail(tc);
  } else {                     // need a new node in tree
    tc->clear_next();
    tc->link_prev(NULL);
    TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
    assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
      "List was not initialized correctly");
    if (prevTL == NULL) {      // we are the only tree node
      assert(root() == NULL, "control point invariant");
      set_root(newTL);
    } else {                   // insert under prevTL ...
      if (prevTL->size() < size) {   // am right child
        assert(prevTL->right() == NULL, "control point invariant");
        prevTL->set_right(newTL);
      } else {                       // am left child
        assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
        prevTL->set_left(newTL);
      }
    }
  }
  assert(tc->list() != NULL, "Tree list should be set");

  inc_total_size(size);
  // Method 'total_size_in_tree' walks through the every block in the
  // tree, so it can cause significant performance loss if there are
  // many blocks in the tree
  assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
  set_total_free_blocks(total_free_blocks() + 1);
  if (FLSVerifyDictionary) {
    verify_tree();
  }
}

template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
  FreeBlockDictionary<Chunk_t>::verify_par_locked();
  TreeList<Chunk_t, FreeList_t>* tc = root();
  if (tc == NULL) return 0;
  for (; tc->right() != NULL; tc = tc->right());
  return tc->size();
}

template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
  size_t res;
  res = tl->count();
#ifdef ASSERT
  size_t cnt;
  Chunk_t* tc = tl->head();
  for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
  assert(res == cnt, "The count is not being maintained correctly");
#endif
  return res;
}

template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
  if (tl == NULL)
    return 0;
  return (tl->size() * total_list_length(tl)) +
         total_size_in_tree(tl->left())    +
         total_size_in_tree(tl->right());
}

template <class Chunk_t, template <class> class FreeList_t>
double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
  if (tl == NULL) {
    return 0.0;
  }
  double size = (double)(tl->size());
  double curr = size * size * total_list_length(tl);
  curr += sum_of_squared_block_sizes(tl->left());
  curr += sum_of_squared_block_sizes(tl->right());
  return curr;
}

template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
  if (tl == NULL)
    return 0;
  return total_list_length(tl) +
         total_free_blocks_in_tree(tl->left()) +
         total_free_blocks_in_tree(tl->right());
}

template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
  assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
         "_total_free_blocks inconsistency");
  return total_free_blocks();
}

template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
  if (tl == NULL)
    return 0;
  return 1 + MAX2(tree_height_helper(tl->left()),
                  tree_height_helper(tl->right()));
}

template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
  return tree_height_helper(root());
}

template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
  if (tl == NULL) {
    return 0;
  }
  return 1 + total_nodes_helper(tl->left()) +
    total_nodes_helper(tl->right());
}

template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
  return total_nodes_helper(root());
}

template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::dict_census_update(size_t size, bool split, bool birth){}

#ifndef SERIALGC
template <>
void BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::dict_census_update(size_t size, bool split, bool birth){
  TreeList<FreeChunk, AdaptiveFreeList>* nd = find_list(size);
  if (nd) {
    if (split) {
      if (birth) {
        nd->increment_split_births();
        nd->increment_surplus();
      }  else {
        nd->increment_split_deaths();
        nd->decrement_surplus();
      }
    } else {
      if (birth) {
        nd->increment_coal_births();
        nd->increment_surplus();
      } else {
        nd->increment_coal_deaths();
        nd->decrement_surplus();
      }
    }
  }
  // A list for this size may not be found (nd == 0) if
  //   This is a death where the appropriate list is now
  //     empty and has been removed from the list.
  //   This is a birth associated with a LinAB.  The chunk
  //     for the LinAB is not in the dictionary.
}
#endif // SERIALGC

template <class Chunk_t, template <class> class FreeList_t>
bool BinaryTreeDictionary<Chunk_t, FreeList_t>::coal_dict_over_populated(size_t size) {
  // For the general type of freelists, encourage coalescing by
  // returning true.
  return true;
}

#ifndef SERIALGC
template <>
bool BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::coal_dict_over_populated(size_t size) {
  if (FLSAlwaysCoalesceLarge) return true;

  TreeList<FreeChunk, AdaptiveFreeList>* list_of_size = find_list(size);
  // None of requested size implies overpopulated.
  return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
         list_of_size->count() > list_of_size->coal_desired();
}
#endif  // SERIALGC

// Closures for walking the binary tree.
//   do_list() walks the free list in a node applying the closure
//     to each free chunk in the list
//   do_tree() walks the nodes in the binary tree applying do_list()
//     to each list at each node.

template <class Chunk_t, template <class> class FreeList_t>
class TreeCensusClosure : public StackObj {
 protected:
  virtual void do_list(FreeList_t<Chunk_t>* fl) = 0;
 public:
  virtual void do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
};

template <class Chunk_t, template <class> class FreeList_t>
class AscendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
 public:
  void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
    if (tl != NULL) {
      do_tree(tl->left());
      this->do_list(tl);
      do_tree(tl->right());
    }
  }
};

template <class Chunk_t, template <class> class FreeList_t>
class DescendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
 public:
  void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
    if (tl != NULL) {
      do_tree(tl->right());
      this->do_list(tl);
      do_tree(tl->left());
    }
  }
};

// For each list in the tree, calculate the desired, desired
// coalesce, count before sweep, and surplus before sweep.
template <class Chunk_t, template <class> class FreeList_t>
class BeginSweepClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  double _percentage;
  float _inter_sweep_current;
  float _inter_sweep_estimate;
  float _intra_sweep_estimate;

 public:
  BeginSweepClosure(double p, float inter_sweep_current,
                              float inter_sweep_estimate,
                              float intra_sweep_estimate) :
   _percentage(p),
   _inter_sweep_current(inter_sweep_current),
   _inter_sweep_estimate(inter_sweep_estimate),
   _intra_sweep_estimate(intra_sweep_estimate) { }

  void do_list(FreeList<Chunk_t>* fl) {}

#ifndef SERIALGC
  void do_list(AdaptiveFreeList<Chunk_t>* fl) {
    double coalSurplusPercent = _percentage;
    fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
    fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
    fl->set_before_sweep(fl->count());
    fl->set_bfr_surp(fl->surplus());
  }
#endif // SERIALGC
};

// Used to search the tree until a condition is met.
// Similar to TreeCensusClosure but searches the
// tree and returns promptly when found.

template <class Chunk_t, template <class> class FreeList_t>
class TreeSearchClosure : public StackObj {
 protected:
  virtual bool do_list(FreeList_t<Chunk_t>* fl) = 0;
 public:
  virtual bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
};

#if 0 //  Don't need this yet but here for symmetry.
template <class Chunk_t, template <class> class FreeList_t>
class AscendTreeSearchClosure : public TreeSearchClosure<Chunk_t> {
 public:
  bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
    if (tl != NULL) {
      if (do_tree(tl->left())) return true;
      if (do_list(tl)) return true;
      if (do_tree(tl->right())) return true;
    }
    return false;
  }
};
#endif

template <class Chunk_t, template <class> class FreeList_t>
class DescendTreeSearchClosure : public TreeSearchClosure<Chunk_t, FreeList_t> {
 public:
  bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
    if (tl != NULL) {
      if (do_tree(tl->right())) return true;
      if (this->do_list(tl)) return true;
      if (do_tree(tl->left())) return true;
    }
    return false;
  }
};

// Searches the tree for a chunk that ends at the
// specified address.
template <class Chunk_t, template <class> class FreeList_t>
class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
  HeapWord* _target;
  Chunk_t* _found;

 public:
  EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
  bool do_list(FreeList_t<Chunk_t>* fl) {
    Chunk_t* item = fl->head();
    while (item != NULL) {
      if (item->end() == (uintptr_t*) _target) {
        _found = item;
        return true;
      }
      item = item->next();
    }
    return false;
  }
  Chunk_t* found() { return _found; }
};

template <class Chunk_t, template <class> class FreeList_t>
Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
  EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
  bool found_target = etsc.do_tree(root());
  assert(found_target || etsc.found() == NULL, "Consistency check");
  assert(!found_target || etsc.found() != NULL, "Consistency check");
  return etsc.found();
}

template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::begin_sweep_dict_census(double coalSurplusPercent,
  float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
  BeginSweepClosure<Chunk_t, FreeList_t> bsc(coalSurplusPercent, inter_sweep_current,
                                            inter_sweep_estimate,
                                            intra_sweep_estimate);
  bsc.do_tree(root());
}

// Closures and methods for calculating total bytes returned to the
// free lists in the tree.
#ifndef PRODUCT
template <class Chunk_t, template <class> class FreeList_t>
class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
   public:
  void do_list(FreeList_t<Chunk_t>* fl) {
    fl->set_returned_bytes(0);
  }
};

template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
  InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
  idrb.do_tree(root());
}

template <class Chunk_t, template <class> class FreeList_t>
class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  size_t _dict_returned_bytes;
 public:
  ReturnedBytesClosure() { _dict_returned_bytes = 0; }
  void do_list(FreeList_t<Chunk_t>* fl) {
    _dict_returned_bytes += fl->returned_bytes();
  }
  size_t dict_returned_bytes() { return _dict_returned_bytes; }
};

template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
  ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
  rbc.do_tree(root());

  return rbc.dict_returned_bytes();
}

// Count the number of entries in the tree.
template <class Chunk_t, template <class> class FreeList_t>
class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
 public:
  uint count;
  treeCountClosure(uint c) { count = c; }
  void do_list(FreeList_t<Chunk_t>* fl) {
    count++;
  }
};

template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
  treeCountClosure<Chunk_t, FreeList_t> ctc(0);
  ctc.do_tree(root());
  return ctc.count;
}
#endif // PRODUCT

// Calculate surpluses for the lists in the tree.
template <class Chunk_t, template <class> class FreeList_t>
class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  double percentage;
 public:
  setTreeSurplusClosure(double v) { percentage = v; }
  void do_list(FreeList<Chunk_t>* fl) {}

#ifndef SERIALGC
  void do_list(AdaptiveFreeList<Chunk_t>* fl) {
    double splitSurplusPercent = percentage;
    fl->set_surplus(fl->count() -
                   (ssize_t)((double)fl->desired() * splitSurplusPercent));
  }
#endif // SERIALGC
};

template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_surplus(double splitSurplusPercent) {
  setTreeSurplusClosure<Chunk_t, FreeList_t> sts(splitSurplusPercent);
  sts.do_tree(root());
}

// Set hints for the lists in the tree.
template <class Chunk_t, template <class> class FreeList_t>
class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
  size_t hint;
 public:
  setTreeHintsClosure(size_t v) { hint = v; }
  void do_list(FreeList<Chunk_t>* fl) {}

#ifndef SERIALGC
  void do_list(AdaptiveFreeList<Chunk_t>* fl) {
    fl->set_hint(hint);
    assert(fl->hint() == 0 || fl->hint() > fl->size(),
      "Current hint is inconsistent");
    if (fl->surplus() > 0) {
      hint = fl->size();
    }
  }
#endif // SERIALGC
};

template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_hints(void) {
  setTreeHintsClosure<Chunk_t, FreeList_t> sth(0);
  sth.do_tree(root());
}

// Save count before previous sweep and splits and coalesces.
template <class Chunk_t, template <class> class FreeList_t>
class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  void do_list(FreeList<Chunk_t>* fl) {}

#ifndef SERIALGC
  void do_list(AdaptiveFreeList<Chunk_t>* fl) {
    fl->set_prev_sweep(fl->count());
    fl->set_coal_births(0);
    fl->set_coal_deaths(0);
    fl->set_split_births(0);
    fl->set_split_deaths(0);
  }
#endif  // SERIALGC
};

template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::clear_tree_census(void) {
  clearTreeCensusClosure<Chunk_t, FreeList_t> ctc;
  ctc.do_tree(root());
}

// Do reporting and post sweep clean up.
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::end_sweep_dict_census(double splitSurplusPercent) {
  // Does walking the tree 3 times hurt?
  set_tree_surplus(splitSurplusPercent);
  set_tree_hints();
  if (PrintGC && Verbose) {
    report_statistics();
  }
  clear_tree_census();
}

// Print summary statistics
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics() const {
  FreeBlockDictionary<Chunk_t>::verify_par_locked();
  gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
         "------------------------------------\n");
  size_t total_size = total_chunk_size(debug_only(NULL));
  size_t    free_blocks = num_free_blocks();
  gclog_or_tty->print("Total Free Space: %d\n", total_size);
  gclog_or_tty->print("Max   Chunk Size: %d\n", max_chunk_size());
  gclog_or_tty->print("Number of Blocks: %d\n", free_blocks);
  if (free_blocks > 0) {
    gclog_or_tty->print("Av.  Block  Size: %d\n", total_size/free_blocks);
  }
  gclog_or_tty->print("Tree      Height: %d\n", tree_height());
}

// Print census information - counts, births, deaths, etc.
// for each list in the tree.  Also print some summary
// information.
template <class Chunk_t, template <class> class FreeList_t>
class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  int _print_line;
  size_t _total_free;
  FreeList_t<Chunk_t> _total;

 public:
  PrintTreeCensusClosure() {
    _print_line = 0;
    _total_free = 0;
  }
  FreeList_t<Chunk_t>* total() { return &_total; }
  size_t total_free() { return _total_free; }
  void do_list(FreeList<Chunk_t>* fl) {
    if (++_print_line >= 40) {
      FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
      _print_line = 0;
    }
    fl->print_on(gclog_or_tty);
    _total_free +=            fl->count()            * fl->size()        ;
    total()->set_count(      total()->count()       + fl->count()      );
  }

#ifndef SERIALGC
  void do_list(AdaptiveFreeList<Chunk_t>* fl) {
    if (++_print_line >= 40) {
      FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
      _print_line = 0;
    }
    fl->print_on(gclog_or_tty);
    _total_free +=           fl->count()             * fl->size()        ;
    total()->set_count(      total()->count()        + fl->count()      );
    total()->set_bfr_surp(   total()->bfr_surp()     + fl->bfr_surp()    );
    total()->set_surplus(    total()->split_deaths() + fl->surplus()    );
    total()->set_desired(    total()->desired()      + fl->desired()    );
    total()->set_prev_sweep(  total()->prev_sweep()   + fl->prev_sweep()  );
    total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
    total()->set_coal_births( total()->coal_births()  + fl->coal_births() );
    total()->set_coal_deaths( total()->coal_deaths()  + fl->coal_deaths() );
    total()->set_split_births(total()->split_births() + fl->split_births());
    total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
  }
#endif  // SERIALGC
};

template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_dict_census(void) const {

  gclog_or_tty->print("\nBinaryTree\n");
  FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, "size");
  PrintTreeCensusClosure<Chunk_t, FreeList_t> ptc;
  ptc.do_tree(root());

  FreeList_t<Chunk_t>* total = ptc.total();
  FreeList_t<Chunk_t>::print_labels_on(gclog_or_tty, " ");
}

#ifndef SERIALGC
template <>
void BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>::print_dict_census(void) const {

  gclog_or_tty->print("\nBinaryTree\n");
  AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
  PrintTreeCensusClosure<FreeChunk, AdaptiveFreeList> ptc;
  ptc.do_tree(root());

  AdaptiveFreeList<FreeChunk>* total = ptc.total();
  AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, " ");
  total->print_on(gclog_or_tty, "TOTAL\t");
  gclog_or_tty->print(
              "total_free(words): " SIZE_FORMAT_W(16)
              " growth: %8.5f  deficit: %8.5f\n",
              ptc.total_free(),
              (double)(total->split_births() + total->coal_births()
                     - total->split_deaths() - total->coal_deaths())
              /(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
             (double)(total->desired() - total->count())
             /(total->desired() != 0 ? (double)total->desired() : 1.0));
}
#endif  // SERIALGC

template <class Chunk_t, template <class> class FreeList_t>
class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
  outputStream* _st;
  int _print_line;

 public:
  PrintFreeListsClosure(outputStream* st) {
    _st = st;
    _print_line = 0;
  }
  void do_list(FreeList_t<Chunk_t>* fl) {
    if (++_print_line >= 40) {
      FreeList_t<Chunk_t>::print_labels_on(_st, "size");
      _print_line = 0;
    }
    fl->print_on(gclog_or_tty);
    size_t sz = fl->size();
    for (Chunk_t* fc = fl->head(); fc != NULL;
         fc = fc->next()) {
      _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
                    fc, (HeapWord*)fc + sz,
                    fc->cantCoalesce() ? "\t CC" : "");
    }
  }
};

template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {

  FreeList_t<Chunk_t>::print_labels_on(st, "size");
  PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
  pflc.do_tree(root());
}

// Verify the following tree invariants:
// . _root has no parent
// . parent and child point to each other
// . each node's key correctly related to that of its child(ren)
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
  guarantee(root() == NULL || total_free_blocks() == 0 ||
    total_size() != 0, "_total_size should't be 0?");
  guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
  verify_tree_helper(root());
}

template <class Chunk_t, template <class> class FreeList_t>
size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
  size_t ct = 0;
  for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
    ct++;
    assert(curFC->prev() == NULL || curFC->prev()->is_free(),
      "Chunk should be free");
  }
  return ct;
}

// Note: this helper is recursive rather than iterative, so use with
// caution on very deep trees; and watch out for stack overflow errors;
// In general, to be used only for debugging.
template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
  if (tl == NULL)
    return;
  guarantee(tl->size() != 0, "A list must has a size");
  guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
         "parent<-/->left");
  guarantee(tl->right() == NULL || tl->right()->parent() == tl,
         "parent<-/->right");;
  guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
         "parent !> left");
  guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
         "parent !< left");
  guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
  guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
    "list inconsistency");
  guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
    "list count is inconsistent");
  guarantee(tl->count() > 1 || tl->head() == tl->tail(),
    "list is incorrectly constructed");
  size_t count = verify_prev_free_ptrs(tl);
  guarantee(count == (size_t)tl->count(), "Node count is incorrect");
  if (tl->head() != NULL) {
    tl->head_as_TreeChunk()->verify_tree_chunk_list();
  }
  verify_tree_helper(tl->left());
  verify_tree_helper(tl->right());
}

template <class Chunk_t, template <class> class FreeList_t>
void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
  verify_tree();
  guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
}

template class TreeList<Metablock, FreeList>;
template class BinaryTreeDictionary<Metablock, FreeList>;
template class TreeChunk<Metablock, FreeList>;

template class TreeList<Metachunk, FreeList>;
template class BinaryTreeDictionary<Metachunk, FreeList>;
template class TreeChunk<Metachunk, FreeList>;


#ifndef SERIALGC
// Explicitly instantiate these types for FreeChunk.
template class TreeList<FreeChunk, AdaptiveFreeList>;
template class BinaryTreeDictionary<FreeChunk, AdaptiveFreeList>;
template class TreeChunk<FreeChunk, AdaptiveFreeList>;

#endif // SERIALGC