aboutsummaryrefslogtreecommitdiff
path: root/src/os/linux/vm/os_linux.cpp
blob: cbb48d5b17d928428cb1814c5aa794c6cebe1c5b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
/*
 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

// no precompiled headers
#include "classfile/classLoader.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/icBuffer.hpp"
#include "code/vtableStubs.hpp"
#include "compiler/compileBroker.hpp"
#include "interpreter/interpreter.hpp"
#include "jvm_linux.h"
#include "memory/allocation.inline.hpp"
#include "memory/filemap.hpp"
#include "mutex_linux.inline.hpp"
#include "oops/oop.inline.hpp"
#include "os_share_linux.hpp"
#include "prims/jniFastGetField.hpp"
#include "prims/jvm.h"
#include "prims/jvm_misc.hpp"
#include "runtime/arguments.hpp"
#include "runtime/extendedPC.hpp"
#include "runtime/globals.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/java.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/osThread.hpp"
#include "runtime/perfMemory.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/statSampler.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/threadCritical.hpp"
#include "runtime/timer.hpp"
#include "services/attachListener.hpp"
#include "services/runtimeService.hpp"
#include "thread_linux.inline.hpp"
#include "utilities/decoder.hpp"
#include "utilities/defaultStream.hpp"
#include "utilities/events.hpp"
#include "utilities/growableArray.hpp"
#include "utilities/vmError.hpp"
#ifdef TARGET_ARCH_x86
# include "assembler_x86.inline.hpp"
# include "nativeInst_x86.hpp"
#endif
#ifdef TARGET_ARCH_sparc
# include "assembler_sparc.inline.hpp"
# include "nativeInst_sparc.hpp"
#endif
#ifdef TARGET_ARCH_zero
# include "assembler_zero.inline.hpp"
# include "nativeInst_zero.hpp"
#endif
#ifdef TARGET_ARCH_arm
# include "assembler_arm.inline.hpp"
# include "nativeInst_arm.hpp"
#endif
#ifdef TARGET_ARCH_ppc
# include "assembler_ppc.inline.hpp"
# include "nativeInst_ppc.hpp"
#endif

// put OS-includes here
# include <sys/types.h>
# include <sys/mman.h>
# include <sys/stat.h>
# include <sys/select.h>
# include <pthread.h>
# include <signal.h>
# include <errno.h>
# include <dlfcn.h>
# include <stdio.h>
# include <unistd.h>
# include <sys/resource.h>
# include <pthread.h>
# include <sys/stat.h>
# include <sys/time.h>
# include <sys/times.h>
# include <sys/utsname.h>
# include <sys/socket.h>
# include <sys/wait.h>
# include <pwd.h>
# include <poll.h>
# include <semaphore.h>
# include <fcntl.h>
# include <string.h>
# include <syscall.h>
# include <sys/sysinfo.h>
# include <gnu/libc-version.h>
# include <sys/ipc.h>
# include <sys/shm.h>
# include <link.h>
# include <stdint.h>
# include <inttypes.h>
# include <sys/ioctl.h>

#define MAX_PATH    (2 * K)

// for timer info max values which include all bits
#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)

#define LARGEPAGES_BIT (1 << 6)
////////////////////////////////////////////////////////////////////////////////
// global variables
julong os::Linux::_physical_memory = 0;

address   os::Linux::_initial_thread_stack_bottom = NULL;
uintptr_t os::Linux::_initial_thread_stack_size   = 0;

int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
Mutex* os::Linux::_createThread_lock = NULL;
pthread_t os::Linux::_main_thread;
int os::Linux::_page_size = -1;
bool os::Linux::_is_floating_stack = false;
bool os::Linux::_is_NPTL = false;
bool os::Linux::_supports_fast_thread_cpu_time = false;
const char * os::Linux::_glibc_version = NULL;
const char * os::Linux::_libpthread_version = NULL;

static jlong initial_time_count=0;

static int clock_tics_per_sec = 100;

// For diagnostics to print a message once. see run_periodic_checks
static sigset_t check_signal_done;
static bool check_signals = true;;

static pid_t _initial_pid = 0;

/* Signal number used to suspend/resume a thread */

/* do not use any signal number less than SIGSEGV, see 4355769 */
static int SR_signum = SIGUSR2;
sigset_t SR_sigset;

/* Used to protect dlsym() calls */
static pthread_mutex_t dl_mutex;

#ifdef JAVASE_EMBEDDED
class MemNotifyThread: public Thread {
  friend class VMStructs;
 public:
  virtual void run();

 private:
  static MemNotifyThread* _memnotify_thread;
  int _fd;

 public:

  // Constructor
  MemNotifyThread(int fd);

  // Tester
  bool is_memnotify_thread() const { return true; }

  // Printing
  char* name() const { return (char*)"Linux MemNotify Thread"; }

  // Returns the single instance of the MemNotifyThread
  static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }

  // Create and start the single instance of MemNotifyThread
  static void start();
};
#endif // JAVASE_EMBEDDED

// utility functions

static int SR_initialize();
static int SR_finalize();

julong os::available_memory() {
  return Linux::available_memory();
}

julong os::Linux::available_memory() {
  // values in struct sysinfo are "unsigned long"
  struct sysinfo si;
  sysinfo(&si);

  return (julong)si.freeram * si.mem_unit;
}

julong os::physical_memory() {
  return Linux::physical_memory();
}

julong os::allocatable_physical_memory(julong size) {
#ifdef _LP64
  return size;
#else
  julong result = MIN2(size, (julong)3800*M);
   if (!is_allocatable(result)) {
     // See comments under solaris for alignment considerations
     julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
     result =  MIN2(size, reasonable_size);
   }
   return result;
#endif // _LP64
}

////////////////////////////////////////////////////////////////////////////////
// environment support

bool os::getenv(const char* name, char* buf, int len) {
  const char* val = ::getenv(name);
  if (val != NULL && strlen(val) < (size_t)len) {
    strcpy(buf, val);
    return true;
  }
  if (len > 0) buf[0] = 0;  // return a null string
  return false;
}


// Return true if user is running as root.

bool os::have_special_privileges() {
  static bool init = false;
  static bool privileges = false;
  if (!init) {
    privileges = (getuid() != geteuid()) || (getgid() != getegid());
    init = true;
  }
  return privileges;
}


#ifndef SYS_gettid
// i386: 224, ia64: 1105, amd64: 186, sparc 143
#ifdef __ia64__
#define SYS_gettid 1105
#elif __i386__
#define SYS_gettid 224
#elif __amd64__
#define SYS_gettid 186
#elif __sparc__
#define SYS_gettid 143
#else
#error define gettid for the arch
#endif
#endif

// Cpu architecture string
#if   defined(ZERO)
static char cpu_arch[] = ZERO_LIBARCH;
#elif defined(IA64)
static char cpu_arch[] = "ia64";
#elif defined(IA32)
static char cpu_arch[] = "i386";
#elif defined(AMD64)
static char cpu_arch[] = "amd64";
#elif defined(ARM)
static char cpu_arch[] = "arm";
#elif defined(PPC)
static char cpu_arch[] = "ppc";
#elif defined(SPARC)
#  ifdef _LP64
static char cpu_arch[] = "sparcv9";
#  else
static char cpu_arch[] = "sparc";
#  endif
#else
#error Add appropriate cpu_arch setting
#endif


// pid_t gettid()
//
// Returns the kernel thread id of the currently running thread. Kernel
// thread id is used to access /proc.
//
// (Note that getpid() on LinuxThreads returns kernel thread id too; but
// on NPTL, it returns the same pid for all threads, as required by POSIX.)
//
pid_t os::Linux::gettid() {
  int rslt = syscall(SYS_gettid);
  if (rslt == -1) {
     // old kernel, no NPTL support
     return getpid();
  } else {
     return (pid_t)rslt;
  }
}

// Most versions of linux have a bug where the number of processors are
// determined by looking at the /proc file system.  In a chroot environment,
// the system call returns 1.  This causes the VM to act as if it is
// a single processor and elide locking (see is_MP() call).
static bool unsafe_chroot_detected = false;
static const char *unstable_chroot_error = "/proc file system not found.\n"
                     "Java may be unstable running multithreaded in a chroot "
                     "environment on Linux when /proc filesystem is not mounted.";

void os::Linux::initialize_system_info() {
  set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
  if (processor_count() == 1) {
    pid_t pid = os::Linux::gettid();
    char fname[32];
    jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
    FILE *fp = fopen(fname, "r");
    if (fp == NULL) {
      unsafe_chroot_detected = true;
    } else {
      fclose(fp);
    }
  }
  _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
  assert(processor_count() > 0, "linux error");
}

void os::init_system_properties_values() {
//  char arch[12];
//  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));

  // The next steps are taken in the product version:
  //
  // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
  // This library should be located at:
  // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
  //
  // If "/jre/lib/" appears at the right place in the path, then we
  // assume libjvm[_g].so is installed in a JDK and we use this path.
  //
  // Otherwise exit with message: "Could not create the Java virtual machine."
  //
  // The following extra steps are taken in the debugging version:
  //
  // If "/jre/lib/" does NOT appear at the right place in the path
  // instead of exit check for $JAVA_HOME environment variable.
  //
  // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
  // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
  // it looks like libjvm[_g].so is installed there
  // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
  //
  // Otherwise exit.
  //
  // Important note: if the location of libjvm.so changes this
  // code needs to be changed accordingly.

  // The next few definitions allow the code to be verbatim:
#define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
#define getenv(n) ::getenv(n)

/*
 * See ld(1):
 *      The linker uses the following search paths to locate required
 *      shared libraries:
 *        1: ...
 *        ...
 *        7: The default directories, normally /lib and /usr/lib.
 */
#if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
#define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
#else
#define DEFAULT_LIBPATH "/lib:/usr/lib"
#endif

#define EXTENSIONS_DIR  "/lib/ext"
#define ENDORSED_DIR    "/lib/endorsed"
#define REG_DIR         "/usr/java/packages"

  {
    /* sysclasspath, java_home, dll_dir */
    {
        char *home_path;
        char *dll_path;
        char *pslash;
        char buf[MAXPATHLEN];
        os::jvm_path(buf, sizeof(buf));

        // Found the full path to libjvm.so.
        // Now cut the path to <java_home>/jre if we can.
        *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
        pslash = strrchr(buf, '/');
        if (pslash != NULL)
            *pslash = '\0';           /* get rid of /{client|server|hotspot} */
        dll_path = malloc(strlen(buf) + 1);
        if (dll_path == NULL)
            return;
        strcpy(dll_path, buf);
        Arguments::set_dll_dir(dll_path);

        if (pslash != NULL) {
            pslash = strrchr(buf, '/');
            if (pslash != NULL) {
                *pslash = '\0';       /* get rid of /<arch> */
                pslash = strrchr(buf, '/');
                if (pslash != NULL)
                    *pslash = '\0';   /* get rid of /lib */
            }
        }

        home_path = malloc(strlen(buf) + 1);
        if (home_path == NULL)
            return;
        strcpy(home_path, buf);
        Arguments::set_java_home(home_path);

        if (!set_boot_path('/', ':'))
            return;
    }

    /*
     * Where to look for native libraries
     *
     * Note: Due to a legacy implementation, most of the library path
     * is set in the launcher.  This was to accomodate linking restrictions
     * on legacy Linux implementations (which are no longer supported).
     * Eventually, all the library path setting will be done here.
     *
     * However, to prevent the proliferation of improperly built native
     * libraries, the new path component /usr/java/packages is added here.
     * Eventually, all the library path setting will be done here.
     */
    {
        char *ld_library_path;

        /*
         * Construct the invariant part of ld_library_path. Note that the
         * space for the colon and the trailing null are provided by the
         * nulls included by the sizeof operator (so actually we allocate
         * a byte more than necessary).
         */
        ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
            strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
        sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);

        /*
         * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
         * should always exist (until the legacy problem cited above is
         * addressed).
         */
        char *v = getenv("LD_LIBRARY_PATH");
        if (v != NULL) {
            char *t = ld_library_path;
            /* That's +1 for the colon and +1 for the trailing '\0' */
            ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
            sprintf(ld_library_path, "%s:%s", v, t);
        }
        Arguments::set_library_path(ld_library_path);
    }

    /*
     * Extensions directories.
     *
     * Note that the space for the colon and the trailing null are provided
     * by the nulls included by the sizeof operator (so actually one byte more
     * than necessary is allocated).
     */
    {
        char *buf = malloc(strlen(Arguments::get_java_home()) +
            sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
        sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
            Arguments::get_java_home());
        Arguments::set_ext_dirs(buf);
    }

    /* Endorsed standards default directory. */
    {
        char * buf;
        buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
        sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
        Arguments::set_endorsed_dirs(buf);
    }
  }

#undef malloc
#undef getenv
#undef EXTENSIONS_DIR
#undef ENDORSED_DIR

  // Done
  return;
}

////////////////////////////////////////////////////////////////////////////////
// breakpoint support

void os::breakpoint() {
  BREAKPOINT;
}

extern "C" void breakpoint() {
  // use debugger to set breakpoint here
}

////////////////////////////////////////////////////////////////////////////////
// signal support

debug_only(static bool signal_sets_initialized = false);
static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;

bool os::Linux::is_sig_ignored(int sig) {
      struct sigaction oact;
      sigaction(sig, (struct sigaction*)NULL, &oact);
      void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
                                     : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
      if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
           return true;
      else
           return false;
}

void os::Linux::signal_sets_init() {
  // Should also have an assertion stating we are still single-threaded.
  assert(!signal_sets_initialized, "Already initialized");
  // Fill in signals that are necessarily unblocked for all threads in
  // the VM. Currently, we unblock the following signals:
  // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
  //                         by -Xrs (=ReduceSignalUsage));
  // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
  // other threads. The "ReduceSignalUsage" boolean tells us not to alter
  // the dispositions or masks wrt these signals.
  // Programs embedding the VM that want to use the above signals for their
  // own purposes must, at this time, use the "-Xrs" option to prevent
  // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
  // (See bug 4345157, and other related bugs).
  // In reality, though, unblocking these signals is really a nop, since
  // these signals are not blocked by default.
  sigemptyset(&unblocked_sigs);
  sigemptyset(&allowdebug_blocked_sigs);
  sigaddset(&unblocked_sigs, SIGILL);
  sigaddset(&unblocked_sigs, SIGSEGV);
  sigaddset(&unblocked_sigs, SIGBUS);
  sigaddset(&unblocked_sigs, SIGFPE);
  sigaddset(&unblocked_sigs, SR_signum);

  if (!ReduceSignalUsage) {
   if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
   }
   if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
   }
   if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
      sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
   }
  }
  // Fill in signals that are blocked by all but the VM thread.
  sigemptyset(&vm_sigs);
  if (!ReduceSignalUsage)
    sigaddset(&vm_sigs, BREAK_SIGNAL);
  debug_only(signal_sets_initialized = true);

}

// These are signals that are unblocked while a thread is running Java.
// (For some reason, they get blocked by default.)
sigset_t* os::Linux::unblocked_signals() {
  assert(signal_sets_initialized, "Not initialized");
  return &unblocked_sigs;
}

// These are the signals that are blocked while a (non-VM) thread is
// running Java. Only the VM thread handles these signals.
sigset_t* os::Linux::vm_signals() {
  assert(signal_sets_initialized, "Not initialized");
  return &vm_sigs;
}

// These are signals that are blocked during cond_wait to allow debugger in
sigset_t* os::Linux::allowdebug_blocked_signals() {
  assert(signal_sets_initialized, "Not initialized");
  return &allowdebug_blocked_sigs;
}

void os::Linux::hotspot_sigmask(Thread* thread) {

  //Save caller's signal mask before setting VM signal mask
  sigset_t caller_sigmask;
  pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);

  OSThread* osthread = thread->osthread();
  osthread->set_caller_sigmask(caller_sigmask);

  pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);

  if (!ReduceSignalUsage) {
    if (thread->is_VM_thread()) {
      // Only the VM thread handles BREAK_SIGNAL ...
      pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
    } else {
      // ... all other threads block BREAK_SIGNAL
      pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
    }
  }
}

//////////////////////////////////////////////////////////////////////////////
// detecting pthread library

void os::Linux::libpthread_init() {
  // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
  // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
  // generic name for earlier versions.
  // Define macros here so we can build HotSpot on old systems.
# ifndef _CS_GNU_LIBC_VERSION
# define _CS_GNU_LIBC_VERSION 2
# endif
# ifndef _CS_GNU_LIBPTHREAD_VERSION
# define _CS_GNU_LIBPTHREAD_VERSION 3
# endif

  size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
  if (n > 0) {
     char *str = (char *)malloc(n, mtInternal);
     confstr(_CS_GNU_LIBC_VERSION, str, n);
     os::Linux::set_glibc_version(str);
  } else {
     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
     static char _gnu_libc_version[32];
     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
              "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
     os::Linux::set_glibc_version(_gnu_libc_version);
  }

  n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
  if (n > 0) {
     char *str = (char *)malloc(n, mtInternal);
     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
     // is the case. LinuxThreads has a hard limit on max number of threads.
     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
     // On the other hand, NPTL does not have such a limit, sysconf()
     // will return -1 and errno is not changed. Check if it is really NPTL.
     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
         strstr(str, "NPTL") &&
         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
       free(str);
       os::Linux::set_libpthread_version("linuxthreads");
     } else {
       os::Linux::set_libpthread_version(str);
     }
  } else {
    // glibc before 2.3.2 only has LinuxThreads.
    os::Linux::set_libpthread_version("linuxthreads");
  }

  if (strstr(libpthread_version(), "NPTL")) {
     os::Linux::set_is_NPTL();
  } else {
     os::Linux::set_is_LinuxThreads();
  }

  // LinuxThreads have two flavors: floating-stack mode, which allows variable
  // stack size; and fixed-stack mode. NPTL is always floating-stack.
  if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
     os::Linux::set_is_floating_stack();
  }
}

/////////////////////////////////////////////////////////////////////////////
// thread stack

// Force Linux kernel to expand current thread stack. If "bottom" is close
// to the stack guard, caller should block all signals.
//
// MAP_GROWSDOWN:
//   A special mmap() flag that is used to implement thread stacks. It tells
//   kernel that the memory region should extend downwards when needed. This
//   allows early versions of LinuxThreads to only mmap the first few pages
//   when creating a new thread. Linux kernel will automatically expand thread
//   stack as needed (on page faults).
//
//   However, because the memory region of a MAP_GROWSDOWN stack can grow on
//   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
//   region, it's hard to tell if the fault is due to a legitimate stack
//   access or because of reading/writing non-exist memory (e.g. buffer
//   overrun). As a rule, if the fault happens below current stack pointer,
//   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
//   application (see Linux kernel fault.c).
//
//   This Linux feature can cause SIGSEGV when VM bangs thread stack for
//   stack overflow detection.
//
//   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
//   not use this flag. However, the stack of initial thread is not created
//   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
//   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
//   and then attach the thread to JVM.
//
// To get around the problem and allow stack banging on Linux, we need to
// manually expand thread stack after receiving the SIGSEGV.
//
// There are two ways to expand thread stack to address "bottom", we used
// both of them in JVM before 1.5:
//   1. adjust stack pointer first so that it is below "bottom", and then
//      touch "bottom"
//   2. mmap() the page in question
//
// Now alternate signal stack is gone, it's harder to use 2. For instance,
// if current sp is already near the lower end of page 101, and we need to
// call mmap() to map page 100, it is possible that part of the mmap() frame
// will be placed in page 100. When page 100 is mapped, it is zero-filled.
// That will destroy the mmap() frame and cause VM to crash.
//
// The following code works by adjusting sp first, then accessing the "bottom"
// page to force a page fault. Linux kernel will then automatically expand the
// stack mapping.
//
// _expand_stack_to() assumes its frame size is less than page size, which
// should always be true if the function is not inlined.

#if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
#define NOINLINE
#else
#define NOINLINE __attribute__ ((noinline))
#endif

static void _expand_stack_to(address bottom) NOINLINE;

static void _expand_stack_to(address bottom) {
  address sp;
  size_t size;
  volatile char *p;

  // Adjust bottom to point to the largest address within the same page, it
  // gives us a one-page buffer if alloca() allocates slightly more memory.
  bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
  bottom += os::Linux::page_size() - 1;

  // sp might be slightly above current stack pointer; if that's the case, we
  // will alloca() a little more space than necessary, which is OK. Don't use
  // os::current_stack_pointer(), as its result can be slightly below current
  // stack pointer, causing us to not alloca enough to reach "bottom".
  sp = (address)&sp;

  if (sp > bottom) {
    size = sp - bottom;
    p = (volatile char *)alloca(size);
    assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
    p[0] = '\0';
  }
}

bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
  assert(t!=NULL, "just checking");
  assert(t->osthread()->expanding_stack(), "expand should be set");
  assert(t->stack_base() != NULL, "stack_base was not initialized");

  if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
    sigset_t mask_all, old_sigset;
    sigfillset(&mask_all);
    pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
    _expand_stack_to(addr);
    pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
    return true;
  }
  return false;
}

//////////////////////////////////////////////////////////////////////////////
// create new thread

static address highest_vm_reserved_address();

// check if it's safe to start a new thread
static bool _thread_safety_check(Thread* thread) {
  if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
    // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
    //   Heap is mmap'ed at lower end of memory space. Thread stacks are
    //   allocated (MAP_FIXED) from high address space. Every thread stack
    //   occupies a fixed size slot (usually 2Mbytes, but user can change
    //   it to other values if they rebuild LinuxThreads).
    //
    // Problem with MAP_FIXED is that mmap() can still succeed even part of
    // the memory region has already been mmap'ed. That means if we have too
    // many threads and/or very large heap, eventually thread stack will
    // collide with heap.
    //
    // Here we try to prevent heap/stack collision by comparing current
    // stack bottom with the highest address that has been mmap'ed by JVM
    // plus a safety margin for memory maps created by native code.
    //
    // This feature can be disabled by setting ThreadSafetyMargin to 0
    //
    if (ThreadSafetyMargin > 0) {
      address stack_bottom = os::current_stack_base() - os::current_stack_size();

      // not safe if our stack extends below the safety margin
      return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
    } else {
      return true;
    }
  } else {
    // Floating stack LinuxThreads or NPTL:
    //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
    //   there's not enough space left, pthread_create() will fail. If we come
    //   here, that means enough space has been reserved for stack.
    return true;
  }
}

// Thread start routine for all newly created threads
static void *java_start(Thread *thread) {
  // Try to randomize the cache line index of hot stack frames.
  // This helps when threads of the same stack traces evict each other's
  // cache lines. The threads can be either from the same JVM instance, or
  // from different JVM instances. The benefit is especially true for
  // processors with hyperthreading technology.
  static int counter = 0;
  int pid = os::current_process_id();
  alloca(((pid ^ counter++) & 7) * 128);

  ThreadLocalStorage::set_thread(thread);

  OSThread* osthread = thread->osthread();
  Monitor* sync = osthread->startThread_lock();

  // non floating stack LinuxThreads needs extra check, see above
  if (!_thread_safety_check(thread)) {
    // notify parent thread
    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
    osthread->set_state(ZOMBIE);
    sync->notify_all();
    return NULL;
  }

  // thread_id is kernel thread id (similar to Solaris LWP id)
  osthread->set_thread_id(os::Linux::gettid());

  if (UseNUMA) {
    int lgrp_id = os::numa_get_group_id();
    if (lgrp_id != -1) {
      thread->set_lgrp_id(lgrp_id);
    }
  }
  // initialize signal mask for this thread
  os::Linux::hotspot_sigmask(thread);

  // initialize floating point control register
  os::Linux::init_thread_fpu_state();

  // handshaking with parent thread
  {
    MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);

    // notify parent thread
    osthread->set_state(INITIALIZED);
    sync->notify_all();

    // wait until os::start_thread()
    while (osthread->get_state() == INITIALIZED) {
      sync->wait(Mutex::_no_safepoint_check_flag);
    }
  }

  // call one more level start routine
  thread->run();

  return 0;
}

bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
  assert(thread->osthread() == NULL, "caller responsible");

  // Allocate the OSThread object
  OSThread* osthread = new OSThread(NULL, NULL);
  if (osthread == NULL) {
    return false;
  }

  // set the correct thread state
  osthread->set_thread_type(thr_type);

  // Initial state is ALLOCATED but not INITIALIZED
  osthread->set_state(ALLOCATED);

  thread->set_osthread(osthread);

  // init thread attributes
  pthread_attr_t attr;
  pthread_attr_init(&attr);
  pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

  // stack size
  if (os::Linux::supports_variable_stack_size()) {
    // calculate stack size if it's not specified by caller
    if (stack_size == 0) {
      stack_size = os::Linux::default_stack_size(thr_type);

      switch (thr_type) {
      case os::java_thread:
        // Java threads use ThreadStackSize which default value can be
        // changed with the flag -Xss
        assert (JavaThread::stack_size_at_create() > 0, "this should be set");
        stack_size = JavaThread::stack_size_at_create();
        break;
      case os::compiler_thread:
        if (CompilerThreadStackSize > 0) {
          stack_size = (size_t)(CompilerThreadStackSize * K);
          break;
        } // else fall through:
          // use VMThreadStackSize if CompilerThreadStackSize is not defined
      case os::vm_thread:
      case os::pgc_thread:
      case os::cgc_thread:
      case os::watcher_thread:
        if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
        break;
      }
    }

    stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
    pthread_attr_setstacksize(&attr, stack_size);
  } else {
    // let pthread_create() pick the default value.
  }

  // glibc guard page
  pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));

  ThreadState state;

  {
    // Serialize thread creation if we are running with fixed stack LinuxThreads
    bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
    if (lock) {
      os::Linux::createThread_lock()->lock_without_safepoint_check();
    }

    pthread_t tid;
    int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);

    pthread_attr_destroy(&attr);

    if (ret != 0) {
      if (PrintMiscellaneous && (Verbose || WizardMode)) {
        perror("pthread_create()");
      }
      // Need to clean up stuff we've allocated so far
      thread->set_osthread(NULL);
      delete osthread;
      if (lock) os::Linux::createThread_lock()->unlock();
      return false;
    }

    // Store pthread info into the OSThread
    osthread->set_pthread_id(tid);

    // Wait until child thread is either initialized or aborted
    {
      Monitor* sync_with_child = osthread->startThread_lock();
      MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
      while ((state = osthread->get_state()) == ALLOCATED) {
        sync_with_child->wait(Mutex::_no_safepoint_check_flag);
      }
    }

    if (lock) {
      os::Linux::createThread_lock()->unlock();
    }
  }

  // Aborted due to thread limit being reached
  if (state == ZOMBIE) {
      thread->set_osthread(NULL);
      delete osthread;
      return false;
  }

  // The thread is returned suspended (in state INITIALIZED),
  // and is started higher up in the call chain
  assert(state == INITIALIZED, "race condition");
  return true;
}

/////////////////////////////////////////////////////////////////////////////
// attach existing thread

// bootstrap the main thread
bool os::create_main_thread(JavaThread* thread) {
  assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
  return create_attached_thread(thread);
}

bool os::create_attached_thread(JavaThread* thread) {
#ifdef ASSERT
    thread->verify_not_published();
#endif

  // Allocate the OSThread object
  OSThread* osthread = new OSThread(NULL, NULL);

  if (osthread == NULL) {
    return false;
  }

  // Store pthread info into the OSThread
  osthread->set_thread_id(os::Linux::gettid());
  osthread->set_pthread_id(::pthread_self());

  // initialize floating point control register
  os::Linux::init_thread_fpu_state();

  // Initial thread state is RUNNABLE
  osthread->set_state(RUNNABLE);

  thread->set_osthread(osthread);

  if (UseNUMA) {
    int lgrp_id = os::numa_get_group_id();
    if (lgrp_id != -1) {
      thread->set_lgrp_id(lgrp_id);
    }
  }

  if (os::Linux::is_initial_thread()) {
    // If current thread is initial thread, its stack is mapped on demand,
    // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
    // the entire stack region to avoid SEGV in stack banging.
    // It is also useful to get around the heap-stack-gap problem on SuSE
    // kernel (see 4821821 for details). We first expand stack to the top
    // of yellow zone, then enable stack yellow zone (order is significant,
    // enabling yellow zone first will crash JVM on SuSE Linux), so there
    // is no gap between the last two virtual memory regions.

    JavaThread *jt = (JavaThread *)thread;
    address addr = jt->stack_yellow_zone_base();
    assert(addr != NULL, "initialization problem?");
    assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");

    osthread->set_expanding_stack();
    os::Linux::manually_expand_stack(jt, addr);
    osthread->clear_expanding_stack();
  }

  // initialize signal mask for this thread
  // and save the caller's signal mask
  os::Linux::hotspot_sigmask(thread);

  return true;
}

void os::pd_start_thread(Thread* thread) {
  OSThread * osthread = thread->osthread();
  assert(osthread->get_state() != INITIALIZED, "just checking");
  Monitor* sync_with_child = osthread->startThread_lock();
  MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
  sync_with_child->notify();
}

// Free Linux resources related to the OSThread
void os::free_thread(OSThread* osthread) {
  assert(osthread != NULL, "osthread not set");

  if (Thread::current()->osthread() == osthread) {
    // Restore caller's signal mask
    sigset_t sigmask = osthread->caller_sigmask();
    pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
   }

  delete osthread;
}

//////////////////////////////////////////////////////////////////////////////
// thread local storage

int os::allocate_thread_local_storage() {
  pthread_key_t key;
  int rslt = pthread_key_create(&key, NULL);
  assert(rslt == 0, "cannot allocate thread local storage");
  return (int)key;
}

// Note: This is currently not used by VM, as we don't destroy TLS key
// on VM exit.
void os::free_thread_local_storage(int index) {
  int rslt = pthread_key_delete((pthread_key_t)index);
  assert(rslt == 0, "invalid index");
}

void os::thread_local_storage_at_put(int index, void* value) {
  int rslt = pthread_setspecific((pthread_key_t)index, value);
  assert(rslt == 0, "pthread_setspecific failed");
}

extern "C" Thread* get_thread() {
  return ThreadLocalStorage::thread();
}

//////////////////////////////////////////////////////////////////////////////
// initial thread

// Check if current thread is the initial thread, similar to Solaris thr_main.
bool os::Linux::is_initial_thread(void) {
  char dummy;
  // If called before init complete, thread stack bottom will be null.
  // Can be called if fatal error occurs before initialization.
  if (initial_thread_stack_bottom() == NULL) return false;
  assert(initial_thread_stack_bottom() != NULL &&
         initial_thread_stack_size()   != 0,
         "os::init did not locate initial thread's stack region");
  if ((address)&dummy >= initial_thread_stack_bottom() &&
      (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
       return true;
  else return false;
}

// Find the virtual memory area that contains addr
static bool find_vma(address addr, address* vma_low, address* vma_high) {
  FILE *fp = fopen("/proc/self/maps", "r");
  if (fp) {
    address low, high;
    while (!feof(fp)) {
      if (fscanf(fp, "%p-%p", &low, &high) == 2) {
        if (low <= addr && addr < high) {
           if (vma_low)  *vma_low  = low;
           if (vma_high) *vma_high = high;
           fclose (fp);
           return true;
        }
      }
      for (;;) {
        int ch = fgetc(fp);
        if (ch == EOF || ch == (int)'\n') break;
      }
    }
    fclose(fp);
  }
  return false;
}

// Locate initial thread stack. This special handling of initial thread stack
// is needed because pthread_getattr_np() on most (all?) Linux distros returns
// bogus value for initial thread.
void os::Linux::capture_initial_stack(size_t max_size) {
  // stack size is the easy part, get it from RLIMIT_STACK
  size_t stack_size;
  struct rlimit rlim;
  getrlimit(RLIMIT_STACK, &rlim);
  stack_size = rlim.rlim_cur;

  // 6308388: a bug in ld.so will relocate its own .data section to the
  //   lower end of primordial stack; reduce ulimit -s value a little bit
  //   so we won't install guard page on ld.so's data section.
  stack_size -= 2 * page_size();

  // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
  //   7.1, in both cases we will get 2G in return value.
  // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
  //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
  //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
  //   in case other parts in glibc still assumes 2M max stack size.
  // FIXME: alt signal stack is gone, maybe we can relax this constraint?
#ifndef IA64
  if (stack_size > 2 * K * K) stack_size = 2 * K * K;
#else
  // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
  if (stack_size > 4 * K * K) stack_size = 4 * K * K;
#endif

  // Try to figure out where the stack base (top) is. This is harder.
  //
  // When an application is started, glibc saves the initial stack pointer in
  // a global variable "__libc_stack_end", which is then used by system
  // libraries. __libc_stack_end should be pretty close to stack top. The
  // variable is available since the very early days. However, because it is
  // a private interface, it could disappear in the future.
  //
  // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
  // to __libc_stack_end, it is very close to stack top, but isn't the real
  // stack top. Note that /proc may not exist if VM is running as a chroot
  // program, so reading /proc/<pid>/stat could fail. Also the contents of
  // /proc/<pid>/stat could change in the future (though unlikely).
  //
  // We try __libc_stack_end first. If that doesn't work, look for
  // /proc/<pid>/stat. If neither of them works, we use current stack pointer
  // as a hint, which should work well in most cases.

  uintptr_t stack_start;

  // try __libc_stack_end first
  uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
  if (p && *p) {
    stack_start = *p;
  } else {
    // see if we can get the start_stack field from /proc/self/stat
    FILE *fp;
    int pid;
    char state;
    int ppid;
    int pgrp;
    int session;
    int nr;
    int tpgrp;
    unsigned long flags;
    unsigned long minflt;
    unsigned long cminflt;
    unsigned long majflt;
    unsigned long cmajflt;
    unsigned long utime;
    unsigned long stime;
    long cutime;
    long cstime;
    long prio;
    long nice;
    long junk;
    long it_real;
    uintptr_t start;
    uintptr_t vsize;
    intptr_t rss;
    uintptr_t rsslim;
    uintptr_t scodes;
    uintptr_t ecode;
    int i;

    // Figure what the primordial thread stack base is. Code is inspired
    // by email from Hans Boehm. /proc/self/stat begins with current pid,
    // followed by command name surrounded by parentheses, state, etc.
    char stat[2048];
    int statlen;

    fp = fopen("/proc/self/stat", "r");
    if (fp) {
      statlen = fread(stat, 1, 2047, fp);
      stat[statlen] = '\0';
      fclose(fp);

      // Skip pid and the command string. Note that we could be dealing with
      // weird command names, e.g. user could decide to rename java launcher
      // to "java 1.4.2 :)", then the stat file would look like
      //                1234 (java 1.4.2 :)) R ... ...
      // We don't really need to know the command string, just find the last
      // occurrence of ")" and then start parsing from there. See bug 4726580.
      char * s = strrchr(stat, ')');

      i = 0;
      if (s) {
        // Skip blank chars
        do s++; while (isspace(*s));

#define _UFM UINTX_FORMAT
#define _DFM INTX_FORMAT

        /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
        /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
        i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
             &state,          /* 3  %c  */
             &ppid,           /* 4  %d  */
             &pgrp,           /* 5  %d  */
             &session,        /* 6  %d  */
             &nr,             /* 7  %d  */
             &tpgrp,          /* 8  %d  */
             &flags,          /* 9  %lu  */
             &minflt,         /* 10 %lu  */
             &cminflt,        /* 11 %lu  */
             &majflt,         /* 12 %lu  */
             &cmajflt,        /* 13 %lu  */
             &utime,          /* 14 %lu  */
             &stime,          /* 15 %lu  */
             &cutime,         /* 16 %ld  */
             &cstime,         /* 17 %ld  */
             &prio,           /* 18 %ld  */
             &nice,           /* 19 %ld  */
             &junk,           /* 20 %ld  */
             &it_real,        /* 21 %ld  */
             &start,          /* 22 UINTX_FORMAT */
             &vsize,          /* 23 UINTX_FORMAT */
             &rss,            /* 24 INTX_FORMAT  */
             &rsslim,         /* 25 UINTX_FORMAT */
             &scodes,         /* 26 UINTX_FORMAT */
             &ecode,          /* 27 UINTX_FORMAT */
             &stack_start);   /* 28 UINTX_FORMAT */
      }

#undef _UFM
#undef _DFM

      if (i != 28 - 2) {
         assert(false, "Bad conversion from /proc/self/stat");
         // product mode - assume we are the initial thread, good luck in the
         // embedded case.
         warning("Can't detect initial thread stack location - bad conversion");
         stack_start = (uintptr_t) &rlim;
      }
    } else {
      // For some reason we can't open /proc/self/stat (for example, running on
      // FreeBSD with a Linux emulator, or inside chroot), this should work for
      // most cases, so don't abort:
      warning("Can't detect initial thread stack location - no /proc/self/stat");
      stack_start = (uintptr_t) &rlim;
    }
  }

  // Now we have a pointer (stack_start) very close to the stack top, the
  // next thing to do is to figure out the exact location of stack top. We
  // can find out the virtual memory area that contains stack_start by
  // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
  // and its upper limit is the real stack top. (again, this would fail if
  // running inside chroot, because /proc may not exist.)

  uintptr_t stack_top;
  address low, high;
  if (find_vma((address)stack_start, &low, &high)) {
    // success, "high" is the true stack top. (ignore "low", because initial
    // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
    stack_top = (uintptr_t)high;
  } else {
    // failed, likely because /proc/self/maps does not exist
    warning("Can't detect initial thread stack location - find_vma failed");
    // best effort: stack_start is normally within a few pages below the real
    // stack top, use it as stack top, and reduce stack size so we won't put
    // guard page outside stack.
    stack_top = stack_start;
    stack_size -= 16 * page_size();
  }

  // stack_top could be partially down the page so align it
  stack_top = align_size_up(stack_top, page_size());

  if (max_size && stack_size > max_size) {
     _initial_thread_stack_size = max_size;
  } else {
     _initial_thread_stack_size = stack_size;
  }

  _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
  _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
}

////////////////////////////////////////////////////////////////////////////////
// time support

// Time since start-up in seconds to a fine granularity.
// Used by VMSelfDestructTimer and the MemProfiler.
double os::elapsedTime() {

  return (double)(os::elapsed_counter()) * 0.000001;
}

jlong os::elapsed_counter() {
  timeval time;
  int status = gettimeofday(&time, NULL);
  return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
}

jlong os::elapsed_frequency() {
  return (1000 * 1000);
}

// For now, we say that linux does not support vtime.  I have no idea
// whether it can actually be made to (DLD, 9/13/05).

bool os::supports_vtime() { return false; }
bool os::enable_vtime()   { return false; }
bool os::vtime_enabled()  { return false; }
double os::elapsedVTime() {
  // better than nothing, but not much
  return elapsedTime();
}

jlong os::javaTimeMillis() {
  timeval time;
  int status = gettimeofday(&time, NULL);
  assert(status != -1, "linux error");
  return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
}

#ifndef CLOCK_MONOTONIC
#define CLOCK_MONOTONIC (1)
#endif

void os::Linux::clock_init() {
  // we do dlopen's in this particular order due to bug in linux
  // dynamical loader (see 6348968) leading to crash on exit
  void* handle = dlopen("librt.so.1", RTLD_LAZY);
  if (handle == NULL) {
    handle = dlopen("librt.so", RTLD_LAZY);
  }

  if (handle) {
    int (*clock_getres_func)(clockid_t, struct timespec*) =
           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
    int (*clock_gettime_func)(clockid_t, struct timespec*) =
           (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
    if (clock_getres_func && clock_gettime_func) {
      // See if monotonic clock is supported by the kernel. Note that some
      // early implementations simply return kernel jiffies (updated every
      // 1/100 or 1/1000 second). It would be bad to use such a low res clock
      // for nano time (though the monotonic property is still nice to have).
      // It's fixed in newer kernels, however clock_getres() still returns
      // 1/HZ. We check if clock_getres() works, but will ignore its reported
      // resolution for now. Hopefully as people move to new kernels, this
      // won't be a problem.
      struct timespec res;
      struct timespec tp;
      if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
          clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
        // yes, monotonic clock is supported
        _clock_gettime = clock_gettime_func;
      } else {
        // close librt if there is no monotonic clock
        dlclose(handle);
      }
    }
  }
}

#ifndef SYS_clock_getres

#if defined(IA32) || defined(AMD64)
#define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
#else
#warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
#define sys_clock_getres(x,y)  -1
#endif

#else
#define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
#endif

void os::Linux::fast_thread_clock_init() {
  if (!UseLinuxPosixThreadCPUClocks) {
    return;
  }
  clockid_t clockid;
  struct timespec tp;
  int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
      (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");

  // Switch to using fast clocks for thread cpu time if
  // the sys_clock_getres() returns 0 error code.
  // Note, that some kernels may support the current thread
  // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
  // returned by the pthread_getcpuclockid().
  // If the fast Posix clocks are supported then the sys_clock_getres()
  // must return at least tp.tv_sec == 0 which means a resolution
  // better than 1 sec. This is extra check for reliability.

  if(pthread_getcpuclockid_func &&
     pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
     sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {

    _supports_fast_thread_cpu_time = true;
    _pthread_getcpuclockid = pthread_getcpuclockid_func;
  }
}

jlong os::javaTimeNanos() {
  if (Linux::supports_monotonic_clock()) {
    struct timespec tp;
    int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
    assert(status == 0, "gettime error");
    jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
    return result;
  } else {
    timeval time;
    int status = gettimeofday(&time, NULL);
    assert(status != -1, "linux error");
    jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
    return 1000 * usecs;
  }
}

void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
  if (Linux::supports_monotonic_clock()) {
    info_ptr->max_value = ALL_64_BITS;

    // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
    info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
    info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
  } else {
    // gettimeofday - based on time in seconds since the Epoch thus does not wrap
    info_ptr->max_value = ALL_64_BITS;

    // gettimeofday is a real time clock so it skips
    info_ptr->may_skip_backward = true;
    info_ptr->may_skip_forward = true;
  }

  info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
}

// Return the real, user, and system times in seconds from an
// arbitrary fixed point in the past.
bool os::getTimesSecs(double* process_real_time,
                      double* process_user_time,
                      double* process_system_time) {
  struct tms ticks;
  clock_t real_ticks = times(&ticks);

  if (real_ticks == (clock_t) (-1)) {
    return false;
  } else {
    double ticks_per_second = (double) clock_tics_per_sec;
    *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
    *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
    *process_real_time = ((double) real_ticks) / ticks_per_second;

    return true;
  }
}


char * os::local_time_string(char *buf, size_t buflen) {
  struct tm t;
  time_t long_time;
  time(&long_time);
  localtime_r(&long_time, &t);
  jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
               t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
               t.tm_hour, t.tm_min, t.tm_sec);
  return buf;
}

struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
  return localtime_r(clock, res);
}

////////////////////////////////////////////////////////////////////////////////
// runtime exit support

// Note: os::shutdown() might be called very early during initialization, or
// called from signal handler. Before adding something to os::shutdown(), make
// sure it is async-safe and can handle partially initialized VM.
void os::shutdown() {

  // allow PerfMemory to attempt cleanup of any persistent resources
  perfMemory_exit();

  // needs to remove object in file system
  AttachListener::abort();

  // flush buffered output, finish log files
  ostream_abort();

  // Check for abort hook
  abort_hook_t abort_hook = Arguments::abort_hook();
  if (abort_hook != NULL) {
    abort_hook();
  }

}

// Note: os::abort() might be called very early during initialization, or
// called from signal handler. Before adding something to os::abort(), make
// sure it is async-safe and can handle partially initialized VM.
void os::abort(bool dump_core) {
  os::shutdown();
  if (dump_core) {
#ifndef PRODUCT
    fdStream out(defaultStream::output_fd());
    out.print_raw("Current thread is ");
    char buf[16];
    jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
    out.print_raw_cr(buf);
    out.print_raw_cr("Dumping core ...");
#endif
    ::abort(); // dump core
  }

  ::exit(1);
}

// Die immediately, no exit hook, no abort hook, no cleanup.
void os::die() {
  // _exit() on LinuxThreads only kills current thread
  ::abort();
}

// unused on linux for now.
void os::set_error_file(const char *logfile) {}


// This method is a copy of JDK's sysGetLastErrorString
// from src/solaris/hpi/src/system_md.c

size_t os::lasterror(char *buf, size_t len) {

  if (errno == 0)  return 0;

  const char *s = ::strerror(errno);
  size_t n = ::strlen(s);
  if (n >= len) {
    n = len - 1;
  }
  ::strncpy(buf, s, n);
  buf[n] = '\0';
  return n;
}

intx os::current_thread_id() { return (intx)pthread_self(); }
int os::current_process_id() {

  // Under the old linux thread library, linux gives each thread
  // its own process id. Because of this each thread will return
  // a different pid if this method were to return the result
  // of getpid(2). Linux provides no api that returns the pid
  // of the launcher thread for the vm. This implementation
  // returns a unique pid, the pid of the launcher thread
  // that starts the vm 'process'.

  // Under the NPTL, getpid() returns the same pid as the
  // launcher thread rather than a unique pid per thread.
  // Use gettid() if you want the old pre NPTL behaviour.

  // if you are looking for the result of a call to getpid() that
  // returns a unique pid for the calling thread, then look at the
  // OSThread::thread_id() method in osThread_linux.hpp file

  return (int)(_initial_pid ? _initial_pid : getpid());
}

// DLL functions

const char* os::dll_file_extension() { return ".so"; }

// This must be hard coded because it's the system's temporary
// directory not the java application's temp directory, ala java.io.tmpdir.
const char* os::get_temp_directory() { return "/tmp"; }

static bool file_exists(const char* filename) {
  struct stat statbuf;
  if (filename == NULL || strlen(filename) == 0) {
    return false;
  }
  return os::stat(filename, &statbuf) == 0;
}

bool os::dll_build_name(char* buffer, size_t buflen,
                        const char* pname, const char* fname) {
  bool retval = false;
  // Copied from libhpi
  const size_t pnamelen = pname ? strlen(pname) : 0;

  // Return error on buffer overflow.
  if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
    return retval;
  }

  if (pnamelen == 0) {
    snprintf(buffer, buflen, "lib%s.so", fname);
    retval = true;
  } else if (strchr(pname, *os::path_separator()) != NULL) {
    int n;
    char** pelements = split_path(pname, &n);
    for (int i = 0 ; i < n ; i++) {
      // Really shouldn't be NULL, but check can't hurt
      if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
        continue; // skip the empty path values
      }
      snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
      if (file_exists(buffer)) {
        retval = true;
        break;
      }
    }
    // release the storage
    for (int i = 0 ; i < n ; i++) {
      if (pelements[i] != NULL) {
        FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
      }
    }
    if (pelements != NULL) {
      FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
    }
  } else {
    snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
    retval = true;
  }
  return retval;
}

const char* os::get_current_directory(char *buf, int buflen) {
  return getcwd(buf, buflen);
}

// check if addr is inside libjvm[_g].so
bool os::address_is_in_vm(address addr) {
  static address libjvm_base_addr;
  Dl_info dlinfo;

  if (libjvm_base_addr == NULL) {
    dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
    libjvm_base_addr = (address)dlinfo.dli_fbase;
    assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
  }

  if (dladdr((void *)addr, &dlinfo)) {
    if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
  }

  return false;
}

bool os::dll_address_to_function_name(address addr, char *buf,
                                      int buflen, int *offset) {
  Dl_info dlinfo;

  if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
    if (buf != NULL) {
      if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
        jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
      }
    }
    if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
    return true;
  } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
    if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
        buf, buflen, offset, dlinfo.dli_fname)) {
       return true;
    }
  }

  if (buf != NULL) buf[0] = '\0';
  if (offset != NULL) *offset = -1;
  return false;
}

struct _address_to_library_name {
  address addr;          // input : memory address
  size_t  buflen;        //         size of fname
  char*   fname;         // output: library name
  address base;          //         library base addr
};

static int address_to_library_name_callback(struct dl_phdr_info *info,
                                            size_t size, void *data) {
  int i;
  bool found = false;
  address libbase = NULL;
  struct _address_to_library_name * d = (struct _address_to_library_name *)data;

  // iterate through all loadable segments
  for (i = 0; i < info->dlpi_phnum; i++) {
    address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
    if (info->dlpi_phdr[i].p_type == PT_LOAD) {
      // base address of a library is the lowest address of its loaded
      // segments.
      if (libbase == NULL || libbase > segbase) {
        libbase = segbase;
      }
      // see if 'addr' is within current segment
      if (segbase <= d->addr &&
          d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
        found = true;
      }
    }
  }

  // dlpi_name is NULL or empty if the ELF file is executable, return 0
  // so dll_address_to_library_name() can fall through to use dladdr() which
  // can figure out executable name from argv[0].
  if (found && info->dlpi_name && info->dlpi_name[0]) {
    d->base = libbase;
    if (d->fname) {
      jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
    }
    return 1;
  }
  return 0;
}

bool os::dll_address_to_library_name(address addr, char* buf,
                                     int buflen, int* offset) {
  Dl_info dlinfo;
  struct _address_to_library_name data;

  // There is a bug in old glibc dladdr() implementation that it could resolve
  // to wrong library name if the .so file has a base address != NULL. Here
  // we iterate through the program headers of all loaded libraries to find
  // out which library 'addr' really belongs to. This workaround can be
  // removed once the minimum requirement for glibc is moved to 2.3.x.
  data.addr = addr;
  data.fname = buf;
  data.buflen = buflen;
  data.base = NULL;
  int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);

  if (rslt) {
     // buf already contains library name
     if (offset) *offset = addr - data.base;
     return true;
  } else if (dladdr((void*)addr, &dlinfo)){
     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
     if (offset) *offset = addr - (address)dlinfo.dli_fbase;
     return true;
  } else {
     if (buf) buf[0] = '\0';
     if (offset) *offset = -1;
     return false;
  }
}

  // Loads .dll/.so and
  // in case of error it checks if .dll/.so was built for the
  // same architecture as Hotspot is running on

void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
{
  void * result= ::dlopen(filename, RTLD_LAZY);
  if (result != NULL) {
    // Successful loading
    return result;
  }

  Elf32_Ehdr elf_head;

  // Read system error message into ebuf
  // It may or may not be overwritten below
  ::strncpy(ebuf, ::dlerror(), ebuflen-1);
  ebuf[ebuflen-1]='\0';
  int diag_msg_max_length=ebuflen-strlen(ebuf);
  char* diag_msg_buf=ebuf+strlen(ebuf);

  if (diag_msg_max_length==0) {
    // No more space in ebuf for additional diagnostics message
    return NULL;
  }


  int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);

  if (file_descriptor < 0) {
    // Can't open library, report dlerror() message
    return NULL;
  }

  bool failed_to_read_elf_head=
    (sizeof(elf_head)!=
        (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;

  ::close(file_descriptor);
  if (failed_to_read_elf_head) {
    // file i/o error - report dlerror() msg
    return NULL;
  }

  typedef struct {
    Elf32_Half  code;         // Actual value as defined in elf.h
    Elf32_Half  compat_class; // Compatibility of archs at VM's sense
    char        elf_class;    // 32 or 64 bit
    char        endianess;    // MSB or LSB
    char*       name;         // String representation
  } arch_t;

  #ifndef EM_486
  #define EM_486          6               /* Intel 80486 */
  #endif

  static const arch_t arch_array[]={
    {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
    {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
    {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
    {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
    {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
    {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
    {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
    {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
    {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
    {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
    {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
    {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
    {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
    {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
    {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
    {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
  };

  #if  (defined IA32)
    static  Elf32_Half running_arch_code=EM_386;
  #elif   (defined AMD64)
    static  Elf32_Half running_arch_code=EM_X86_64;
  #elif  (defined IA64)
    static  Elf32_Half running_arch_code=EM_IA_64;
  #elif  (defined __sparc) && (defined _LP64)
    static  Elf32_Half running_arch_code=EM_SPARCV9;
  #elif  (defined __sparc) && (!defined _LP64)
    static  Elf32_Half running_arch_code=EM_SPARC;
  #elif  (defined __powerpc64__)
    static  Elf32_Half running_arch_code=EM_PPC64;
  #elif  (defined __powerpc__)
    static  Elf32_Half running_arch_code=EM_PPC;
  #elif  (defined ARM)
    static  Elf32_Half running_arch_code=EM_ARM;
  #elif  (defined S390)
    static  Elf32_Half running_arch_code=EM_S390;
  #elif  (defined ALPHA)
    static  Elf32_Half running_arch_code=EM_ALPHA;
  #elif  (defined MIPSEL)
    static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
  #elif  (defined PARISC)
    static  Elf32_Half running_arch_code=EM_PARISC;
  #elif  (defined MIPS)
    static  Elf32_Half running_arch_code=EM_MIPS;
  #elif  (defined M68K)
    static  Elf32_Half running_arch_code=EM_68K;
  #else
    #error Method os::dll_load requires that one of following is defined:\
         IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
  #endif

  // Identify compatability class for VM's architecture and library's architecture
  // Obtain string descriptions for architectures

  arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
  int running_arch_index=-1;

  for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
    if (running_arch_code == arch_array[i].code) {
      running_arch_index    = i;
    }
    if (lib_arch.code == arch_array[i].code) {
      lib_arch.compat_class = arch_array[i].compat_class;
      lib_arch.name         = arch_array[i].name;
    }
  }

  assert(running_arch_index != -1,
    "Didn't find running architecture code (running_arch_code) in arch_array");
  if (running_arch_index == -1) {
    // Even though running architecture detection failed
    // we may still continue with reporting dlerror() message
    return NULL;
  }

  if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
    return NULL;
  }

#ifndef S390
  if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
    ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
    return NULL;
  }
#endif // !S390

  if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
    if ( lib_arch.name!=NULL ) {
      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
        " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
        lib_arch.name, arch_array[running_arch_index].name);
    } else {
      ::snprintf(diag_msg_buf, diag_msg_max_length-1,
      " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
        lib_arch.code,
        arch_array[running_arch_index].name);
    }
  }

  return NULL;
}

/*
 * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
 * chances are you might want to run the generated bits against glibc-2.0
 * libdl.so, so always use locking for any version of glibc.
 */
void* os::dll_lookup(void* handle, const char* name) {
  pthread_mutex_lock(&dl_mutex);
  void* res = dlsym(handle, name);
  pthread_mutex_unlock(&dl_mutex);
  return res;
}


static bool _print_ascii_file(const char* filename, outputStream* st) {
  int fd = ::open(filename, O_RDONLY);
  if (fd == -1) {
     return false;
  }

  char buf[32];
  int bytes;
  while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
    st->print_raw(buf, bytes);
  }

  ::close(fd);

  return true;
}

void os::print_dll_info(outputStream *st) {
   st->print_cr("Dynamic libraries:");

   char fname[32];
   pid_t pid = os::Linux::gettid();

   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);

   if (!_print_ascii_file(fname, st)) {
     st->print("Can not get library information for pid = %d\n", pid);
   }
}

void os::print_os_info_brief(outputStream* st) {
  os::Linux::print_distro_info(st);

  os::Posix::print_uname_info(st);

  os::Linux::print_libversion_info(st);

}

void os::print_os_info(outputStream* st) {
  st->print("OS:");

  os::Linux::print_distro_info(st);

  os::Posix::print_uname_info(st);

  // Print warning if unsafe chroot environment detected
  if (unsafe_chroot_detected) {
    st->print("WARNING!! ");
    st->print_cr(unstable_chroot_error);
  }

  os::Linux::print_libversion_info(st);

  os::Posix::print_rlimit_info(st);

  os::Posix::print_load_average(st);

  os::Linux::print_full_memory_info(st);
}

// Try to identify popular distros.
// Most Linux distributions have /etc/XXX-release file, which contains
// the OS version string. Some have more than one /etc/XXX-release file
// (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
// so the order is important.
void os::Linux::print_distro_info(outputStream* st) {
  if (!_print_ascii_file("/etc/mandrake-release", st) &&
      !_print_ascii_file("/etc/sun-release", st) &&
      !_print_ascii_file("/etc/redhat-release", st) &&
      !_print_ascii_file("/etc/SuSE-release", st) &&
      !_print_ascii_file("/etc/turbolinux-release", st) &&
      !_print_ascii_file("/etc/gentoo-release", st) &&
      !_print_ascii_file("/etc/debian_version", st) &&
      !_print_ascii_file("/etc/ltib-release", st) &&
      !_print_ascii_file("/etc/angstrom-version", st)) {
      st->print("Linux");
  }
  st->cr();
}

void os::Linux::print_libversion_info(outputStream* st) {
  // libc, pthread
  st->print("libc:");
  st->print(os::Linux::glibc_version()); st->print(" ");
  st->print(os::Linux::libpthread_version()); st->print(" ");
  if (os::Linux::is_LinuxThreads()) {
     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
  }
  st->cr();
}

void os::Linux::print_full_memory_info(outputStream* st) {
   st->print("\n/proc/meminfo:\n");
   _print_ascii_file("/proc/meminfo", st);
   st->cr();
}

void os::print_memory_info(outputStream* st) {

  st->print("Memory:");
  st->print(" %dk page", os::vm_page_size()>>10);

  // values in struct sysinfo are "unsigned long"
  struct sysinfo si;
  sysinfo(&si);

  st->print(", physical " UINT64_FORMAT "k",
            os::physical_memory() >> 10);
  st->print("(" UINT64_FORMAT "k free)",
            os::available_memory() >> 10);
  st->print(", swap " UINT64_FORMAT "k",
            ((jlong)si.totalswap * si.mem_unit) >> 10);
  st->print("(" UINT64_FORMAT "k free)",
            ((jlong)si.freeswap * si.mem_unit) >> 10);
  st->cr();
}

void os::pd_print_cpu_info(outputStream* st) {
  st->print("\n/proc/cpuinfo:\n");
  if (!_print_ascii_file("/proc/cpuinfo", st)) {
    st->print("  <Not Available>");
  }
  st->cr();
}

// Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
// but they're the same for all the linux arch that we support
// and they're the same for solaris but there's no common place to put this.
const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
                          "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
                          "ILL_COPROC", "ILL_BADSTK" };

const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
                          "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
                          "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };

const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };

const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };

void os::print_siginfo(outputStream* st, void* siginfo) {
  st->print("siginfo:");

  const int buflen = 100;
  char buf[buflen];
  siginfo_t *si = (siginfo_t*)siginfo;
  st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
  if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
    st->print("si_errno=%s", buf);
  } else {
    st->print("si_errno=%d", si->si_errno);
  }
  const int c = si->si_code;
  assert(c > 0, "unexpected si_code");
  switch (si->si_signo) {
  case SIGILL:
    st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
    break;
  case SIGFPE:
    st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
    break;
  case SIGSEGV:
    st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
    break;
  case SIGBUS:
    st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
    st->print(", si_addr=" PTR_FORMAT, si->si_addr);
    break;
  default:
    st->print(", si_code=%d", si->si_code);
    // no si_addr
  }

  if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
      UseSharedSpaces) {
    FileMapInfo* mapinfo = FileMapInfo::current_info();
    if (mapinfo->is_in_shared_space(si->si_addr)) {
      st->print("\n\nError accessing class data sharing archive."   \
                " Mapped file inaccessible during execution, "      \
                " possible disk/network problem.");
    }
  }
  st->cr();
}


static void print_signal_handler(outputStream* st, int sig,
                                 char* buf, size_t buflen);

void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
  st->print_cr("Signal Handlers:");
  print_signal_handler(st, SIGSEGV, buf, buflen);
  print_signal_handler(st, SIGBUS , buf, buflen);
  print_signal_handler(st, SIGFPE , buf, buflen);
  print_signal_handler(st, SIGPIPE, buf, buflen);
  print_signal_handler(st, SIGXFSZ, buf, buflen);
  print_signal_handler(st, SIGILL , buf, buflen);
  print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
  print_signal_handler(st, SR_signum, buf, buflen);
  print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
  print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
  print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
  print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
}

static char saved_jvm_path[MAXPATHLEN] = {0};

// Find the full path to the current module, libjvm.so or libjvm_g.so
void os::jvm_path(char *buf, jint buflen) {
  // Error checking.
  if (buflen < MAXPATHLEN) {
    assert(false, "must use a large-enough buffer");
    buf[0] = '\0';
    return;
  }
  // Lazy resolve the path to current module.
  if (saved_jvm_path[0] != 0) {
    strcpy(buf, saved_jvm_path);
    return;
  }

  char dli_fname[MAXPATHLEN];
  bool ret = dll_address_to_library_name(
                CAST_FROM_FN_PTR(address, os::jvm_path),
                dli_fname, sizeof(dli_fname), NULL);
  assert(ret != 0, "cannot locate libjvm");
  char *rp = realpath(dli_fname, buf);
  if (rp == NULL)
    return;

  if (Arguments::created_by_gamma_launcher()) {
    // Support for the gamma launcher.  Typical value for buf is
    // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
    // the right place in the string, then assume we are installed in a JDK and
    // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
    // up the path so it looks like libjvm.so is installed there (append a
    // fake suffix hotspot/libjvm.so).
    const char *p = buf + strlen(buf) - 1;
    for (int count = 0; p > buf && count < 5; ++count) {
      for (--p; p > buf && *p != '/'; --p)
        /* empty */ ;
    }

    if (strncmp(p, "/jre/lib/", 9) != 0) {
      // Look for JAVA_HOME in the environment.
      char* java_home_var = ::getenv("JAVA_HOME");
      if (java_home_var != NULL && java_home_var[0] != 0) {
        char* jrelib_p;
        int len;

        // Check the current module name "libjvm.so" or "libjvm_g.so".
        p = strrchr(buf, '/');
        assert(strstr(p, "/libjvm") == p, "invalid library name");
        p = strstr(p, "_g") ? "_g" : "";

        rp = realpath(java_home_var, buf);
        if (rp == NULL)
          return;

        // determine if this is a legacy image or modules image
        // modules image doesn't have "jre" subdirectory
        len = strlen(buf);
        jrelib_p = buf + len;
        snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
        if (0 != access(buf, F_OK)) {
          snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
        }

        if (0 == access(buf, F_OK)) {
          // Use current module name "libjvm[_g].so" instead of
          // "libjvm"debug_only("_g")".so" since for fastdebug version
          // we should have "libjvm.so" but debug_only("_g") adds "_g"!
          len = strlen(buf);
          snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
        } else {
          // Go back to path of .so
          rp = realpath(dli_fname, buf);
          if (rp == NULL)
            return;
        }
      }
    }
  }

  strcpy(saved_jvm_path, buf);
}

void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
  // no prefix required, not even "_"
}

void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
  // no suffix required
}

////////////////////////////////////////////////////////////////////////////////
// sun.misc.Signal support

static volatile jint sigint_count = 0;

static void
UserHandler(int sig, void *siginfo, void *context) {
  // 4511530 - sem_post is serialized and handled by the manager thread. When
  // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
  // don't want to flood the manager thread with sem_post requests.
  if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
      return;

  // Ctrl-C is pressed during error reporting, likely because the error
  // handler fails to abort. Let VM die immediately.
  if (sig == SIGINT && is_error_reported()) {
     os::die();
  }

  os::signal_notify(sig);
}

void* os::user_handler() {
  return CAST_FROM_FN_PTR(void*, UserHandler);
}

extern "C" {
  typedef void (*sa_handler_t)(int);
  typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
}

void* os::signal(int signal_number, void* handler) {
  struct sigaction sigAct, oldSigAct;

  sigfillset(&(sigAct.sa_mask));
  sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
  sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);

  if (sigaction(signal_number, &sigAct, &oldSigAct)) {
    // -1 means registration failed
    return (void *)-1;
  }

  return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
}

void os::signal_raise(int signal_number) {
  ::raise(signal_number);
}

/*
 * The following code is moved from os.cpp for making this
 * code platform specific, which it is by its very nature.
 */

// Will be modified when max signal is changed to be dynamic
int os::sigexitnum_pd() {
  return NSIG;
}

// a counter for each possible signal value
static volatile jint pending_signals[NSIG+1] = { 0 };

// Linux(POSIX) specific hand shaking semaphore.
static sem_t sig_sem;

void os::signal_init_pd() {
  // Initialize signal structures
  ::memset((void*)pending_signals, 0, sizeof(pending_signals));

  // Initialize signal semaphore
  ::sem_init(&sig_sem, 0, 0);
}

void os::signal_notify(int sig) {
  Atomic::inc(&pending_signals[sig]);
  ::sem_post(&sig_sem);
}

static int check_pending_signals(bool wait) {
  Atomic::store(0, &sigint_count);
  for (;;) {
    for (int i = 0; i < NSIG + 1; i++) {
      jint n = pending_signals[i];
      if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
        return i;
      }
    }
    if (!wait) {
      return -1;
    }
    JavaThread *thread = JavaThread::current();
    ThreadBlockInVM tbivm(thread);

    bool threadIsSuspended;
    do {
      thread->set_suspend_equivalent();
      // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
      ::sem_wait(&sig_sem);

      // were we externally suspended while we were waiting?
      threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
      if (threadIsSuspended) {
        //
        // The semaphore has been incremented, but while we were waiting
        // another thread suspended us. We don't want to continue running
        // while suspended because that would surprise the thread that
        // suspended us.
        //
        ::sem_post(&sig_sem);

        thread->java_suspend_self();
      }
    } while (threadIsSuspended);
  }
}

int os::signal_lookup() {
  return check_pending_signals(false);
}

int os::signal_wait() {
  return check_pending_signals(true);
}

////////////////////////////////////////////////////////////////////////////////
// Virtual Memory

int os::vm_page_size() {
  // Seems redundant as all get out
  assert(os::Linux::page_size() != -1, "must call os::init");
  return os::Linux::page_size();
}

// Solaris allocates memory by pages.
int os::vm_allocation_granularity() {
  assert(os::Linux::page_size() != -1, "must call os::init");
  return os::Linux::page_size();
}

// Rationale behind this function:
//  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
//  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
//  samples for JITted code. Here we create private executable mapping over the code cache
//  and then we can use standard (well, almost, as mapping can change) way to provide
//  info for the reporting script by storing timestamp and location of symbol
void linux_wrap_code(char* base, size_t size) {
  static volatile jint cnt = 0;

  if (!UseOprofile) {
    return;
  }

  char buf[PATH_MAX+1];
  int num = Atomic::add(1, &cnt);

  snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
           os::get_temp_directory(), os::current_process_id(), num);
  unlink(buf);

  int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);

  if (fd != -1) {
    off_t rv = ::lseek(fd, size-2, SEEK_SET);
    if (rv != (off_t)-1) {
      if (::write(fd, "", 1) == 1) {
        mmap(base, size,
             PROT_READ|PROT_WRITE|PROT_EXEC,
             MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
      }
    }
    ::close(fd);
    unlink(buf);
  }
}

// NOTE: Linux kernel does not really reserve the pages for us.
//       All it does is to check if there are enough free pages
//       left at the time of mmap(). This could be a potential
//       problem.
bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
  int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
  uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
                                   MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
  if (res != (uintptr_t) MAP_FAILED) {
    if (UseNUMAInterleaving) {
      numa_make_global(addr, size);
    }
    return true;
  }
  return false;
}

// Define MAP_HUGETLB here so we can build HotSpot on old systems.
#ifndef MAP_HUGETLB
#define MAP_HUGETLB 0x40000
#endif

// Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
#ifndef MADV_HUGEPAGE
#define MADV_HUGEPAGE 14
#endif

bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
                       bool exec) {
  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
    int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
    uintptr_t res =
      (uintptr_t) ::mmap(addr, size, prot,
                         MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
                         -1, 0);
    if (res != (uintptr_t) MAP_FAILED) {
      if (UseNUMAInterleaving) {
        numa_make_global(addr, size);
      }
      return true;
    }
    // Fall through and try to use small pages
  }

  if (commit_memory(addr, size, exec)) {
    realign_memory(addr, size, alignment_hint);
    return true;
  }
  return false;
}

void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
  if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
    // We don't check the return value: madvise(MADV_HUGEPAGE) may not
    // be supported or the memory may already be backed by huge pages.
    ::madvise(addr, bytes, MADV_HUGEPAGE);
  }
}

void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
  // This method works by doing an mmap over an existing mmaping and effectively discarding
  // the existing pages. However it won't work for SHM-based large pages that cannot be
  // uncommitted at all. We don't do anything in this case to avoid creating a segment with
  // small pages on top of the SHM segment. This method always works for small pages, so we
  // allow that in any case.
  if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
    commit_memory(addr, bytes, alignment_hint, false);
  }
}

void os::numa_make_global(char *addr, size_t bytes) {
  Linux::numa_interleave_memory(addr, bytes);
}

void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
  Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
}

bool os::numa_topology_changed()   { return false; }

size_t os::numa_get_groups_num() {
  int max_node = Linux::numa_max_node();
  return max_node > 0 ? max_node + 1 : 1;
}

int os::numa_get_group_id() {
  int cpu_id = Linux::sched_getcpu();
  if (cpu_id != -1) {
    int lgrp_id = Linux::get_node_by_cpu(cpu_id);
    if (lgrp_id != -1) {
      return lgrp_id;
    }
  }
  return 0;
}

size_t os::numa_get_leaf_groups(int *ids, size_t size) {
  for (size_t i = 0; i < size; i++) {
    ids[i] = i;
  }
  return size;
}

bool os::get_page_info(char *start, page_info* info) {
  return false;
}

char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
  return end;
}


int os::Linux::sched_getcpu_syscall(void) {
  unsigned int cpu;
  int retval = -1;

#if defined(IA32)
# ifndef SYS_getcpu
# define SYS_getcpu 318
# endif
  retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
#elif defined(AMD64)
// Unfortunately we have to bring all these macros here from vsyscall.h
// to be able to compile on old linuxes.
# define __NR_vgetcpu 2
# define VSYSCALL_START (-10UL << 20)
# define VSYSCALL_SIZE 1024
# define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
  typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
  vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
  retval = vgetcpu(&cpu, NULL, NULL);
#endif

  return (retval == -1) ? retval : cpu;
}

// Something to do with the numa-aware allocator needs these symbols
extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
extern "C" JNIEXPORT void numa_error(char *where) { }
extern "C" JNIEXPORT int fork1() { return fork(); }


// If we are running with libnuma version > 2, then we should
// be trying to use symbols with versions 1.1
// If we are running with earlier version, which did not have symbol versions,
// we should use the base version.
void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
  void *f = dlvsym(handle, name, "libnuma_1.1");
  if (f == NULL) {
    f = dlsym(handle, name);
  }
  return f;
}

bool os::Linux::libnuma_init() {
  // sched_getcpu() should be in libc.
  set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
                                  dlsym(RTLD_DEFAULT, "sched_getcpu")));

  // If it's not, try a direct syscall.
  if (sched_getcpu() == -1)
    set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));

  if (sched_getcpu() != -1) { // Does it work?
    void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
    if (handle != NULL) {
      set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
                                           libnuma_dlsym(handle, "numa_node_to_cpus")));
      set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
                                       libnuma_dlsym(handle, "numa_max_node")));
      set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
                                        libnuma_dlsym(handle, "numa_available")));
      set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
                                            libnuma_dlsym(handle, "numa_tonode_memory")));
      set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
                                            libnuma_dlsym(handle, "numa_interleave_memory")));


      if (numa_available() != -1) {
        set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
        // Create a cpu -> node mapping
        _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
        rebuild_cpu_to_node_map();
        return true;
      }
    }
  }
  return false;
}

// rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
// The table is later used in get_node_by_cpu().
void os::Linux::rebuild_cpu_to_node_map() {
  const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
                              // in libnuma (possible values are starting from 16,
                              // and continuing up with every other power of 2, but less
                              // than the maximum number of CPUs supported by kernel), and
                              // is a subject to change (in libnuma version 2 the requirements
                              // are more reasonable) we'll just hardcode the number they use
                              // in the library.
  const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;

  size_t cpu_num = os::active_processor_count();
  size_t cpu_map_size = NCPUS / BitsPerCLong;
  size_t cpu_map_valid_size =
    MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);

  cpu_to_node()->clear();
  cpu_to_node()->at_grow(cpu_num - 1);
  size_t node_num = numa_get_groups_num();

  unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
  for (size_t i = 0; i < node_num; i++) {
    if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
      for (size_t j = 0; j < cpu_map_valid_size; j++) {
        if (cpu_map[j] != 0) {
          for (size_t k = 0; k < BitsPerCLong; k++) {
            if (cpu_map[j] & (1UL << k)) {
              cpu_to_node()->at_put(j * BitsPerCLong + k, i);
            }
          }
        }
      }
    }
  }
  FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
}

int os::Linux::get_node_by_cpu(int cpu_id) {
  if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
    return cpu_to_node()->at(cpu_id);
  }
  return -1;
}

GrowableArray<int>* os::Linux::_cpu_to_node;
os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
os::Linux::numa_available_func_t os::Linux::_numa_available;
os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
unsigned long* os::Linux::_numa_all_nodes;

bool os::pd_uncommit_memory(char* addr, size_t size) {
  uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
                MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
  return res  != (uintptr_t) MAP_FAILED;
}

// Linux uses a growable mapping for the stack, and if the mapping for
// the stack guard pages is not removed when we detach a thread the
// stack cannot grow beyond the pages where the stack guard was
// mapped.  If at some point later in the process the stack expands to
// that point, the Linux kernel cannot expand the stack any further
// because the guard pages are in the way, and a segfault occurs.
//
// However, it's essential not to split the stack region by unmapping
// a region (leaving a hole) that's already part of the stack mapping,
// so if the stack mapping has already grown beyond the guard pages at
// the time we create them, we have to truncate the stack mapping.
// So, we need to know the extent of the stack mapping when
// create_stack_guard_pages() is called.

// Find the bounds of the stack mapping.  Return true for success.
//
// We only need this for stacks that are growable: at the time of
// writing thread stacks don't use growable mappings (i.e. those
// creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
// only applies to the main thread.

static
bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {

  char buf[128];
  int fd, sz;

  if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
    return false;
  }

  const char kw[] = "[stack]";
  const int kwlen = sizeof(kw)-1;

  // Address part of /proc/self/maps couldn't be more than 128 bytes
  while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
     if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
        // Extract addresses
        if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
           uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
           if (sp >= *bottom && sp <= *top) {
              ::close(fd);
              return true;
           }
        }
     }
  }

 ::close(fd);
  return false;
}


// If the (growable) stack mapping already extends beyond the point
// where we're going to put our guard pages, truncate the mapping at
// that point by munmap()ping it.  This ensures that when we later
// munmap() the guard pages we don't leave a hole in the stack
// mapping. This only affects the main/initial thread, but guard
// against future OS changes
bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
  uintptr_t stack_extent, stack_base;
  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
      assert(os::Linux::is_initial_thread(),
           "growable stack in non-initial thread");
    if (stack_extent < (uintptr_t)addr)
      ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
  }

  return os::commit_memory(addr, size);
}

// If this is a growable mapping, remove the guard pages entirely by
// munmap()ping them.  If not, just call uncommit_memory(). This only
// affects the main/initial thread, but guard against future OS changes
bool os::remove_stack_guard_pages(char* addr, size_t size) {
  uintptr_t stack_extent, stack_base;
  bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
  if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
      assert(os::Linux::is_initial_thread(),
           "growable stack in non-initial thread");

    return ::munmap(addr, size) == 0;
  }

  return os::uncommit_memory(addr, size);
}

static address _highest_vm_reserved_address = NULL;

// If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
// at 'requested_addr'. If there are existing memory mappings at the same
// location, however, they will be overwritten. If 'fixed' is false,
// 'requested_addr' is only treated as a hint, the return value may or
// may not start from the requested address. Unlike Linux mmap(), this
// function returns NULL to indicate failure.
static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
  char * addr;
  int flags;

  flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
  if (fixed) {
    assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
    flags |= MAP_FIXED;
  }

  // Map uncommitted pages PROT_READ and PROT_WRITE, change access
  // to PROT_EXEC if executable when we commit the page.
  addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
                       flags, -1, 0);

  if (addr != MAP_FAILED) {
    // anon_mmap() should only get called during VM initialization,
    // don't need lock (actually we can skip locking even it can be called
    // from multiple threads, because _highest_vm_reserved_address is just a
    // hint about the upper limit of non-stack memory regions.)
    if ((address)addr + bytes > _highest_vm_reserved_address) {
      _highest_vm_reserved_address = (address)addr + bytes;
    }
  }

  return addr == MAP_FAILED ? NULL : addr;
}

// Don't update _highest_vm_reserved_address, because there might be memory
// regions above addr + size. If so, releasing a memory region only creates
// a hole in the address space, it doesn't help prevent heap-stack collision.
//
static int anon_munmap(char * addr, size_t size) {
  return ::munmap(addr, size) == 0;
}

char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
                         size_t alignment_hint) {
  return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
}

bool os::pd_release_memory(char* addr, size_t size) {
  return anon_munmap(addr, size);
}

static address highest_vm_reserved_address() {
  return _highest_vm_reserved_address;
}

static bool linux_mprotect(char* addr, size_t size, int prot) {
  // Linux wants the mprotect address argument to be page aligned.
  char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());

  // According to SUSv3, mprotect() should only be used with mappings
  // established by mmap(), and mmap() always maps whole pages. Unaligned
  // 'addr' likely indicates problem in the VM (e.g. trying to change
  // protection of malloc'ed or statically allocated memory). Check the
  // caller if you hit this assert.
  assert(addr == bottom, "sanity check");

  size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
  return ::mprotect(bottom, size, prot) == 0;
}

// Set protections specified
bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
                        bool is_committed) {
  unsigned int p = 0;
  switch (prot) {
  case MEM_PROT_NONE: p = PROT_NONE; break;
  case MEM_PROT_READ: p = PROT_READ; break;
  case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
  case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
  default:
    ShouldNotReachHere();
  }
  // is_committed is unused.
  return linux_mprotect(addr, bytes, p);
}

bool os::guard_memory(char* addr, size_t size) {
  return linux_mprotect(addr, size, PROT_NONE);
}

bool os::unguard_memory(char* addr, size_t size) {
  return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
}

bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
  bool result = false;
  void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
                  -1, 0);

  if (p != (void *) -1) {
    // We don't know if this really is a huge page or not.
    FILE *fp = fopen("/proc/self/maps", "r");
    if (fp) {
      while (!feof(fp)) {
        char chars[257];
        long x = 0;
        if (fgets(chars, sizeof(chars), fp)) {
          if (sscanf(chars, "%lx-%*x", &x) == 1
              && x == (long)p) {
            if (strstr (chars, "hugepage")) {
              result = true;
              break;
            }
          }
        }
      }
      fclose(fp);
    }
    munmap (p, page_size);
    if (result)
      return true;
  }

  if (warn) {
    warning("HugeTLBFS is not supported by the operating system.");
  }

  return result;
}

/*
* Set the coredump_filter bits to include largepages in core dump (bit 6)
*
* From the coredump_filter documentation:
*
* - (bit 0) anonymous private memory
* - (bit 1) anonymous shared memory
* - (bit 2) file-backed private memory
* - (bit 3) file-backed shared memory
* - (bit 4) ELF header pages in file-backed private memory areas (it is
*           effective only if the bit 2 is cleared)
* - (bit 5) hugetlb private memory
* - (bit 6) hugetlb shared memory
*/
static void set_coredump_filter(void) {
  FILE *f;
  long cdm;

  if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
    return;
  }

  if (fscanf(f, "%lx", &cdm) != 1) {
    fclose(f);
    return;
  }

  rewind(f);

  if ((cdm & LARGEPAGES_BIT) == 0) {
    cdm |= LARGEPAGES_BIT;
    fprintf(f, "%#lx", cdm);
  }

  fclose(f);
}

// Large page support

static size_t _large_page_size = 0;

void os::large_page_init() {
  if (!UseLargePages) {
    UseHugeTLBFS = false;
    UseSHM = false;
    return;
  }

  if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
    // If UseLargePages is specified on the command line try both methods,
    // if it's default, then try only HugeTLBFS.
    if (FLAG_IS_DEFAULT(UseLargePages)) {
      UseHugeTLBFS = true;
    } else {
      UseHugeTLBFS = UseSHM = true;
    }
  }

  if (LargePageSizeInBytes) {
    _large_page_size = LargePageSizeInBytes;
  } else {
    // large_page_size on Linux is used to round up heap size. x86 uses either
    // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
    // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
    // page as large as 256M.
    //
    // Here we try to figure out page size by parsing /proc/meminfo and looking
    // for a line with the following format:
    //    Hugepagesize:     2048 kB
    //
    // If we can't determine the value (e.g. /proc is not mounted, or the text
    // format has been changed), we'll use the largest page size supported by
    // the processor.

#ifndef ZERO
    _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
                       ARM_ONLY(2 * M) PPC_ONLY(4 * M);
#endif // ZERO

    FILE *fp = fopen("/proc/meminfo", "r");
    if (fp) {
      while (!feof(fp)) {
        int x = 0;
        char buf[16];
        if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
          if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
            _large_page_size = x * K;
            break;
          }
        } else {
          // skip to next line
          for (;;) {
            int ch = fgetc(fp);
            if (ch == EOF || ch == (int)'\n') break;
          }
        }
      }
      fclose(fp);
    }
  }

  // print a warning if any large page related flag is specified on command line
  bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);

  const size_t default_page_size = (size_t)Linux::page_size();
  if (_large_page_size > default_page_size) {
    _page_sizes[0] = _large_page_size;
    _page_sizes[1] = default_page_size;
    _page_sizes[2] = 0;
  }
  UseHugeTLBFS = UseHugeTLBFS &&
                 Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);

  if (UseHugeTLBFS)
    UseSHM = false;

  UseLargePages = UseHugeTLBFS || UseSHM;

  set_coredump_filter();
}

#ifndef SHM_HUGETLB
#define SHM_HUGETLB 04000
#endif

char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
  // "exec" is passed in but not used.  Creating the shared image for
  // the code cache doesn't have an SHM_X executable permission to check.
  assert(UseLargePages && UseSHM, "only for SHM large pages");

  key_t key = IPC_PRIVATE;
  char *addr;

  bool warn_on_failure = UseLargePages &&
                        (!FLAG_IS_DEFAULT(UseLargePages) ||
                         !FLAG_IS_DEFAULT(LargePageSizeInBytes)
                        );
  char msg[128];

  // Create a large shared memory region to attach to based on size.
  // Currently, size is the total size of the heap
  int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
  if (shmid == -1) {
     // Possible reasons for shmget failure:
     // 1. shmmax is too small for Java heap.
     //    > check shmmax value: cat /proc/sys/kernel/shmmax
     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
     // 2. not enough large page memory.
     //    > check available large pages: cat /proc/meminfo
     //    > increase amount of large pages:
     //          echo new_value > /proc/sys/vm/nr_hugepages
     //      Note 1: different Linux may use different name for this property,
     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
     //      Note 2: it's possible there's enough physical memory available but
     //            they are so fragmented after a long run that they can't
     //            coalesce into large pages. Try to reserve large pages when
     //            the system is still "fresh".
     if (warn_on_failure) {
       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
       warning(msg);
     }
     return NULL;
  }

  // attach to the region
  addr = (char*)shmat(shmid, req_addr, 0);
  int err = errno;

  // Remove shmid. If shmat() is successful, the actual shared memory segment
  // will be deleted when it's detached by shmdt() or when the process
  // terminates. If shmat() is not successful this will remove the shared
  // segment immediately.
  shmctl(shmid, IPC_RMID, NULL);

  if ((intptr_t)addr == -1) {
     if (warn_on_failure) {
       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
       warning(msg);
     }
     return NULL;
  }

  if ((addr != NULL) && UseNUMAInterleaving) {
    numa_make_global(addr, bytes);
  }

  return addr;
}

bool os::release_memory_special(char* base, size_t bytes) {
  // detaching the SHM segment will also delete it, see reserve_memory_special()
  int rslt = shmdt(base);
  return rslt == 0;
}

size_t os::large_page_size() {
  return _large_page_size;
}

// HugeTLBFS allows application to commit large page memory on demand;
// with SysV SHM the entire memory region must be allocated as shared
// memory.
bool os::can_commit_large_page_memory() {
  return UseHugeTLBFS;
}

bool os::can_execute_large_page_memory() {
  return UseHugeTLBFS;
}

// Reserve memory at an arbitrary address, only if that area is
// available (and not reserved for something else).

char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
  const int max_tries = 10;
  char* base[max_tries];
  size_t size[max_tries];
  const size_t gap = 0x000000;

  // Assert only that the size is a multiple of the page size, since
  // that's all that mmap requires, and since that's all we really know
  // about at this low abstraction level.  If we need higher alignment,
  // we can either pass an alignment to this method or verify alignment
  // in one of the methods further up the call chain.  See bug 5044738.
  assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");

  // Repeatedly allocate blocks until the block is allocated at the
  // right spot. Give up after max_tries. Note that reserve_memory() will
  // automatically update _highest_vm_reserved_address if the call is
  // successful. The variable tracks the highest memory address every reserved
  // by JVM. It is used to detect heap-stack collision if running with
  // fixed-stack LinuxThreads. Because here we may attempt to reserve more
  // space than needed, it could confuse the collision detecting code. To
  // solve the problem, save current _highest_vm_reserved_address and
  // calculate the correct value before return.
  address old_highest = _highest_vm_reserved_address;

  // Linux mmap allows caller to pass an address as hint; give it a try first,
  // if kernel honors the hint then we can return immediately.
  char * addr = anon_mmap(requested_addr, bytes, false);
  if (addr == requested_addr) {
     return requested_addr;
  }

  if (addr != NULL) {
     // mmap() is successful but it fails to reserve at the requested address
     anon_munmap(addr, bytes);
  }

  int i;
  for (i = 0; i < max_tries; ++i) {
    base[i] = reserve_memory(bytes);

    if (base[i] != NULL) {
      // Is this the block we wanted?
      if (base[i] == requested_addr) {
        size[i] = bytes;
        break;
      }

      // Does this overlap the block we wanted? Give back the overlapped
      // parts and try again.

      size_t top_overlap = requested_addr + (bytes + gap) - base[i];
      if (top_overlap >= 0 && top_overlap < bytes) {
        unmap_memory(base[i], top_overlap);
        base[i] += top_overlap;
        size[i] = bytes - top_overlap;
      } else {
        size_t bottom_overlap = base[i] + bytes - requested_addr;
        if (bottom_overlap >= 0 && bottom_overlap < bytes) {
          unmap_memory(requested_addr, bottom_overlap);
          size[i] = bytes - bottom_overlap;
        } else {
          size[i] = bytes;
        }
      }
    }
  }

  // Give back the unused reserved pieces.

  for (int j = 0; j < i; ++j) {
    if (base[j] != NULL) {
      unmap_memory(base[j], size[j]);
    }
  }

  if (i < max_tries) {
    _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
    return requested_addr;
  } else {
    _highest_vm_reserved_address = old_highest;
    return NULL;
  }
}

size_t os::read(int fd, void *buf, unsigned int nBytes) {
  return ::read(fd, buf, nBytes);
}

// TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
// Solaris uses poll(), linux uses park().
// Poll() is likely a better choice, assuming that Thread.interrupt()
// generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
// SIGSEGV, see 4355769.

int os::sleep(Thread* thread, jlong millis, bool interruptible) {
  assert(thread == Thread::current(),  "thread consistency check");

  ParkEvent * const slp = thread->_SleepEvent ;
  slp->reset() ;
  OrderAccess::fence() ;

  if (interruptible) {
    jlong prevtime = javaTimeNanos();

    for (;;) {
      if (os::is_interrupted(thread, true)) {
        return OS_INTRPT;
      }

      jlong newtime = javaTimeNanos();

      if (newtime - prevtime < 0) {
        // time moving backwards, should only happen if no monotonic clock
        // not a guarantee() because JVM should not abort on kernel/glibc bugs
        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
      } else {
        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
      }

      if(millis <= 0) {
        return OS_OK;
      }

      prevtime = newtime;

      {
        assert(thread->is_Java_thread(), "sanity check");
        JavaThread *jt = (JavaThread *) thread;
        ThreadBlockInVM tbivm(jt);
        OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);

        jt->set_suspend_equivalent();
        // cleared by handle_special_suspend_equivalent_condition() or
        // java_suspend_self() via check_and_wait_while_suspended()

        slp->park(millis);

        // were we externally suspended while we were waiting?
        jt->check_and_wait_while_suspended();
      }
    }
  } else {
    OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
    jlong prevtime = javaTimeNanos();

    for (;;) {
      // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
      // the 1st iteration ...
      jlong newtime = javaTimeNanos();

      if (newtime - prevtime < 0) {
        // time moving backwards, should only happen if no monotonic clock
        // not a guarantee() because JVM should not abort on kernel/glibc bugs
        assert(!Linux::supports_monotonic_clock(), "time moving backwards");
      } else {
        millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
      }

      if(millis <= 0) break ;

      prevtime = newtime;
      slp->park(millis);
    }
    return OS_OK ;
  }
}

int os::naked_sleep() {
  // %% make the sleep time an integer flag. for now use 1 millisec.
  return os::sleep(Thread::current(), 1, false);
}

// Sleep forever; naked call to OS-specific sleep; use with CAUTION
void os::infinite_sleep() {
  while (true) {    // sleep forever ...
    ::sleep(100);   // ... 100 seconds at a time
  }
}

// Used to convert frequent JVM_Yield() to nops
bool os::dont_yield() {
  return DontYieldALot;
}

void os::yield() {
  sched_yield();
}

os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}

void os::yield_all(int attempts) {
  // Yields to all threads, including threads with lower priorities
  // Threads on Linux are all with same priority. The Solaris style
  // os::yield_all() with nanosleep(1ms) is not necessary.
  sched_yield();
}

// Called from the tight loops to possibly influence time-sharing heuristics
void os::loop_breaker(int attempts) {
  os::yield_all(attempts);
}

////////////////////////////////////////////////////////////////////////////////
// thread priority support

// Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
// only supports dynamic priority, static priority must be zero. For real-time
// applications, Linux supports SCHED_RR which allows static priority (1-99).
// However, for large multi-threaded applications, SCHED_RR is not only slower
// than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
// of 5 runs - Sep 2005).
//
// The following code actually changes the niceness of kernel-thread/LWP. It
// has an assumption that setpriority() only modifies one kernel-thread/LWP,
// not the entire user process, and user level threads are 1:1 mapped to kernel
// threads. It has always been the case, but could change in the future. For
// this reason, the code should not be used as default (ThreadPriorityPolicy=0).
// It is only used when ThreadPriorityPolicy=1 and requires root privilege.

int os::java_to_os_priority[CriticalPriority + 1] = {
  19,              // 0 Entry should never be used

   4,              // 1 MinPriority
   3,              // 2
   2,              // 3

   1,              // 4
   0,              // 5 NormPriority
  -1,              // 6

  -2,              // 7
  -3,              // 8
  -4,              // 9 NearMaxPriority

  -5,              // 10 MaxPriority

  -5               // 11 CriticalPriority
};

static int prio_init() {
  if (ThreadPriorityPolicy == 1) {
    // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
    // if effective uid is not root. Perhaps, a more elegant way of doing
    // this is to test CAP_SYS_NICE capability, but that will require libcap.so
    if (geteuid() != 0) {
      if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
        warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
      }
      ThreadPriorityPolicy = 0;
    }
  }
  if (UseCriticalJavaThreadPriority) {
    os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
  }
  return 0;
}

OSReturn os::set_native_priority(Thread* thread, int newpri) {
  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;

  int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
  return (ret == 0) ? OS_OK : OS_ERR;
}

OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
  if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
    *priority_ptr = java_to_os_priority[NormPriority];
    return OS_OK;
  }

  errno = 0;
  *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
  return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
}

// Hint to the underlying OS that a task switch would not be good.
// Void return because it's a hint and can fail.
void os::hint_no_preempt() {}

////////////////////////////////////////////////////////////////////////////////
// suspend/resume support

//  the low-level signal-based suspend/resume support is a remnant from the
//  old VM-suspension that used to be for java-suspension, safepoints etc,
//  within hotspot. Now there is a single use-case for this:
//    - calling get_thread_pc() on the VMThread by the flat-profiler task
//      that runs in the watcher thread.
//  The remaining code is greatly simplified from the more general suspension
//  code that used to be used.
//
//  The protocol is quite simple:
//  - suspend:
//      - sends a signal to the target thread
//      - polls the suspend state of the osthread using a yield loop
//      - target thread signal handler (SR_handler) sets suspend state
//        and blocks in sigsuspend until continued
//  - resume:
//      - sets target osthread state to continue
//      - sends signal to end the sigsuspend loop in the SR_handler
//
//  Note that the SR_lock plays no role in this suspend/resume protocol.
//

static void resume_clear_context(OSThread *osthread) {
  osthread->set_ucontext(NULL);
  osthread->set_siginfo(NULL);

  // notify the suspend action is completed, we have now resumed
  osthread->sr.clear_suspended();
}

static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
  osthread->set_ucontext(context);
  osthread->set_siginfo(siginfo);
}

//
// Handler function invoked when a thread's execution is suspended or
// resumed. We have to be careful that only async-safe functions are
// called here (Note: most pthread functions are not async safe and
// should be avoided.)
//
// Note: sigwait() is a more natural fit than sigsuspend() from an
// interface point of view, but sigwait() prevents the signal hander
// from being run. libpthread would get very confused by not having
// its signal handlers run and prevents sigwait()'s use with the
// mutex granting granting signal.
//
// Currently only ever called on the VMThread
//
static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
  // Save and restore errno to avoid confusing native code with EINTR
  // after sigsuspend.
  int old_errno = errno;

  Thread* thread = Thread::current();
  OSThread* osthread = thread->osthread();
  assert(thread->is_VM_thread(), "Must be VMThread");
  // read current suspend action
  int action = osthread->sr.suspend_action();
  if (action == SR_SUSPEND) {
    suspend_save_context(osthread, siginfo, context);

    // Notify the suspend action is about to be completed. do_suspend()
    // waits until SR_SUSPENDED is set and then returns. We will wait
    // here for a resume signal and that completes the suspend-other
    // action. do_suspend/do_resume is always called as a pair from
    // the same thread - so there are no races

    // notify the caller
    osthread->sr.set_suspended();

    sigset_t suspend_set;  // signals for sigsuspend()

    // get current set of blocked signals and unblock resume signal
    pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
    sigdelset(&suspend_set, SR_signum);

    // wait here until we are resumed
    do {
      sigsuspend(&suspend_set);
      // ignore all returns until we get a resume signal
    } while (osthread->sr.suspend_action() != SR_CONTINUE);

    resume_clear_context(osthread);

  } else {
    assert(action == SR_CONTINUE, "unexpected sr action");
    // nothing special to do - just leave the handler
  }

  errno = old_errno;
}


static int SR_initialize() {
  struct sigaction act;
  char *s;
  /* Get signal number to use for suspend/resume */
  if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
    int sig = ::strtol(s, 0, 10);
    if (sig > 0 || sig < _NSIG) {
        SR_signum = sig;
    }
  }

  assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
        "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");

  sigemptyset(&SR_sigset);
  sigaddset(&SR_sigset, SR_signum);

  /* Set up signal handler for suspend/resume */
  act.sa_flags = SA_RESTART|SA_SIGINFO;
  act.sa_handler = (void (*)(int)) SR_handler;

  // SR_signum is blocked by default.
  // 4528190 - We also need to block pthread restart signal (32 on all
  // supported Linux platforms). Note that LinuxThreads need to block
  // this signal for all threads to work properly. So we don't have
  // to use hard-coded signal number when setting up the mask.
  pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);

  if (sigaction(SR_signum, &act, 0) == -1) {
    return -1;
  }

  // Save signal flag
  os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
  return 0;
}

static int SR_finalize() {
  return 0;
}


// returns true on success and false on error - really an error is fatal
// but this seems the normal response to library errors
static bool do_suspend(OSThread* osthread) {
  // mark as suspended and send signal
  osthread->sr.set_suspend_action(SR_SUSPEND);
  int status = pthread_kill(osthread->pthread_id(), SR_signum);
  assert_status(status == 0, status, "pthread_kill");

  // check status and wait until notified of suspension
  if (status == 0) {
    for (int i = 0; !osthread->sr.is_suspended(); i++) {
      os::yield_all(i);
    }
    osthread->sr.set_suspend_action(SR_NONE);
    return true;
  }
  else {
    osthread->sr.set_suspend_action(SR_NONE);
    return false;
  }
}

static void do_resume(OSThread* osthread) {
  assert(osthread->sr.is_suspended(), "thread should be suspended");
  osthread->sr.set_suspend_action(SR_CONTINUE);

  int status = pthread_kill(osthread->pthread_id(), SR_signum);
  assert_status(status == 0, status, "pthread_kill");
  // check status and wait unit notified of resumption
  if (status == 0) {
    for (int i = 0; osthread->sr.is_suspended(); i++) {
      os::yield_all(i);
    }
  }
  osthread->sr.set_suspend_action(SR_NONE);
}

////////////////////////////////////////////////////////////////////////////////
// interrupt support

void os::interrupt(Thread* thread) {
  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
    "possibility of dangling Thread pointer");

  OSThread* osthread = thread->osthread();

  if (!osthread->interrupted()) {
    osthread->set_interrupted(true);
    // More than one thread can get here with the same value of osthread,
    // resulting in multiple notifications.  We do, however, want the store
    // to interrupted() to be visible to other threads before we execute unpark().
    OrderAccess::fence();
    ParkEvent * const slp = thread->_SleepEvent ;
    if (slp != NULL) slp->unpark() ;
  }

  // For JSR166. Unpark even if interrupt status already was set
  if (thread->is_Java_thread())
    ((JavaThread*)thread)->parker()->unpark();

  ParkEvent * ev = thread->_ParkEvent ;
  if (ev != NULL) ev->unpark() ;

}

bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
  assert(Thread::current() == thread || Threads_lock->owned_by_self(),
    "possibility of dangling Thread pointer");

  OSThread* osthread = thread->osthread();

  bool interrupted = osthread->interrupted();

  if (interrupted && clear_interrupted) {
    osthread->set_interrupted(false);
    // consider thread->_SleepEvent->reset() ... optional optimization
  }

  return interrupted;
}

///////////////////////////////////////////////////////////////////////////////////
// signal handling (except suspend/resume)

// This routine may be used by user applications as a "hook" to catch signals.
// The user-defined signal handler must pass unrecognized signals to this
// routine, and if it returns true (non-zero), then the signal handler must
// return immediately.  If the flag "abort_if_unrecognized" is true, then this
// routine will never retun false (zero), but instead will execute a VM panic
// routine kill the process.
//
// If this routine returns false, it is OK to call it again.  This allows
// the user-defined signal handler to perform checks either before or after
// the VM performs its own checks.  Naturally, the user code would be making
// a serious error if it tried to handle an exception (such as a null check
// or breakpoint) that the VM was generating for its own correct operation.
//
// This routine may recognize any of the following kinds of signals:
//    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
// It should be consulted by handlers for any of those signals.
//
// The caller of this routine must pass in the three arguments supplied
// to the function referred to in the "sa_sigaction" (not the "sa_handler")
// field of the structure passed to sigaction().  This routine assumes that
// the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
//
// Note that the VM will print warnings if it detects conflicting signal
// handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
//
extern "C" JNIEXPORT int
JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
                        void* ucontext, int abort_if_unrecognized);

void signalHandler(int sig, siginfo_t* info, void* uc) {
  assert(info != NULL && uc != NULL, "it must be old kernel");
  JVM_handle_linux_signal(sig, info, uc, true);
}


// This boolean allows users to forward their own non-matching signals
// to JVM_handle_linux_signal, harmlessly.
bool os::Linux::signal_handlers_are_installed = false;

// For signal-chaining
struct sigaction os::Linux::sigact[MAXSIGNUM];
unsigned int os::Linux::sigs = 0;
bool os::Linux::libjsig_is_loaded = false;
typedef struct sigaction *(*get_signal_t)(int);
get_signal_t os::Linux::get_signal_action = NULL;

struct sigaction* os::Linux::get_chained_signal_action(int sig) {
  struct sigaction *actp = NULL;

  if (libjsig_is_loaded) {
    // Retrieve the old signal handler from libjsig
    actp = (*get_signal_action)(sig);
  }
  if (actp == NULL) {
    // Retrieve the preinstalled signal handler from jvm
    actp = get_preinstalled_handler(sig);
  }

  return actp;
}

static bool call_chained_handler(struct sigaction *actp, int sig,
                                 siginfo_t *siginfo, void *context) {
  // Call the old signal handler
  if (actp->sa_handler == SIG_DFL) {
    // It's more reasonable to let jvm treat it as an unexpected exception
    // instead of taking the default action.
    return false;
  } else if (actp->sa_handler != SIG_IGN) {
    if ((actp->sa_flags & SA_NODEFER) == 0) {
      // automaticlly block the signal
      sigaddset(&(actp->sa_mask), sig);
    }

    sa_handler_t hand;
    sa_sigaction_t sa;
    bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
    // retrieve the chained handler
    if (siginfo_flag_set) {
      sa = actp->sa_sigaction;
    } else {
      hand = actp->sa_handler;
    }

    if ((actp->sa_flags & SA_RESETHAND) != 0) {
      actp->sa_handler = SIG_DFL;
    }

    // try to honor the signal mask
    sigset_t oset;
    pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);

    // call into the chained handler
    if (siginfo_flag_set) {
      (*sa)(sig, siginfo, context);
    } else {
      (*hand)(sig);
    }

    // restore the signal mask
    pthread_sigmask(SIG_SETMASK, &oset, 0);
  }
  // Tell jvm's signal handler the signal is taken care of.
  return true;
}

bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
  bool chained = false;
  // signal-chaining
  if (UseSignalChaining) {
    struct sigaction *actp = get_chained_signal_action(sig);
    if (actp != NULL) {
      chained = call_chained_handler(actp, sig, siginfo, context);
    }
  }
  return chained;
}

struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
  if ((( (unsigned int)1 << sig ) & sigs) != 0) {
    return &sigact[sig];
  }
  return NULL;
}

void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  sigact[sig] = oldAct;
  sigs |= (unsigned int)1 << sig;
}

// for diagnostic
int os::Linux::sigflags[MAXSIGNUM];

int os::Linux::get_our_sigflags(int sig) {
  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  return sigflags[sig];
}

void os::Linux::set_our_sigflags(int sig, int flags) {
  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  sigflags[sig] = flags;
}

void os::Linux::set_signal_handler(int sig, bool set_installed) {
  // Check for overwrite.
  struct sigaction oldAct;
  sigaction(sig, (struct sigaction*)NULL, &oldAct);

  void* oldhand = oldAct.sa_sigaction
                ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
                : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
  if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
      oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
      oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
    if (AllowUserSignalHandlers || !set_installed) {
      // Do not overwrite; user takes responsibility to forward to us.
      return;
    } else if (UseSignalChaining) {
      // save the old handler in jvm
      save_preinstalled_handler(sig, oldAct);
      // libjsig also interposes the sigaction() call below and saves the
      // old sigaction on it own.
    } else {
      fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
                    "%#lx for signal %d.", (long)oldhand, sig));
    }
  }

  struct sigaction sigAct;
  sigfillset(&(sigAct.sa_mask));
  sigAct.sa_handler = SIG_DFL;
  if (!set_installed) {
    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  } else {
    sigAct.sa_sigaction = signalHandler;
    sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
  }
  // Save flags, which are set by ours
  assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
  sigflags[sig] = sigAct.sa_flags;

  int ret = sigaction(sig, &sigAct, &oldAct);
  assert(ret == 0, "check");

  void* oldhand2  = oldAct.sa_sigaction
                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
  assert(oldhand2 == oldhand, "no concurrent signal handler installation");
}

// install signal handlers for signals that HotSpot needs to
// handle in order to support Java-level exception handling.

void os::Linux::install_signal_handlers() {
  if (!signal_handlers_are_installed) {
    signal_handlers_are_installed = true;

    // signal-chaining
    typedef void (*signal_setting_t)();
    signal_setting_t begin_signal_setting = NULL;
    signal_setting_t end_signal_setting = NULL;
    begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
                             dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
    if (begin_signal_setting != NULL) {
      end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
                             dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
      get_signal_action = CAST_TO_FN_PTR(get_signal_t,
                            dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
      libjsig_is_loaded = true;
      assert(UseSignalChaining, "should enable signal-chaining");
    }
    if (libjsig_is_loaded) {
      // Tell libjsig jvm is setting signal handlers
      (*begin_signal_setting)();
    }

    set_signal_handler(SIGSEGV, true);
    set_signal_handler(SIGPIPE, true);
    set_signal_handler(SIGBUS, true);
    set_signal_handler(SIGILL, true);
    set_signal_handler(SIGFPE, true);
    set_signal_handler(SIGXFSZ, true);

    if (libjsig_is_loaded) {
      // Tell libjsig jvm finishes setting signal handlers
      (*end_signal_setting)();
    }

    // We don't activate signal checker if libjsig is in place, we trust ourselves
    // and if UserSignalHandler is installed all bets are off.
    // Log that signal checking is off only if -verbose:jni is specified.
    if (CheckJNICalls) {
      if (libjsig_is_loaded) {
        if (PrintJNIResolving) {
          tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
        }
        check_signals = false;
      }
      if (AllowUserSignalHandlers) {
        if (PrintJNIResolving) {
          tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
        }
        check_signals = false;
      }
    }
  }
}

// This is the fastest way to get thread cpu time on Linux.
// Returns cpu time (user+sys) for any thread, not only for current.
// POSIX compliant clocks are implemented in the kernels 2.6.16+.
// It might work on 2.6.10+ with a special kernel/glibc patch.
// For reference, please, see IEEE Std 1003.1-2004:
//   http://www.unix.org/single_unix_specification

jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
  struct timespec tp;
  int rc = os::Linux::clock_gettime(clockid, &tp);
  assert(rc == 0, "clock_gettime is expected to return 0 code");

  return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
}

/////
// glibc on Linux platform uses non-documented flag
// to indicate, that some special sort of signal
// trampoline is used.
// We will never set this flag, and we should
// ignore this flag in our diagnostic
#ifdef SIGNIFICANT_SIGNAL_MASK
#undef SIGNIFICANT_SIGNAL_MASK
#endif
#define SIGNIFICANT_SIGNAL_MASK (~0x04000000)

static const char* get_signal_handler_name(address handler,
                                           char* buf, int buflen) {
  int offset;
  bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
  if (found) {
    // skip directory names
    const char *p1, *p2;
    p1 = buf;
    size_t len = strlen(os::file_separator());
    while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
    jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
  } else {
    jio_snprintf(buf, buflen, PTR_FORMAT, handler);
  }
  return buf;
}

static void print_signal_handler(outputStream* st, int sig,
                                 char* buf, size_t buflen) {
  struct sigaction sa;

  sigaction(sig, NULL, &sa);

  // See comment for SIGNIFICANT_SIGNAL_MASK define
  sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;

  st->print("%s: ", os::exception_name(sig, buf, buflen));

  address handler = (sa.sa_flags & SA_SIGINFO)
    ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
    : CAST_FROM_FN_PTR(address, sa.sa_handler);

  if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
    st->print("SIG_DFL");
  } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
    st->print("SIG_IGN");
  } else {
    st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
  }

  st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);

  address rh = VMError::get_resetted_sighandler(sig);
  // May be, handler was resetted by VMError?
  if(rh != NULL) {
    handler = rh;
    sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
  }

  st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);

  // Check: is it our handler?
  if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
     handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
    // It is our signal handler
    // check for flags, reset system-used one!
    if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
      st->print(
                ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
                os::Linux::get_our_sigflags(sig));
    }
  }
  st->cr();
}


#define DO_SIGNAL_CHECK(sig) \
  if (!sigismember(&check_signal_done, sig)) \
    os::Linux::check_signal_handler(sig)

// This method is a periodic task to check for misbehaving JNI applications
// under CheckJNI, we can add any periodic checks here

void os::run_periodic_checks() {

  if (check_signals == false) return;

  // SEGV and BUS if overridden could potentially prevent
  // generation of hs*.log in the event of a crash, debugging
  // such a case can be very challenging, so we absolutely
  // check the following for a good measure:
  DO_SIGNAL_CHECK(SIGSEGV);
  DO_SIGNAL_CHECK(SIGILL);
  DO_SIGNAL_CHECK(SIGFPE);
  DO_SIGNAL_CHECK(SIGBUS);
  DO_SIGNAL_CHECK(SIGPIPE);
  DO_SIGNAL_CHECK(SIGXFSZ);


  // ReduceSignalUsage allows the user to override these handlers
  // see comments at the very top and jvm_solaris.h
  if (!ReduceSignalUsage) {
    DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
    DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
    DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
    DO_SIGNAL_CHECK(BREAK_SIGNAL);
  }

  DO_SIGNAL_CHECK(SR_signum);
  DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
}

typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);

static os_sigaction_t os_sigaction = NULL;

void os::Linux::check_signal_handler(int sig) {
  char buf[O_BUFLEN];
  address jvmHandler = NULL;


  struct sigaction act;
  if (os_sigaction == NULL) {
    // only trust the default sigaction, in case it has been interposed
    os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
    if (os_sigaction == NULL) return;
  }

  os_sigaction(sig, (struct sigaction*)NULL, &act);


  act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;

  address thisHandler = (act.sa_flags & SA_SIGINFO)
    ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
    : CAST_FROM_FN_PTR(address, act.sa_handler) ;


  switch(sig) {
  case SIGSEGV:
  case SIGBUS:
  case SIGFPE:
  case SIGPIPE:
  case SIGILL:
  case SIGXFSZ:
    jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
    break;

  case SHUTDOWN1_SIGNAL:
  case SHUTDOWN2_SIGNAL:
  case SHUTDOWN3_SIGNAL:
  case BREAK_SIGNAL:
    jvmHandler = (address)user_handler();
    break;

  case INTERRUPT_SIGNAL:
    jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
    break;

  default:
    if (sig == SR_signum) {
      jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
    } else {
      return;
    }
    break;
  }

  if (thisHandler != jvmHandler) {
    tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
    tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
    tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
    // No need to check this sig any longer
    sigaddset(&check_signal_done, sig);
  } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
    tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
    tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
    tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
    // No need to check this sig any longer
    sigaddset(&check_signal_done, sig);
  }

  // Dump all the signal
  if (sigismember(&check_signal_done, sig)) {
    print_signal_handlers(tty, buf, O_BUFLEN);
  }
}

extern void report_error(char* file_name, int line_no, char* title, char* format, ...);

extern bool signal_name(int signo, char* buf, size_t len);

const char* os::exception_name(int exception_code, char* buf, size_t size) {
  if (0 < exception_code && exception_code <= SIGRTMAX) {
    // signal
    if (!signal_name(exception_code, buf, size)) {
      jio_snprintf(buf, size, "SIG%d", exception_code);
    }
    return buf;
  } else {
    return NULL;
  }
}

// this is called _before_ the most of global arguments have been parsed
void os::init(void) {
  char dummy;   /* used to get a guess on initial stack address */
//  first_hrtime = gethrtime();

  // With LinuxThreads the JavaMain thread pid (primordial thread)
  // is different than the pid of the java launcher thread.
  // So, on Linux, the launcher thread pid is passed to the VM
  // via the sun.java.launcher.pid property.
  // Use this property instead of getpid() if it was correctly passed.
  // See bug 6351349.
  pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();

  _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();

  clock_tics_per_sec = sysconf(_SC_CLK_TCK);

  init_random(1234567);

  ThreadCritical::initialize();

  Linux::set_page_size(sysconf(_SC_PAGESIZE));
  if (Linux::page_size() == -1) {
    fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
                  strerror(errno)));
  }
  init_page_sizes((size_t) Linux::page_size());

  Linux::initialize_system_info();

  // main_thread points to the aboriginal thread
  Linux::_main_thread = pthread_self();

  Linux::clock_init();
  initial_time_count = os::elapsed_counter();
  pthread_mutex_init(&dl_mutex, NULL);
}

// To install functions for atexit system call
extern "C" {
  static void perfMemory_exit_helper() {
    perfMemory_exit();
  }
}

// this is called _after_ the global arguments have been parsed
jint os::init_2(void)
{
  Linux::fast_thread_clock_init();

  // Allocate a single page and mark it as readable for safepoint polling
  address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
  guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );

  os::set_polling_page( polling_page );

#ifndef PRODUCT
  if(Verbose && PrintMiscellaneous)
    tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
#endif

  if (!UseMembar) {
    address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
    guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
    os::set_memory_serialize_page( mem_serialize_page );

#ifndef PRODUCT
    if(Verbose && PrintMiscellaneous)
      tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
#endif
  }

  os::large_page_init();

  // initialize suspend/resume support - must do this before signal_sets_init()
  if (SR_initialize() != 0) {
    perror("SR_initialize failed");
    return JNI_ERR;
  }

  Linux::signal_sets_init();
  Linux::install_signal_handlers();

  // Check minimum allowable stack size for thread creation and to initialize
  // the java system classes, including StackOverflowError - depends on page
  // size.  Add a page for compiler2 recursion in main thread.
  // Add in 2*BytesPerWord times page size to account for VM stack during
  // class initialization depending on 32 or 64 bit VM.
  os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
            (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
                    2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());

  size_t threadStackSizeInBytes = ThreadStackSize * K;
  if (threadStackSizeInBytes != 0 &&
      threadStackSizeInBytes < os::Linux::min_stack_allowed) {
        tty->print_cr("\nThe stack size specified is too small, "
                      "Specify at least %dk",
                      os::Linux::min_stack_allowed/ K);
        return JNI_ERR;
  }

  // Make the stack size a multiple of the page size so that
  // the yellow/red zones can be guarded.
  JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
        vm_page_size()));

  Linux::capture_initial_stack(JavaThread::stack_size_at_create());

  Linux::libpthread_init();
  if (PrintMiscellaneous && (Verbose || WizardMode)) {
     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
          Linux::glibc_version(), Linux::libpthread_version(),
          Linux::is_floating_stack() ? "floating stack" : "fixed stack");
  }

  if (UseNUMA) {
    if (!Linux::libnuma_init()) {
      UseNUMA = false;
    } else {
      if ((Linux::numa_max_node() < 1)) {
        // There's only one node(they start from 0), disable NUMA.
        UseNUMA = false;
      }
    }
    // With SHM large pages we cannot uncommit a page, so there's not way
    // we can make the adaptive lgrp chunk resizing work. If the user specified
    // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
    // disable adaptive resizing.
    if (UseNUMA && UseLargePages && UseSHM) {
      if (!FLAG_IS_DEFAULT(UseNUMA)) {
        if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
          UseLargePages = false;
        } else {
          warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
          UseAdaptiveSizePolicy = false;
          UseAdaptiveNUMAChunkSizing = false;
        }
      } else {
        UseNUMA = false;
      }
    }
    if (!UseNUMA && ForceNUMA) {
      UseNUMA = true;
    }
  }

  if (MaxFDLimit) {
    // set the number of file descriptors to max. print out error
    // if getrlimit/setrlimit fails but continue regardless.
    struct rlimit nbr_files;
    int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
    if (status != 0) {
      if (PrintMiscellaneous && (Verbose || WizardMode))
        perror("os::init_2 getrlimit failed");
    } else {
      nbr_files.rlim_cur = nbr_files.rlim_max;
      status = setrlimit(RLIMIT_NOFILE, &nbr_files);
      if (status != 0) {
        if (PrintMiscellaneous && (Verbose || WizardMode))
          perror("os::init_2 setrlimit failed");
      }
    }
  }

  // Initialize lock used to serialize thread creation (see os::create_thread)
  Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));

  // at-exit methods are called in the reverse order of their registration.
  // atexit functions are called on return from main or as a result of a
  // call to exit(3C). There can be only 32 of these functions registered
  // and atexit() does not set errno.

  if (PerfAllowAtExitRegistration) {
    // only register atexit functions if PerfAllowAtExitRegistration is set.
    // atexit functions can be delayed until process exit time, which
    // can be problematic for embedded VM situations. Embedded VMs should
    // call DestroyJavaVM() to assure that VM resources are released.

    // note: perfMemory_exit_helper atexit function may be removed in
    // the future if the appropriate cleanup code can be added to the
    // VM_Exit VMOperation's doit method.
    if (atexit(perfMemory_exit_helper) != 0) {
      warning("os::init2 atexit(perfMemory_exit_helper) failed");
    }
  }

  // initialize thread priority policy
  prio_init();

  return JNI_OK;
}

// this is called at the end of vm_initialization
void os::init_3(void)
{
#ifdef JAVASE_EMBEDDED
  // Start the MemNotifyThread
  if (LowMemoryProtection) {
    MemNotifyThread::start();
  }
  return;
#endif
}

// Mark the polling page as unreadable
void os::make_polling_page_unreadable(void) {
  if( !guard_memory((char*)_polling_page, Linux::page_size()) )
    fatal("Could not disable polling page");
};

// Mark the polling page as readable
void os::make_polling_page_readable(void) {
  if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
    fatal("Could not enable polling page");
  }
};

int os::active_processor_count() {
  // Linux doesn't yet have a (official) notion of processor sets,
  // so just return the number of online processors.
  int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
  assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
  return online_cpus;
}

void os::set_native_thread_name(const char *name) {
  // Not yet implemented.
  return;
}

bool os::distribute_processes(uint length, uint* distribution) {
  // Not yet implemented.
  return false;
}

bool os::bind_to_processor(uint processor_id) {
  // Not yet implemented.
  return false;
}

///

// Suspends the target using the signal mechanism and then grabs the PC before
// resuming the target. Used by the flat-profiler only
ExtendedPC os::get_thread_pc(Thread* thread) {
  // Make sure that it is called by the watcher for the VMThread
  assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
  assert(thread->is_VM_thread(), "Can only be called for VMThread");

  ExtendedPC epc;

  OSThread* osthread = thread->osthread();
  if (do_suspend(osthread)) {
    if (osthread->ucontext() != NULL) {
      epc = os::Linux::ucontext_get_pc(osthread->ucontext());
    } else {
      // NULL context is unexpected, double-check this is the VMThread
      guarantee(thread->is_VM_thread(), "can only be called for VMThread");
    }
    do_resume(osthread);
  }
  // failure means pthread_kill failed for some reason - arguably this is
  // a fatal problem, but such problems are ignored elsewhere

  return epc;
}

int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
{
   if (is_NPTL()) {
      return pthread_cond_timedwait(_cond, _mutex, _abstime);
   } else {
#ifndef IA64
      // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
      // word back to default 64bit precision if condvar is signaled. Java
      // wants 53bit precision.  Save and restore current value.
      int fpu = get_fpu_control_word();
#endif // IA64
      int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
#ifndef IA64
      set_fpu_control_word(fpu);
#endif // IA64
      return status;
   }
}

////////////////////////////////////////////////////////////////////////////////
// debug support

static address same_page(address x, address y) {
  int page_bits = -os::vm_page_size();
  if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
    return x;
  else if (x > y)
    return (address)(intptr_t(y) | ~page_bits) + 1;
  else
    return (address)(intptr_t(y) & page_bits);
}

bool os::find(address addr, outputStream* st) {
  Dl_info dlinfo;
  memset(&dlinfo, 0, sizeof(dlinfo));
  if (dladdr(addr, &dlinfo)) {
    st->print(PTR_FORMAT ": ", addr);
    if (dlinfo.dli_sname != NULL) {
      st->print("%s+%#x", dlinfo.dli_sname,
                 addr - (intptr_t)dlinfo.dli_saddr);
    } else if (dlinfo.dli_fname) {
      st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
    } else {
      st->print("<absolute address>");
    }
    if (dlinfo.dli_fname) {
      st->print(" in %s", dlinfo.dli_fname);
    }
    if (dlinfo.dli_fbase) {
      st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
    }
    st->cr();

    if (Verbose) {
      // decode some bytes around the PC
      address begin = same_page(addr-40, addr);
      address end   = same_page(addr+40, addr);
      address       lowest = (address) dlinfo.dli_sname;
      if (!lowest)  lowest = (address) dlinfo.dli_fbase;
      if (begin < lowest)  begin = lowest;
      Dl_info dlinfo2;
      if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
          && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
        end = (address) dlinfo2.dli_saddr;
      Disassembler::decode(begin, end, st);
    }
    return true;
  }
  return false;
}

////////////////////////////////////////////////////////////////////////////////
// misc

// This does not do anything on Linux. This is basically a hook for being
// able to use structured exception handling (thread-local exception filters)
// on, e.g., Win32.
void
os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
                         JavaCallArguments* args, Thread* thread) {
  f(value, method, args, thread);
}

void os::print_statistics() {
}

int os::message_box(const char* title, const char* message) {
  int i;
  fdStream err(defaultStream::error_fd());
  for (i = 0; i < 78; i++) err.print_raw("=");
  err.cr();
  err.print_raw_cr(title);
  for (i = 0; i < 78; i++) err.print_raw("-");
  err.cr();
  err.print_raw_cr(message);
  for (i = 0; i < 78; i++) err.print_raw("=");
  err.cr();

  char buf[16];
  // Prevent process from exiting upon "read error" without consuming all CPU
  while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }

  return buf[0] == 'y' || buf[0] == 'Y';
}

int os::stat(const char *path, struct stat *sbuf) {
  char pathbuf[MAX_PATH];
  if (strlen(path) > MAX_PATH - 1) {
    errno = ENAMETOOLONG;
    return -1;
  }
  os::native_path(strcpy(pathbuf, path));
  return ::stat(pathbuf, sbuf);
}

bool os::check_heap(bool force) {
  return true;
}

int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
  return ::vsnprintf(buf, count, format, args);
}

// Is a (classpath) directory empty?
bool os::dir_is_empty(const char* path) {
  DIR *dir = NULL;
  struct dirent *ptr;

  dir = opendir(path);
  if (dir == NULL) return true;

  /* Scan the directory */
  bool result = true;
  char buf[sizeof(struct dirent) + MAX_PATH];
  while (result && (ptr = ::readdir(dir)) != NULL) {
    if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
      result = false;
    }
  }
  closedir(dir);
  return result;
}

// This code originates from JDK's sysOpen and open64_w
// from src/solaris/hpi/src/system_md.c

#ifndef O_DELETE
#define O_DELETE 0x10000
#endif

// Open a file. Unlink the file immediately after open returns
// if the specified oflag has the O_DELETE flag set.
// O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c

int os::open(const char *path, int oflag, int mode) {

  if (strlen(path) > MAX_PATH - 1) {
    errno = ENAMETOOLONG;
    return -1;
  }
  int fd;
  int o_delete = (oflag & O_DELETE);
  oflag = oflag & ~O_DELETE;

  fd = ::open64(path, oflag, mode);
  if (fd == -1) return -1;

  //If the open succeeded, the file might still be a directory
  {
    struct stat64 buf64;
    int ret = ::fstat64(fd, &buf64);
    int st_mode = buf64.st_mode;

    if (ret != -1) {
      if ((st_mode & S_IFMT) == S_IFDIR) {
        errno = EISDIR;
        ::close(fd);
        return -1;
      }
    } else {
      ::close(fd);
      return -1;
    }
  }

    /*
     * All file descriptors that are opened in the JVM and not
     * specifically destined for a subprocess should have the
     * close-on-exec flag set.  If we don't set it, then careless 3rd
     * party native code might fork and exec without closing all
     * appropriate file descriptors (e.g. as we do in closeDescriptors in
     * UNIXProcess.c), and this in turn might:
     *
     * - cause end-of-file to fail to be detected on some file
     *   descriptors, resulting in mysterious hangs, or
     *
     * - might cause an fopen in the subprocess to fail on a system
     *   suffering from bug 1085341.
     *
     * (Yes, the default setting of the close-on-exec flag is a Unix
     * design flaw)
     *
     * See:
     * 1085341: 32-bit stdio routines should support file descriptors >255
     * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
     * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
     */
#ifdef FD_CLOEXEC
    {
        int flags = ::fcntl(fd, F_GETFD);
        if (flags != -1)
            ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
    }
#endif

  if (o_delete != 0) {
    ::unlink(path);
  }
  return fd;
}


// create binary file, rewriting existing file if required
int os::create_binary_file(const char* path, bool rewrite_existing) {
  int oflags = O_WRONLY | O_CREAT;
  if (!rewrite_existing) {
    oflags |= O_EXCL;
  }
  return ::open64(path, oflags, S_IREAD | S_IWRITE);
}

// return current position of file pointer
jlong os::current_file_offset(int fd) {
  return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
}

// move file pointer to the specified offset
jlong os::seek_to_file_offset(int fd, jlong offset) {
  return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
}

// This code originates from JDK's sysAvailable
// from src/solaris/hpi/src/native_threads/src/sys_api_td.c

int os::available(int fd, jlong *bytes) {
  jlong cur, end;
  int mode;
  struct stat64 buf64;

  if (::fstat64(fd, &buf64) >= 0) {
    mode = buf64.st_mode;
    if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
      /*
      * XXX: is the following call interruptible? If so, this might
      * need to go through the INTERRUPT_IO() wrapper as for other
      * blocking, interruptible calls in this file.
      */
      int n;
      if (::ioctl(fd, FIONREAD, &n) >= 0) {
        *bytes = n;
        return 1;
      }
    }
  }
  if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
    return 0;
  } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
    return 0;
  } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
    return 0;
  }
  *bytes = end - cur;
  return 1;
}

int os::socket_available(int fd, jint *pbytes) {
  // Linux doc says EINTR not returned, unlike Solaris
  int ret = ::ioctl(fd, FIONREAD, pbytes);

  //%% note ioctl can return 0 when successful, JVM_SocketAvailable
  // is expected to return 0 on failure and 1 on success to the jdk.
  return (ret < 0) ? 0 : 1;
}

// Map a block of memory.
char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
                     char *addr, size_t bytes, bool read_only,
                     bool allow_exec) {
  int prot;
  int flags = MAP_PRIVATE;

  if (read_only) {
    prot = PROT_READ;
  } else {
    prot = PROT_READ | PROT_WRITE;
  }

  if (allow_exec) {
    prot |= PROT_EXEC;
  }

  if (addr != NULL) {
    flags |= MAP_FIXED;
  }

  char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
                                     fd, file_offset);
  if (mapped_address == MAP_FAILED) {
    return NULL;
  }
  return mapped_address;
}


// Remap a block of memory.
char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
                       char *addr, size_t bytes, bool read_only,
                       bool allow_exec) {
  // same as map_memory() on this OS
  return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
                        allow_exec);
}


// Unmap a block of memory.
bool os::pd_unmap_memory(char* addr, size_t bytes) {
  return munmap(addr, bytes) == 0;
}

static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);

static clockid_t thread_cpu_clockid(Thread* thread) {
  pthread_t tid = thread->osthread()->pthread_id();
  clockid_t clockid;

  // Get thread clockid
  int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
  assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
  return clockid;
}

// current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
// are used by JVM M&M and JVMTI to get user+sys or user CPU time
// of a thread.
//
// current_thread_cpu_time() and thread_cpu_time(Thread*) returns
// the fast estimate available on the platform.

jlong os::current_thread_cpu_time() {
  if (os::Linux::supports_fast_thread_cpu_time()) {
    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  } else {
    // return user + sys since the cost is the same
    return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
  }
}

jlong os::thread_cpu_time(Thread* thread) {
  // consistent with what current_thread_cpu_time() returns
  if (os::Linux::supports_fast_thread_cpu_time()) {
    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  } else {
    return slow_thread_cpu_time(thread, true /* user + sys */);
  }
}

jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
    return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
  } else {
    return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
  }
}

jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
    return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
  } else {
    return slow_thread_cpu_time(thread, user_sys_cpu_time);
  }
}

//
//  -1 on error.
//

static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
  static bool proc_pid_cpu_avail = true;
  static bool proc_task_unchecked = true;
  static const char *proc_stat_path = "/proc/%d/stat";
  pid_t  tid = thread->osthread()->thread_id();
  int i;
  char *s;
  char stat[2048];
  int statlen;
  char proc_name[64];
  int count;
  long sys_time, user_time;
  char string[64];
  char cdummy;
  int idummy;
  long ldummy;
  FILE *fp;

  // We first try accessing /proc/<pid>/cpu since this is faster to
  // process.  If this file is not present (linux kernels 2.5 and above)
  // then we open /proc/<pid>/stat.
  if ( proc_pid_cpu_avail ) {
    sprintf(proc_name, "/proc/%d/cpu", tid);
    fp =  fopen(proc_name, "r");
    if ( fp != NULL ) {
      count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
      fclose(fp);
      if ( count != 3 ) return -1;

      if (user_sys_cpu_time) {
        return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
      } else {
        return (jlong)user_time * (1000000000 / clock_tics_per_sec);
      }
    }
    else proc_pid_cpu_avail = false;
  }

  // The /proc/<tid>/stat aggregates per-process usage on
  // new Linux kernels 2.6+ where NPTL is supported.
  // The /proc/self/task/<tid>/stat still has the per-thread usage.
  // See bug 6328462.
  // There can be no directory /proc/self/task on kernels 2.4 with NPTL
  // and possibly in some other cases, so we check its availability.
  if (proc_task_unchecked && os::Linux::is_NPTL()) {
    // This is executed only once
    proc_task_unchecked = false;
    fp = fopen("/proc/self/task", "r");
    if (fp != NULL) {
      proc_stat_path = "/proc/self/task/%d/stat";
      fclose(fp);
    }
  }

  sprintf(proc_name, proc_stat_path, tid);
  fp = fopen(proc_name, "r");
  if ( fp == NULL ) return -1;
  statlen = fread(stat, 1, 2047, fp);
  stat[statlen] = '\0';
  fclose(fp);

  // Skip pid and the command string. Note that we could be dealing with
  // weird command names, e.g. user could decide to rename java launcher
  // to "java 1.4.2 :)", then the stat file would look like
  //                1234 (java 1.4.2 :)) R ... ...
  // We don't really need to know the command string, just find the last
  // occurrence of ")" and then start parsing from there. See bug 4726580.
  s = strrchr(stat, ')');
  i = 0;
  if (s == NULL ) return -1;

  // Skip blank chars
  do s++; while (isspace(*s));

  count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
                 &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
                 &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
                 &user_time, &sys_time);
  if ( count != 13 ) return -1;
  if (user_sys_cpu_time) {
    return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
  } else {
    return (jlong)user_time * (1000000000 / clock_tics_per_sec);
  }
}

void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  info_ptr->may_skip_backward = false;     // elapsed time not wall time
  info_ptr->may_skip_forward = false;      // elapsed time not wall time
  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
}

void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
  info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
  info_ptr->may_skip_backward = false;     // elapsed time not wall time
  info_ptr->may_skip_forward = false;      // elapsed time not wall time
  info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
}

bool os::is_thread_cpu_time_supported() {
  return true;
}

// System loadavg support.  Returns -1 if load average cannot be obtained.
// Linux doesn't yet have a (official) notion of processor sets,
// so just return the system wide load average.
int os::loadavg(double loadavg[], int nelem) {
  return ::getloadavg(loadavg, nelem);
}

void os::pause() {
  char filename[MAX_PATH];
  if (PauseAtStartupFile && PauseAtStartupFile[0]) {
    jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
  } else {
    jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
  }

  int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
  if (fd != -1) {
    struct stat buf;
    ::close(fd);
    while (::stat(filename, &buf) == 0) {
      (void)::poll(NULL, 0, 100);
    }
  } else {
    jio_fprintf(stderr,
      "Could not open pause file '%s', continuing immediately.\n", filename);
  }
}


// Refer to the comments in os_solaris.cpp park-unpark.
//
// Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
// hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
// For specifics regarding the bug see GLIBC BUGID 261237 :
//    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
// Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
// will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
// is used.  (The simple C test-case provided in the GLIBC bug report manifests the
// hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
// and monitorenter when we're using 1-0 locking.  All those operations may result in
// calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
// of libpthread avoids the problem, but isn't practical.
//
// Possible remedies:
//
// 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
//      This is palliative and probabilistic, however.  If the thread is preempted
//      between the call to compute_abstime() and pthread_cond_timedwait(), more
//      than the minimum period may have passed, and the abstime may be stale (in the
//      past) resultin in a hang.   Using this technique reduces the odds of a hang
//      but the JVM is still vulnerable, particularly on heavily loaded systems.
//
// 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
//      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
//      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
//      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
//      thread.
//
// 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
//      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
//      a timeout request to the chron thread and then blocking via pthread_cond_wait().
//      This also works well.  In fact it avoids kernel-level scalability impediments
//      on certain platforms that don't handle lots of active pthread_cond_timedwait()
//      timers in a graceful fashion.
//
// 4.   When the abstime value is in the past it appears that control returns
//      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
//      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
//      can avoid the problem by reinitializing the condvar -- by cond_destroy()
//      followed by cond_init() -- after all calls to pthread_cond_timedwait().
//      It may be possible to avoid reinitialization by checking the return
//      value from pthread_cond_timedwait().  In addition to reinitializing the
//      condvar we must establish the invariant that cond_signal() is only called
//      within critical sections protected by the adjunct mutex.  This prevents
//      cond_signal() from "seeing" a condvar that's in the midst of being
//      reinitialized or that is corrupt.  Sadly, this invariant obviates the
//      desirable signal-after-unlock optimization that avoids futile context switching.
//
//      I'm also concerned that some versions of NTPL might allocate an auxilliary
//      structure when a condvar is used or initialized.  cond_destroy()  would
//      release the helper structure.  Our reinitialize-after-timedwait fix
//      put excessive stress on malloc/free and locks protecting the c-heap.
//
// We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
// It may be possible to refine (4) by checking the kernel and NTPL verisons
// and only enabling the work-around for vulnerable environments.

// utility to compute the abstime argument to timedwait:
// millis is the relative timeout time
// abstime will be the absolute timeout time
// TODO: replace compute_abstime() with unpackTime()

static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
  if (millis < 0)  millis = 0;
  struct timeval now;
  int status = gettimeofday(&now, NULL);
  assert(status == 0, "gettimeofday");
  jlong seconds = millis / 1000;
  millis %= 1000;
  if (seconds > 50000000) { // see man cond_timedwait(3T)
    seconds = 50000000;
  }
  abstime->tv_sec = now.tv_sec  + seconds;
  long       usec = now.tv_usec + millis * 1000;
  if (usec >= 1000000) {
    abstime->tv_sec += 1;
    usec -= 1000000;
  }
  abstime->tv_nsec = usec * 1000;
  return abstime;
}


// Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
// Conceptually TryPark() should be equivalent to park(0).

int os::PlatformEvent::TryPark() {
  for (;;) {
    const int v = _Event ;
    guarantee ((v == 0) || (v == 1), "invariant") ;
    if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
  }
}

void os::PlatformEvent::park() {       // AKA "down()"
  // Invariant: Only the thread associated with the Event/PlatformEvent
  // may call park().
  // TODO: assert that _Assoc != NULL or _Assoc == Self
  int v ;
  for (;;) {
      v = _Event ;
      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  }
  guarantee (v >= 0, "invariant") ;
  if (v == 0) {
     // Do this the hard way by blocking ...
     int status = pthread_mutex_lock(_mutex);
     assert_status(status == 0, status, "mutex_lock");
     guarantee (_nParked == 0, "invariant") ;
     ++ _nParked ;
     while (_Event < 0) {
        status = pthread_cond_wait(_cond, _mutex);
        // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
        // Treat this the same as if the wait was interrupted
        if (status == ETIME) { status = EINTR; }
        assert_status(status == 0 || status == EINTR, status, "cond_wait");
     }
     -- _nParked ;

    // In theory we could move the ST of 0 into _Event past the unlock(),
    // but then we'd need a MEMBAR after the ST.
    _Event = 0 ;
     status = pthread_mutex_unlock(_mutex);
     assert_status(status == 0, status, "mutex_unlock");
  }
  guarantee (_Event >= 0, "invariant") ;
}

int os::PlatformEvent::park(jlong millis) {
  guarantee (_nParked == 0, "invariant") ;

  int v ;
  for (;;) {
      v = _Event ;
      if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
  }
  guarantee (v >= 0, "invariant") ;
  if (v != 0) return OS_OK ;

  // We do this the hard way, by blocking the thread.
  // Consider enforcing a minimum timeout value.
  struct timespec abst;
  compute_abstime(&abst, millis);

  int ret = OS_TIMEOUT;
  int status = pthread_mutex_lock(_mutex);
  assert_status(status == 0, status, "mutex_lock");
  guarantee (_nParked == 0, "invariant") ;
  ++_nParked ;

  // Object.wait(timo) will return because of
  // (a) notification
  // (b) timeout
  // (c) thread.interrupt
  //
  // Thread.interrupt and object.notify{All} both call Event::set.
  // That is, we treat thread.interrupt as a special case of notification.
  // The underlying Solaris implementation, cond_timedwait, admits
  // spurious/premature wakeups, but the JLS/JVM spec prevents the
  // JVM from making those visible to Java code.  As such, we must
  // filter out spurious wakeups.  We assume all ETIME returns are valid.
  //
  // TODO: properly differentiate simultaneous notify+interrupt.
  // In that case, we should propagate the notify to another waiter.

  while (_Event < 0) {
    status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
      pthread_cond_destroy (_cond);
      pthread_cond_init (_cond, NULL) ;
    }
    assert_status(status == 0 || status == EINTR ||
                  status == ETIME || status == ETIMEDOUT,
                  status, "cond_timedwait");
    if (!FilterSpuriousWakeups) break ;                 // previous semantics
    if (status == ETIME || status == ETIMEDOUT) break ;
    // We consume and ignore EINTR and spurious wakeups.
  }
  --_nParked ;
  if (_Event >= 0) {
     ret = OS_OK;
  }
  _Event = 0 ;
  status = pthread_mutex_unlock(_mutex);
  assert_status(status == 0, status, "mutex_unlock");
  assert (_nParked == 0, "invariant") ;
  return ret;
}

void os::PlatformEvent::unpark() {
  int v, AnyWaiters ;
  for (;;) {
      v = _Event ;
      if (v > 0) {
         // The LD of _Event could have reordered or be satisfied
         // by a read-aside from this processor's write buffer.
         // To avoid problems execute a barrier and then
         // ratify the value.
         OrderAccess::fence() ;
         if (_Event == v) return ;
         continue ;
      }
      if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
  }
  if (v < 0) {
     // Wait for the thread associated with the event to vacate
     int status = pthread_mutex_lock(_mutex);
     assert_status(status == 0, status, "mutex_lock");
     AnyWaiters = _nParked ;
     assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
     if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
        AnyWaiters = 0 ;
        pthread_cond_signal (_cond);
     }
     status = pthread_mutex_unlock(_mutex);
     assert_status(status == 0, status, "mutex_unlock");
     if (AnyWaiters != 0) {
        status = pthread_cond_signal(_cond);
        assert_status(status == 0, status, "cond_signal");
     }
  }

  // Note that we signal() _after dropping the lock for "immortal" Events.
  // This is safe and avoids a common class of  futile wakeups.  In rare
  // circumstances this can cause a thread to return prematurely from
  // cond_{timed}wait() but the spurious wakeup is benign and the victim will
  // simply re-test the condition and re-park itself.
}


// JSR166
// -------------------------------------------------------

/*
 * The solaris and linux implementations of park/unpark are fairly
 * conservative for now, but can be improved. They currently use a
 * mutex/condvar pair, plus a a count.
 * Park decrements count if > 0, else does a condvar wait.  Unpark
 * sets count to 1 and signals condvar.  Only one thread ever waits
 * on the condvar. Contention seen when trying to park implies that someone
 * is unparking you, so don't wait. And spurious returns are fine, so there
 * is no need to track notifications.
 */

#define MAX_SECS 100000000
/*
 * This code is common to linux and solaris and will be moved to a
 * common place in dolphin.
 *
 * The passed in time value is either a relative time in nanoseconds
 * or an absolute time in milliseconds. Either way it has to be unpacked
 * into suitable seconds and nanoseconds components and stored in the
 * given timespec structure.
 * Given time is a 64-bit value and the time_t used in the timespec is only
 * a signed-32-bit value (except on 64-bit Linux) we have to watch for
 * overflow if times way in the future are given. Further on Solaris versions
 * prior to 10 there is a restriction (see cond_timedwait) that the specified
 * number of seconds, in abstime, is less than current_time  + 100,000,000.
 * As it will be 28 years before "now + 100000000" will overflow we can
 * ignore overflow and just impose a hard-limit on seconds using the value
 * of "now + 100,000,000". This places a limit on the timeout of about 3.17
 * years from "now".
 */

static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
  assert (time > 0, "convertTime");

  struct timeval now;
  int status = gettimeofday(&now, NULL);
  assert(status == 0, "gettimeofday");

  time_t max_secs = now.tv_sec + MAX_SECS;

  if (isAbsolute) {
    jlong secs = time / 1000;
    if (secs > max_secs) {
      absTime->tv_sec = max_secs;
    }
    else {
      absTime->tv_sec = secs;
    }
    absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
  }
  else {
    jlong secs = time / NANOSECS_PER_SEC;
    if (secs >= MAX_SECS) {
      absTime->tv_sec = max_secs;
      absTime->tv_nsec = 0;
    }
    else {
      absTime->tv_sec = now.tv_sec + secs;
      absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
      if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
        absTime->tv_nsec -= NANOSECS_PER_SEC;
        ++absTime->tv_sec; // note: this must be <= max_secs
      }
    }
  }
  assert(absTime->tv_sec >= 0, "tv_sec < 0");
  assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
  assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
  assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
}

void Parker::park(bool isAbsolute, jlong time) {
  // Optional fast-path check:
  // Return immediately if a permit is available.
  if (_counter > 0) {
      _counter = 0 ;
      OrderAccess::fence();
      return ;
  }

  Thread* thread = Thread::current();
  assert(thread->is_Java_thread(), "Must be JavaThread");
  JavaThread *jt = (JavaThread *)thread;

  // Optional optimization -- avoid state transitions if there's an interrupt pending.
  // Check interrupt before trying to wait
  if (Thread::is_interrupted(thread, false)) {
    return;
  }

  // Next, demultiplex/decode time arguments
  timespec absTime;
  if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
    return;
  }
  if (time > 0) {
    unpackTime(&absTime, isAbsolute, time);
  }


  // Enter safepoint region
  // Beware of deadlocks such as 6317397.
  // The per-thread Parker:: mutex is a classic leaf-lock.
  // In particular a thread must never block on the Threads_lock while
  // holding the Parker:: mutex.  If safepoints are pending both the
  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
  ThreadBlockInVM tbivm(jt);

  // Don't wait if cannot get lock since interference arises from
  // unblocking.  Also. check interrupt before trying wait
  if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
    return;
  }

  int status ;
  if (_counter > 0)  { // no wait needed
    _counter = 0;
    status = pthread_mutex_unlock(_mutex);
    assert (status == 0, "invariant") ;
    OrderAccess::fence();
    return;
  }

#ifdef ASSERT
  // Don't catch signals while blocked; let the running threads have the signals.
  // (This allows a debugger to break into the running thread.)
  sigset_t oldsigs;
  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
#endif

  OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
  jt->set_suspend_equivalent();
  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()

  if (time == 0) {
    status = pthread_cond_wait (_cond, _mutex) ;
  } else {
    status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
    if (status != 0 && WorkAroundNPTLTimedWaitHang) {
      pthread_cond_destroy (_cond) ;
      pthread_cond_init    (_cond, NULL);
    }
  }
  assert_status(status == 0 || status == EINTR ||
                status == ETIME || status == ETIMEDOUT,
                status, "cond_timedwait");

#ifdef ASSERT
  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
#endif

  _counter = 0 ;
  status = pthread_mutex_unlock(_mutex) ;
  assert_status(status == 0, status, "invariant") ;
  // If externally suspended while waiting, re-suspend
  if (jt->handle_special_suspend_equivalent_condition()) {
    jt->java_suspend_self();
  }

  OrderAccess::fence();
}

void Parker::unpark() {
  int s, status ;
  status = pthread_mutex_lock(_mutex);
  assert (status == 0, "invariant") ;
  s = _counter;
  _counter = 1;
  if (s < 1) {
     if (WorkAroundNPTLTimedWaitHang) {
        status = pthread_cond_signal (_cond) ;
        assert (status == 0, "invariant") ;
        status = pthread_mutex_unlock(_mutex);
        assert (status == 0, "invariant") ;
     } else {
        status = pthread_mutex_unlock(_mutex);
        assert (status == 0, "invariant") ;
        status = pthread_cond_signal (_cond) ;
        assert (status == 0, "invariant") ;
     }
  } else {
    pthread_mutex_unlock(_mutex);
    assert (status == 0, "invariant") ;
  }
}


extern char** environ;

#ifndef __NR_fork
#define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
#endif

#ifndef __NR_execve
#define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
#endif

// Run the specified command in a separate process. Return its exit value,
// or -1 on failure (e.g. can't fork a new process).
// Unlike system(), this function can be called from signal handler. It
// doesn't block SIGINT et al.
int os::fork_and_exec(char* cmd) {
  const char * argv[4] = {"sh", "-c", cmd, NULL};

  // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
  // pthread_atfork handlers and reset pthread library. All we need is a
  // separate process to execve. Make a direct syscall to fork process.
  // On IA64 there's no fork syscall, we have to use fork() and hope for
  // the best...
  pid_t pid = NOT_IA64(syscall(__NR_fork);)
              IA64_ONLY(fork();)

  if (pid < 0) {
    // fork failed
    return -1;

  } else if (pid == 0) {
    // child process

    // execve() in LinuxThreads will call pthread_kill_other_threads_np()
    // first to kill every thread on the thread list. Because this list is
    // not reset by fork() (see notes above), execve() will instead kill
    // every thread in the parent process. We know this is the only thread
    // in the new process, so make a system call directly.
    // IA64 should use normal execve() from glibc to match the glibc fork()
    // above.
    NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
    IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)

    // execve failed
    _exit(-1);

  } else  {
    // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
    // care about the actual exit code, for now.

    int status;

    // Wait for the child process to exit.  This returns immediately if
    // the child has already exited. */
    while (waitpid(pid, &status, 0) < 0) {
        switch (errno) {
        case ECHILD: return 0;
        case EINTR: break;
        default: return -1;
        }
    }

    if (WIFEXITED(status)) {
       // The child exited normally; get its exit code.
       return WEXITSTATUS(status);
    } else if (WIFSIGNALED(status)) {
       // The child exited because of a signal
       // The best value to return is 0x80 + signal number,
       // because that is what all Unix shells do, and because
       // it allows callers to distinguish between process exit and
       // process death by signal.
       return 0x80 + WTERMSIG(status);
    } else {
       // Unknown exit code; pass it through
       return status;
    }
  }
}

// is_headless_jre()
//
// Test for the existence of xawt/libmawt.so or libawt_xawt.so
// in order to report if we are running in a headless jre
//
// Since JDK8 xawt/libmawt.so was moved into the same directory
// as libawt.so, and renamed libawt_xawt.so
//
bool os::is_headless_jre() {
    struct stat statbuf;
    char buf[MAXPATHLEN];
    char libmawtpath[MAXPATHLEN];
    const char *xawtstr  = "/xawt/libmawt.so";
    const char *new_xawtstr = "/libawt_xawt.so";
    char *p;

    // Get path to libjvm.so
    os::jvm_path(buf, sizeof(buf));

    // Get rid of libjvm.so
    p = strrchr(buf, '/');
    if (p == NULL) return false;
    else *p = '\0';

    // Get rid of client or server
    p = strrchr(buf, '/');
    if (p == NULL) return false;
    else *p = '\0';

    // check xawt/libmawt.so
    strcpy(libmawtpath, buf);
    strcat(libmawtpath, xawtstr);
    if (::stat(libmawtpath, &statbuf) == 0) return false;

    // check libawt_xawt.so
    strcpy(libmawtpath, buf);
    strcat(libmawtpath, new_xawtstr);
    if (::stat(libmawtpath, &statbuf) == 0) return false;

    return true;
}

// Get the default path to the core file
// Returns the length of the string
int os::get_core_path(char* buffer, size_t bufferSize) {
  const char* p = get_current_directory(buffer, bufferSize);

  if (p == NULL) {
    assert(p != NULL, "failed to get current directory");
    return 0;
  }

  return strlen(buffer);
}

#ifdef JAVASE_EMBEDDED
//
// A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
//
MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;

// ctor
//
MemNotifyThread::MemNotifyThread(int fd): Thread() {
  assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
  _fd = fd;

  if (os::create_thread(this, os::os_thread)) {
    _memnotify_thread = this;
    os::set_priority(this, NearMaxPriority);
    os::start_thread(this);
  }
}

// Where all the work gets done
//
void MemNotifyThread::run() {
  assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");

  // Set up the select arguments
  fd_set rfds;
  if (_fd != -1) {
    FD_ZERO(&rfds);
    FD_SET(_fd, &rfds);
  }

  // Now wait for the mem_notify device to wake up
  while (1) {
    // Wait for the mem_notify device to signal us..
    int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
    if (rc == -1) {
      perror("select!\n");
      break;
    } else if (rc) {
      //ssize_t free_before = os::available_memory();
      //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);

      // The kernel is telling us there is not much memory left...
      // try to do something about that

      // If we are not already in a GC, try one.
      if (!Universe::heap()->is_gc_active()) {
        Universe::heap()->collect(GCCause::_allocation_failure);

        //ssize_t free_after = os::available_memory();
        //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
        //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
      }
      // We might want to do something like the following if we find the GC's are not helping...
      // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
    }
  }
}

//
// See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
//
void MemNotifyThread::start() {
  int    fd;
  fd = open ("/dev/mem_notify", O_RDONLY, 0);
  if (fd < 0) {
      return;
  }

  if (memnotify_thread() == NULL) {
    new MemNotifyThread(fd);
  }
}
#endif // JAVASE_EMBEDDED