aboutsummaryrefslogtreecommitdiff
path: root/src/share/vm/c1/c1_Instruction.cpp
blob: 628091ce315738cac5d8e82ea44372d132f743f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
/*
 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "c1/c1_IR.hpp"
#include "c1/c1_Instruction.hpp"
#include "c1/c1_InstructionPrinter.hpp"
#include "c1/c1_ValueStack.hpp"
#include "ci/ciObjArrayKlass.hpp"
#include "ci/ciTypeArrayKlass.hpp"


// Implementation of Instruction


Instruction::Condition Instruction::mirror(Condition cond) {
  switch (cond) {
    case eql: return eql;
    case neq: return neq;
    case lss: return gtr;
    case leq: return geq;
    case gtr: return lss;
    case geq: return leq;
  }
  ShouldNotReachHere();
  return eql;
}


Instruction::Condition Instruction::negate(Condition cond) {
  switch (cond) {
    case eql: return neq;
    case neq: return eql;
    case lss: return geq;
    case leq: return gtr;
    case gtr: return leq;
    case geq: return lss;
  }
  ShouldNotReachHere();
  return eql;
}

void Instruction::update_exception_state(ValueStack* state) {
  if (state != NULL && (state->kind() == ValueStack::EmptyExceptionState || state->kind() == ValueStack::ExceptionState)) {
    assert(state->kind() == ValueStack::EmptyExceptionState || Compilation::current()->env()->jvmti_can_access_local_variables(), "unexpected state kind");
    _exception_state = state;
  } else {
    _exception_state = NULL;
  }
}


Instruction* Instruction::prev(BlockBegin* block) {
  Instruction* p = NULL;
  Instruction* q = block;
  while (q != this) {
    assert(q != NULL, "this is not in the block's instruction list");
    p = q; q = q->next();
  }
  return p;
}


void Instruction::state_values_do(ValueVisitor* f) {
  if (state_before() != NULL) {
    state_before()->values_do(f);
  }
  if (exception_state() != NULL){
    exception_state()->values_do(f);
  }
}


#ifndef PRODUCT
void Instruction::check_state(ValueStack* state) {
  if (state != NULL) {
    state->verify();
  }
}


void Instruction::print() {
  InstructionPrinter ip;
  print(ip);
}


void Instruction::print_line() {
  InstructionPrinter ip;
  ip.print_line(this);
}


void Instruction::print(InstructionPrinter& ip) {
  ip.print_head();
  ip.print_line(this);
  tty->cr();
}
#endif // PRODUCT


// perform constant and interval tests on index value
bool AccessIndexed::compute_needs_range_check() {
  Constant* clength = length()->as_Constant();
  Constant* cindex = index()->as_Constant();
  if (clength && cindex) {
    IntConstant* l = clength->type()->as_IntConstant();
    IntConstant* i = cindex->type()->as_IntConstant();
    if (l && i && i->value() < l->value() && i->value() >= 0) {
      return false;
    }
  }
  return true;
}


ciType* Local::exact_type() const {
  ciType* type = declared_type();

  // for primitive arrays, the declared type is the exact type
  if (type->is_type_array_klass()) {
    return type;
  } else if (type->is_instance_klass()) {
    ciInstanceKlass* ik = (ciInstanceKlass*)type;
    if (ik->is_loaded() && ik->is_final() && !ik->is_interface()) {
      return type;
    }
  } else if (type->is_obj_array_klass()) {
    ciObjArrayKlass* oak = (ciObjArrayKlass*)type;
    ciType* base = oak->base_element_type();
    if (base->is_instance_klass()) {
      ciInstanceKlass* ik = base->as_instance_klass();
      if (ik->is_loaded() && ik->is_final()) {
        return type;
      }
    } else if (base->is_primitive_type()) {
      return type;
    }
  }
  return NULL;
}

ciType* Constant::exact_type() const {
  if (type()->is_object()) {
    return type()->as_ObjectType()->exact_type();
  }
  return NULL;
}

ciType* LoadIndexed::exact_type() const {
  ciType* array_type = array()->exact_type();
  if (array_type == NULL) {
    return NULL;
  }
  assert(array_type->is_array_klass(), "what else?");
  ciArrayKlass* ak = (ciArrayKlass*)array_type;

  if (ak->element_type()->is_instance_klass()) {
    ciInstanceKlass* ik = (ciInstanceKlass*)ak->element_type();
    if (ik->is_loaded() && ik->is_final()) {
      return ik;
    }
  }
  return NULL;
}


ciType* LoadIndexed::declared_type() const {
  ciType* array_type = array()->declared_type();
  if (array_type == NULL) {
    return NULL;
  }
  assert(array_type->is_array_klass(), "what else?");
  ciArrayKlass* ak = (ciArrayKlass*)array_type;
  return ak->element_type();
}


ciType* LoadField::declared_type() const {
  return field()->type();
}


ciType* LoadField::exact_type() const {
  ciType* type = declared_type();
  // for primitive arrays, the declared type is the exact type
  if (type->is_type_array_klass()) {
    return type;
  }
  if (type->is_instance_klass()) {
    ciInstanceKlass* ik = (ciInstanceKlass*)type;
    if (ik->is_loaded() && ik->is_final()) {
      return type;
    }
  }
  return NULL;
}


ciType* NewTypeArray::exact_type() const {
  return ciTypeArrayKlass::make(elt_type());
}

ciType* NewObjectArray::exact_type() const {
  return ciObjArrayKlass::make(klass());
}

ciType* NewArray::declared_type() const {
  return exact_type();
}

ciType* NewInstance::exact_type() const {
  return klass();
}

ciType* NewInstance::declared_type() const {
  return exact_type();
}

ciType* CheckCast::declared_type() const {
  return klass();
}

ciType* CheckCast::exact_type() const {
  if (klass()->is_instance_klass()) {
    ciInstanceKlass* ik = (ciInstanceKlass*)klass();
    if (ik->is_loaded() && ik->is_final()) {
      return ik;
    }
  }
  return NULL;
}

// Implementation of ArithmeticOp

bool ArithmeticOp::is_commutative() const {
  switch (op()) {
    case Bytecodes::_iadd: // fall through
    case Bytecodes::_ladd: // fall through
    case Bytecodes::_fadd: // fall through
    case Bytecodes::_dadd: // fall through
    case Bytecodes::_imul: // fall through
    case Bytecodes::_lmul: // fall through
    case Bytecodes::_fmul: // fall through
    case Bytecodes::_dmul: return true;
  }
  return false;
}


bool ArithmeticOp::can_trap() const {
  switch (op()) {
    case Bytecodes::_idiv: // fall through
    case Bytecodes::_ldiv: // fall through
    case Bytecodes::_irem: // fall through
    case Bytecodes::_lrem: return true;
  }
  return false;
}


// Implementation of LogicOp

bool LogicOp::is_commutative() const {
#ifdef ASSERT
  switch (op()) {
    case Bytecodes::_iand: // fall through
    case Bytecodes::_land: // fall through
    case Bytecodes::_ior : // fall through
    case Bytecodes::_lor : // fall through
    case Bytecodes::_ixor: // fall through
    case Bytecodes::_lxor: break;
    default              : ShouldNotReachHere();
  }
#endif
  // all LogicOps are commutative
  return true;
}


// Implementation of IfOp

bool IfOp::is_commutative() const {
  return cond() == eql || cond() == neq;
}


// Implementation of StateSplit

void StateSplit::substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block) {
  NOT_PRODUCT(bool assigned = false;)
  for (int i = 0; i < list.length(); i++) {
    BlockBegin** b = list.adr_at(i);
    if (*b == old_block) {
      *b = new_block;
      NOT_PRODUCT(assigned = true;)
    }
  }
  assert(assigned == true, "should have assigned at least once");
}


IRScope* StateSplit::scope() const {
  return _state->scope();
}


void StateSplit::state_values_do(ValueVisitor* f) {
  Instruction::state_values_do(f);
  if (state() != NULL) state()->values_do(f);
}


void BlockBegin::state_values_do(ValueVisitor* f) {
  StateSplit::state_values_do(f);

  if (is_set(BlockBegin::exception_entry_flag)) {
    for (int i = 0; i < number_of_exception_states(); i++) {
      exception_state_at(i)->values_do(f);
    }
  }
}


// Implementation of Invoke


Invoke::Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
               int vtable_index, ciMethod* target, ValueStack* state_before)
  : StateSplit(result_type, state_before)
  , _code(code)
  , _recv(recv)
  , _args(args)
  , _vtable_index(vtable_index)
  , _target(target)
{
  set_flag(TargetIsLoadedFlag,   target->is_loaded());
  set_flag(TargetIsFinalFlag,    target_is_loaded() && target->is_final_method());
  set_flag(TargetIsStrictfpFlag, target_is_loaded() && target->is_strict());

  assert(args != NULL, "args must exist");
#ifdef ASSERT
  AssertValues assert_value;
  values_do(&assert_value);
#endif

  // provide an initial guess of signature size.
  _signature = new BasicTypeList(number_of_arguments() + (has_receiver() ? 1 : 0));
  if (has_receiver()) {
    _signature->append(as_BasicType(receiver()->type()));
  }
  for (int i = 0; i < number_of_arguments(); i++) {
    ValueType* t = argument_at(i)->type();
    BasicType bt = as_BasicType(t);
    _signature->append(bt);
  }
}


void Invoke::state_values_do(ValueVisitor* f) {
  StateSplit::state_values_do(f);
  if (state_before() != NULL) state_before()->values_do(f);
  if (state()        != NULL) state()->values_do(f);
}

ciType* Invoke::declared_type() const {
  ciType *t = _target->signature()->return_type();
  assert(t->basic_type() != T_VOID, "need return value of void method?");
  return t;
}

// Implementation of Contant
intx Constant::hash() const {
  if (state_before() == NULL) {
    switch (type()->tag()) {
    case intTag:
      return HASH2(name(), type()->as_IntConstant()->value());
    case addressTag:
      return HASH2(name(), type()->as_AddressConstant()->value());
    case longTag:
      {
        jlong temp = type()->as_LongConstant()->value();
        return HASH3(name(), high(temp), low(temp));
      }
    case floatTag:
      return HASH2(name(), jint_cast(type()->as_FloatConstant()->value()));
    case doubleTag:
      {
        jlong temp = jlong_cast(type()->as_DoubleConstant()->value());
        return HASH3(name(), high(temp), low(temp));
      }
    case objectTag:
      assert(type()->as_ObjectType()->is_loaded(), "can't handle unloaded values");
      return HASH2(name(), type()->as_ObjectType()->constant_value());
    case metaDataTag:
      assert(type()->as_MetadataType()->is_loaded(), "can't handle unloaded values");
      return HASH2(name(), type()->as_MetadataType()->constant_value());
    default:
      ShouldNotReachHere();
    }
  }
  return 0;
}

bool Constant::is_equal(Value v) const {
  if (v->as_Constant() == NULL) return false;

  switch (type()->tag()) {
    case intTag:
      {
        IntConstant* t1 =    type()->as_IntConstant();
        IntConstant* t2 = v->type()->as_IntConstant();
        return (t1 != NULL && t2 != NULL &&
                t1->value() == t2->value());
      }
    case longTag:
      {
        LongConstant* t1 =    type()->as_LongConstant();
        LongConstant* t2 = v->type()->as_LongConstant();
        return (t1 != NULL && t2 != NULL &&
                t1->value() == t2->value());
      }
    case floatTag:
      {
        FloatConstant* t1 =    type()->as_FloatConstant();
        FloatConstant* t2 = v->type()->as_FloatConstant();
        return (t1 != NULL && t2 != NULL &&
                jint_cast(t1->value()) == jint_cast(t2->value()));
      }
    case doubleTag:
      {
        DoubleConstant* t1 =    type()->as_DoubleConstant();
        DoubleConstant* t2 = v->type()->as_DoubleConstant();
        return (t1 != NULL && t2 != NULL &&
                jlong_cast(t1->value()) == jlong_cast(t2->value()));
      }
    case objectTag:
      {
        ObjectType* t1 =    type()->as_ObjectType();
        ObjectType* t2 = v->type()->as_ObjectType();
        return (t1 != NULL && t2 != NULL &&
                t1->is_loaded() && t2->is_loaded() &&
                t1->constant_value() == t2->constant_value());
      }
    case metaDataTag:
      {
        MetadataType* t1 =    type()->as_MetadataType();
        MetadataType* t2 = v->type()->as_MetadataType();
        return (t1 != NULL && t2 != NULL &&
                t1->is_loaded() && t2->is_loaded() &&
                t1->constant_value() == t2->constant_value());
      }
  }
  return false;
}

Constant::CompareResult Constant::compare(Instruction::Condition cond, Value right) const {
  Constant* rc = right->as_Constant();
  // other is not a constant
  if (rc == NULL) return not_comparable;

  ValueType* lt = type();
  ValueType* rt = rc->type();
  // different types
  if (lt->base() != rt->base()) return not_comparable;
  switch (lt->tag()) {
  case intTag: {
    int x = lt->as_IntConstant()->value();
    int y = rt->as_IntConstant()->value();
    switch (cond) {
    case If::eql: return x == y ? cond_true : cond_false;
    case If::neq: return x != y ? cond_true : cond_false;
    case If::lss: return x <  y ? cond_true : cond_false;
    case If::leq: return x <= y ? cond_true : cond_false;
    case If::gtr: return x >  y ? cond_true : cond_false;
    case If::geq: return x >= y ? cond_true : cond_false;
    }
    break;
  }
  case longTag: {
    jlong x = lt->as_LongConstant()->value();
    jlong y = rt->as_LongConstant()->value();
    switch (cond) {
    case If::eql: return x == y ? cond_true : cond_false;
    case If::neq: return x != y ? cond_true : cond_false;
    case If::lss: return x <  y ? cond_true : cond_false;
    case If::leq: return x <= y ? cond_true : cond_false;
    case If::gtr: return x >  y ? cond_true : cond_false;
    case If::geq: return x >= y ? cond_true : cond_false;
    }
    break;
  }
  case objectTag: {
    ciObject* xvalue = lt->as_ObjectType()->constant_value();
    ciObject* yvalue = rt->as_ObjectType()->constant_value();
    assert(xvalue != NULL && yvalue != NULL, "not constants");
    if (xvalue->is_loaded() && yvalue->is_loaded()) {
      switch (cond) {
      case If::eql: return xvalue == yvalue ? cond_true : cond_false;
      case If::neq: return xvalue != yvalue ? cond_true : cond_false;
      }
    }
    break;
  }
  case metaDataTag: {
    ciMetadata* xvalue = lt->as_MetadataType()->constant_value();
    ciMetadata* yvalue = rt->as_MetadataType()->constant_value();
    assert(xvalue != NULL && yvalue != NULL, "not constants");
    if (xvalue->is_loaded() && yvalue->is_loaded()) {
      switch (cond) {
      case If::eql: return xvalue == yvalue ? cond_true : cond_false;
      case If::neq: return xvalue != yvalue ? cond_true : cond_false;
      }
    }
    break;
  }
  }
  return not_comparable;
}


// Implementation of BlockBegin

void BlockBegin::set_end(BlockEnd* end) {
  assert(end != NULL, "should not reset block end to NULL");
  if (end == _end) {
    return;
  }
  clear_end();

  // Set the new end
  _end = end;

  _successors.clear();
  // Now reset successors list based on BlockEnd
  for (int i = 0; i < end->number_of_sux(); i++) {
    BlockBegin* sux = end->sux_at(i);
    _successors.append(sux);
    sux->_predecessors.append(this);
  }
  _end->set_begin(this);
}


void BlockBegin::clear_end() {
  // Must make the predecessors/successors match up with the
  // BlockEnd's notion.
  if (_end != NULL) {
    // disconnect from the old end
    _end->set_begin(NULL);

    // disconnect this block from it's current successors
    for (int i = 0; i < _successors.length(); i++) {
      _successors.at(i)->remove_predecessor(this);
    }
    _end = NULL;
  }
}


void BlockBegin::disconnect_edge(BlockBegin* from, BlockBegin* to) {
  // disconnect any edges between from and to
#ifndef PRODUCT
  if (PrintIR && Verbose) {
    tty->print_cr("Disconnected edge B%d -> B%d", from->block_id(), to->block_id());
  }
#endif
  for (int s = 0; s < from->number_of_sux();) {
    BlockBegin* sux = from->sux_at(s);
    if (sux == to) {
      int index = sux->_predecessors.index_of(from);
      if (index >= 0) {
        sux->_predecessors.remove_at(index);
      }
      from->_successors.remove_at(s);
    } else {
      s++;
    }
  }
}


void BlockBegin::disconnect_from_graph() {
  // disconnect this block from all other blocks
  for (int p = 0; p < number_of_preds(); p++) {
    pred_at(p)->remove_successor(this);
  }
  for (int s = 0; s < number_of_sux(); s++) {
    sux_at(s)->remove_predecessor(this);
  }
}

void BlockBegin::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
  // modify predecessors before substituting successors
  for (int i = 0; i < number_of_sux(); i++) {
    if (sux_at(i) == old_sux) {
      // remove old predecessor before adding new predecessor
      // otherwise there is a dead predecessor in the list
      new_sux->remove_predecessor(old_sux);
      new_sux->add_predecessor(this);
    }
  }
  old_sux->remove_predecessor(this);
  end()->substitute_sux(old_sux, new_sux);
}



// In general it is not possible to calculate a value for the field "depth_first_number"
// of the inserted block, without recomputing the values of the other blocks
// in the CFG. Therefore the value of "depth_first_number" in BlockBegin becomes meaningless.
BlockBegin* BlockBegin::insert_block_between(BlockBegin* sux) {
  BlockBegin* new_sux = new BlockBegin(end()->state()->bci());

  // mark this block (special treatment when block order is computed)
  new_sux->set(critical_edge_split_flag);

  // This goto is not a safepoint.
  Goto* e = new Goto(sux, false);
  new_sux->set_next(e, end()->state()->bci());
  new_sux->set_end(e);
  // setup states
  ValueStack* s = end()->state();
  new_sux->set_state(s->copy());
  e->set_state(s->copy());
  assert(new_sux->state()->locals_size() == s->locals_size(), "local size mismatch!");
  assert(new_sux->state()->stack_size() == s->stack_size(), "stack size mismatch!");
  assert(new_sux->state()->locks_size() == s->locks_size(), "locks size mismatch!");

  // link predecessor to new block
  end()->substitute_sux(sux, new_sux);

  // The ordering needs to be the same, so remove the link that the
  // set_end call above added and substitute the new_sux for this
  // block.
  sux->remove_predecessor(new_sux);

  // the successor could be the target of a switch so it might have
  // multiple copies of this predecessor, so substitute the new_sux
  // for the first and delete the rest.
  bool assigned = false;
  BlockList& list = sux->_predecessors;
  for (int i = 0; i < list.length(); i++) {
    BlockBegin** b = list.adr_at(i);
    if (*b == this) {
      if (assigned) {
        list.remove_at(i);
        // reprocess this index
        i--;
      } else {
        assigned = true;
        *b = new_sux;
      }
      // link the new block back to it's predecessors.
      new_sux->add_predecessor(this);
    }
  }
  assert(assigned == true, "should have assigned at least once");
  return new_sux;
}


void BlockBegin::remove_successor(BlockBegin* pred) {
  int idx;
  while ((idx = _successors.index_of(pred)) >= 0) {
    _successors.remove_at(idx);
  }
}


void BlockBegin::add_predecessor(BlockBegin* pred) {
  _predecessors.append(pred);
}


void BlockBegin::remove_predecessor(BlockBegin* pred) {
  int idx;
  while ((idx = _predecessors.index_of(pred)) >= 0) {
    _predecessors.remove_at(idx);
  }
}


void BlockBegin::add_exception_handler(BlockBegin* b) {
  assert(b != NULL && (b->is_set(exception_entry_flag)), "exception handler must exist");
  // add only if not in the list already
  if (!_exception_handlers.contains(b)) _exception_handlers.append(b);
}

int BlockBegin::add_exception_state(ValueStack* state) {
  assert(is_set(exception_entry_flag), "only for xhandlers");
  if (_exception_states == NULL) {
    _exception_states = new ValueStackStack(4);
  }
  _exception_states->append(state);
  return _exception_states->length() - 1;
}


void BlockBegin::iterate_preorder(boolArray& mark, BlockClosure* closure) {
  if (!mark.at(block_id())) {
    mark.at_put(block_id(), true);
    closure->block_do(this);
    BlockEnd* e = end(); // must do this after block_do because block_do may change it!
    { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_preorder(mark, closure); }
    { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_preorder(mark, closure); }
  }
}


void BlockBegin::iterate_postorder(boolArray& mark, BlockClosure* closure) {
  if (!mark.at(block_id())) {
    mark.at_put(block_id(), true);
    BlockEnd* e = end();
    { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_postorder(mark, closure); }
    { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_postorder(mark, closure); }
    closure->block_do(this);
  }
}


void BlockBegin::iterate_preorder(BlockClosure* closure) {
  boolArray mark(number_of_blocks(), false);
  iterate_preorder(mark, closure);
}


void BlockBegin::iterate_postorder(BlockClosure* closure) {
  boolArray mark(number_of_blocks(), false);
  iterate_postorder(mark, closure);
}


void BlockBegin::block_values_do(ValueVisitor* f) {
  for (Instruction* n = this; n != NULL; n = n->next()) n->values_do(f);
}


#ifndef PRODUCT
   #define TRACE_PHI(code) if (PrintPhiFunctions) { code; }
#else
   #define TRACE_PHI(coce)
#endif


bool BlockBegin::try_merge(ValueStack* new_state) {
  TRACE_PHI(tty->print_cr("********** try_merge for block B%d", block_id()));

  // local variables used for state iteration
  int index;
  Value new_value, existing_value;

  ValueStack* existing_state = state();
  if (existing_state == NULL) {
    TRACE_PHI(tty->print_cr("first call of try_merge for this block"));

    if (is_set(BlockBegin::was_visited_flag)) {
      // this actually happens for complicated jsr/ret structures
      return false; // BAILOUT in caller
    }

    // copy state because it is altered
    new_state = new_state->copy(ValueStack::BlockBeginState, bci());

    // Use method liveness to invalidate dead locals
    MethodLivenessResult liveness = new_state->scope()->method()->liveness_at_bci(bci());
    if (liveness.is_valid()) {
      assert((int)liveness.size() == new_state->locals_size(), "error in use of liveness");

      for_each_local_value(new_state, index, new_value) {
        if (!liveness.at(index) || new_value->type()->is_illegal()) {
          new_state->invalidate_local(index);
          TRACE_PHI(tty->print_cr("invalidating dead local %d", index));
        }
      }
    }

    if (is_set(BlockBegin::parser_loop_header_flag)) {
      TRACE_PHI(tty->print_cr("loop header block, initializing phi functions"));

      for_each_stack_value(new_state, index, new_value) {
        new_state->setup_phi_for_stack(this, index);
        TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", new_state->stack_at(index)->type()->tchar(), new_state->stack_at(index)->id(), index));
      }

      BitMap requires_phi_function = new_state->scope()->requires_phi_function();

      for_each_local_value(new_state, index, new_value) {
        bool requires_phi = requires_phi_function.at(index) || (new_value->type()->is_double_word() && requires_phi_function.at(index + 1));
        if (requires_phi || !SelectivePhiFunctions) {
          new_state->setup_phi_for_local(this, index);
          TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", new_state->local_at(index)->type()->tchar(), new_state->local_at(index)->id(), index));
        }
      }
    }

    // initialize state of block
    set_state(new_state);

  } else if (existing_state->is_same(new_state)) {
    TRACE_PHI(tty->print_cr("exisiting state found"));

    assert(existing_state->scope() == new_state->scope(), "not matching");
    assert(existing_state->locals_size() == new_state->locals_size(), "not matching");
    assert(existing_state->stack_size() == new_state->stack_size(), "not matching");

    if (is_set(BlockBegin::was_visited_flag)) {
      TRACE_PHI(tty->print_cr("loop header block, phis must be present"));

      if (!is_set(BlockBegin::parser_loop_header_flag)) {
        // this actually happens for complicated jsr/ret structures
        return false; // BAILOUT in caller
      }

      for_each_local_value(existing_state, index, existing_value) {
        Value new_value = new_state->local_at(index);
        if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
          // The old code invalidated the phi function here
          // Because dead locals are replaced with NULL, this is a very rare case now, so simply bail out
          return false; // BAILOUT in caller
        }
      }

#ifdef ASSERT
      // check that all necessary phi functions are present
      for_each_stack_value(existing_state, index, existing_value) {
        assert(existing_value->as_Phi() != NULL && existing_value->as_Phi()->block() == this, "phi function required");
      }
      for_each_local_value(existing_state, index, existing_value) {
        assert(existing_value == new_state->local_at(index) || (existing_value->as_Phi() != NULL && existing_value->as_Phi()->as_Phi()->block() == this), "phi function required");
      }
#endif

    } else {
      TRACE_PHI(tty->print_cr("creating phi functions on demand"));

      // create necessary phi functions for stack
      for_each_stack_value(existing_state, index, existing_value) {
        Value new_value = new_state->stack_at(index);
        Phi* existing_phi = existing_value->as_Phi();

        if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
          existing_state->setup_phi_for_stack(this, index);
          TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", existing_state->stack_at(index)->type()->tchar(), existing_state->stack_at(index)->id(), index));
        }
      }

      // create necessary phi functions for locals
      for_each_local_value(existing_state, index, existing_value) {
        Value new_value = new_state->local_at(index);
        Phi* existing_phi = existing_value->as_Phi();

        if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
          existing_state->invalidate_local(index);
          TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
        } else if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
          existing_state->setup_phi_for_local(this, index);
          TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", existing_state->local_at(index)->type()->tchar(), existing_state->local_at(index)->id(), index));
        }
      }
    }

    assert(existing_state->caller_state() == new_state->caller_state(), "caller states must be equal");

  } else {
    assert(false, "stack or locks not matching (invalid bytecodes)");
    return false;
  }

  TRACE_PHI(tty->print_cr("********** try_merge for block B%d successful", block_id()));

  return true;
}


#ifndef PRODUCT
void BlockBegin::print_block() {
  InstructionPrinter ip;
  print_block(ip, false);
}


void BlockBegin::print_block(InstructionPrinter& ip, bool live_only) {
  ip.print_instr(this); tty->cr();
  ip.print_stack(this->state()); tty->cr();
  ip.print_inline_level(this);
  ip.print_head();
  for (Instruction* n = next(); n != NULL; n = n->next()) {
    if (!live_only || n->is_pinned() || n->use_count() > 0) {
      ip.print_line(n);
    }
  }
  tty->cr();
}
#endif // PRODUCT


// Implementation of BlockList

void BlockList::iterate_forward (BlockClosure* closure) {
  const int l = length();
  for (int i = 0; i < l; i++) closure->block_do(at(i));
}


void BlockList::iterate_backward(BlockClosure* closure) {
  for (int i = length() - 1; i >= 0; i--) closure->block_do(at(i));
}


void BlockList::blocks_do(void f(BlockBegin*)) {
  for (int i = length() - 1; i >= 0; i--) f(at(i));
}


void BlockList::values_do(ValueVisitor* f) {
  for (int i = length() - 1; i >= 0; i--) at(i)->block_values_do(f);
}


#ifndef PRODUCT
void BlockList::print(bool cfg_only, bool live_only) {
  InstructionPrinter ip;
  for (int i = 0; i < length(); i++) {
    BlockBegin* block = at(i);
    if (cfg_only) {
      ip.print_instr(block); tty->cr();
    } else {
      block->print_block(ip, live_only);
    }
  }
}
#endif // PRODUCT


// Implementation of BlockEnd

void BlockEnd::set_begin(BlockBegin* begin) {
  BlockList* sux = NULL;
  if (begin != NULL) {
    sux = begin->successors();
  } else if (_begin != NULL) {
    // copy our sux list
    BlockList* sux = new BlockList(_begin->number_of_sux());
    for (int i = 0; i < _begin->number_of_sux(); i++) {
      sux->append(_begin->sux_at(i));
    }
  }
  _sux = sux;
  _begin = begin;
}


void BlockEnd::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
  substitute(*_sux, old_sux, new_sux);
}


// Implementation of Phi

// Normal phi functions take their operands from the last instruction of the
// predecessor. Special handling is needed for xhanlder entries because there
// the state of arbitrary instructions are needed.

Value Phi::operand_at(int i) const {
  ValueStack* state;
  if (_block->is_set(BlockBegin::exception_entry_flag)) {
    state = _block->exception_state_at(i);
  } else {
    state = _block->pred_at(i)->end()->state();
  }
  assert(state != NULL, "");

  if (is_local()) {
    return state->local_at(local_index());
  } else {
    return state->stack_at(stack_index());
  }
}


int Phi::operand_count() const {
  if (_block->is_set(BlockBegin::exception_entry_flag)) {
    return _block->number_of_exception_states();
  } else {
    return _block->number_of_preds();
  }
}



void ProfileInvoke::state_values_do(ValueVisitor* f) {
  if (state() != NULL) state()->values_do(f);
}