aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/x86/vm/stubGenerator_x86_32.cpp
blob: 3bf5dc5e0fcc8ede911feb11c74e58eb502e20e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
/*
 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "nativeInst_x86.hpp"
#include "oops/instanceOop.hpp"
#include "oops/method.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#include "utilities/top.hpp"
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif

// Declaration and definition of StubGenerator (no .hpp file).
// For a more detailed description of the stub routine structure
// see the comment in stubRoutines.hpp

#define __ _masm->
#define a__ ((Assembler*)_masm)->

#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif

#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")

const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
const int FPU_CNTRL_WRD_MASK = 0xFFFF;

// -------------------------------------------------------------------------------------------------------------------------
// Stub Code definitions

static address handle_unsafe_access() {
  JavaThread* thread = JavaThread::current();
  address pc  = thread->saved_exception_pc();
  // pc is the instruction which we must emulate
  // doing a no-op is fine:  return garbage from the load
  // therefore, compute npc
  address npc = Assembler::locate_next_instruction(pc);

  // request an async exception
  thread->set_pending_unsafe_access_error();

  // return address of next instruction to execute
  return npc;
}

class StubGenerator: public StubCodeGenerator {
 private:

#ifdef PRODUCT
#define inc_counter_np(counter) (0)
#else
  void inc_counter_np_(int& counter) {
    __ incrementl(ExternalAddress((address)&counter));
  }
#define inc_counter_np(counter) \
  BLOCK_COMMENT("inc_counter " #counter); \
  inc_counter_np_(counter);
#endif //PRODUCT

  void inc_copy_counter_np(BasicType t) {
#ifndef PRODUCT
    switch (t) {
    case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
    case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
    case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
    case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
    case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
    }
    ShouldNotReachHere();
#endif //PRODUCT
  }

  //------------------------------------------------------------------------------------------------------------------------
  // Call stubs are used to call Java from C
  //
  //    [ return_from_Java     ] <--- rsp
  //    [ argument word n      ]
  //      ...
  // -N [ argument word 1      ]
  // -7 [ Possible padding for stack alignment ]
  // -6 [ Possible padding for stack alignment ]
  // -5 [ Possible padding for stack alignment ]
  // -4 [ mxcsr save           ] <--- rsp_after_call
  // -3 [ saved rbx,            ]
  // -2 [ saved rsi            ]
  // -1 [ saved rdi            ]
  //  0 [ saved rbp,            ] <--- rbp,
  //  1 [ return address       ]
  //  2 [ ptr. to call wrapper ]
  //  3 [ result               ]
  //  4 [ result_type          ]
  //  5 [ method               ]
  //  6 [ entry_point          ]
  //  7 [ parameters           ]
  //  8 [ parameter_size       ]
  //  9 [ thread               ]


  address generate_call_stub(address& return_address) {
    StubCodeMark mark(this, "StubRoutines", "call_stub");
    address start = __ pc();

    // stub code parameters / addresses
    assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
    bool  sse_save = false;
    const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
    const int     locals_count_in_bytes  (4*wordSize);
    const Address mxcsr_save    (rbp, -4 * wordSize);
    const Address saved_rbx     (rbp, -3 * wordSize);
    const Address saved_rsi     (rbp, -2 * wordSize);
    const Address saved_rdi     (rbp, -1 * wordSize);
    const Address result        (rbp,  3 * wordSize);
    const Address result_type   (rbp,  4 * wordSize);
    const Address method        (rbp,  5 * wordSize);
    const Address entry_point   (rbp,  6 * wordSize);
    const Address parameters    (rbp,  7 * wordSize);
    const Address parameter_size(rbp,  8 * wordSize);
    const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
    sse_save =  UseSSE > 0;

    // stub code
    __ enter();
    __ movptr(rcx, parameter_size);              // parameter counter
    __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
    __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
    __ subptr(rsp, rcx);
    __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack

    // save rdi, rsi, & rbx, according to C calling conventions
    __ movptr(saved_rdi, rdi);
    __ movptr(saved_rsi, rsi);
    __ movptr(saved_rbx, rbx);
    // save and initialize %mxcsr
    if (sse_save) {
      Label skip_ldmx;
      __ stmxcsr(mxcsr_save);
      __ movl(rax, mxcsr_save);
      __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
      ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
      __ cmp32(rax, mxcsr_std);
      __ jcc(Assembler::equal, skip_ldmx);
      __ ldmxcsr(mxcsr_std);
      __ bind(skip_ldmx);
    }

    // make sure the control word is correct.
    __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));

#ifdef ASSERT
    // make sure we have no pending exceptions
    { Label L;
      __ movptr(rcx, thread);
      __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
      __ jcc(Assembler::equal, L);
      __ stop("StubRoutines::call_stub: entered with pending exception");
      __ bind(L);
    }
#endif

    // pass parameters if any
    BLOCK_COMMENT("pass parameters if any");
    Label parameters_done;
    __ movl(rcx, parameter_size);  // parameter counter
    __ testl(rcx, rcx);
    __ jcc(Assembler::zero, parameters_done);

    // parameter passing loop

    Label loop;
    // Copy Java parameters in reverse order (receiver last)
    // Note that the argument order is inverted in the process
    // source is rdx[rcx: N-1..0]
    // dest   is rsp[rbx: 0..N-1]

    __ movptr(rdx, parameters);          // parameter pointer
    __ xorptr(rbx, rbx);

    __ BIND(loop);

    // get parameter
    __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
    __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
                    Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
    __ increment(rbx);
    __ decrement(rcx);
    __ jcc(Assembler::notZero, loop);

    // call Java function
    __ BIND(parameters_done);
    __ movptr(rbx, method);           // get Method*
    __ movptr(rax, entry_point);      // get entry_point
    __ mov(rsi, rsp);                 // set sender sp
    BLOCK_COMMENT("call Java function");
    __ call(rax);

    BLOCK_COMMENT("call_stub_return_address:");
    return_address = __ pc();

#ifdef COMPILER2
    {
      Label L_skip;
      if (UseSSE >= 2) {
        __ verify_FPU(0, "call_stub_return");
      } else {
        for (int i = 1; i < 8; i++) {
          __ ffree(i);
        }

        // UseSSE <= 1 so double result should be left on TOS
        __ movl(rsi, result_type);
        __ cmpl(rsi, T_DOUBLE);
        __ jcc(Assembler::equal, L_skip);
        if (UseSSE == 0) {
          // UseSSE == 0 so float result should be left on TOS
          __ cmpl(rsi, T_FLOAT);
          __ jcc(Assembler::equal, L_skip);
        }
        __ ffree(0);
      }
      __ BIND(L_skip);
    }
#endif // COMPILER2

    // store result depending on type
    // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
    __ movptr(rdi, result);
    Label is_long, is_float, is_double, exit;
    __ movl(rsi, result_type);
    __ cmpl(rsi, T_LONG);
    __ jcc(Assembler::equal, is_long);
    __ cmpl(rsi, T_FLOAT);
    __ jcc(Assembler::equal, is_float);
    __ cmpl(rsi, T_DOUBLE);
    __ jcc(Assembler::equal, is_double);

    // handle T_INT case
    __ movl(Address(rdi, 0), rax);
    __ BIND(exit);

    // check that FPU stack is empty
    __ verify_FPU(0, "generate_call_stub");

    // pop parameters
    __ lea(rsp, rsp_after_call);

    // restore %mxcsr
    if (sse_save) {
      __ ldmxcsr(mxcsr_save);
    }

    // restore rdi, rsi and rbx,
    __ movptr(rbx, saved_rbx);
    __ movptr(rsi, saved_rsi);
    __ movptr(rdi, saved_rdi);
    __ addptr(rsp, 4*wordSize);

    // return
    __ pop(rbp);
    __ ret(0);

    // handle return types different from T_INT
    __ BIND(is_long);
    __ movl(Address(rdi, 0 * wordSize), rax);
    __ movl(Address(rdi, 1 * wordSize), rdx);
    __ jmp(exit);

    __ BIND(is_float);
    // interpreter uses xmm0 for return values
    if (UseSSE >= 1) {
      __ movflt(Address(rdi, 0), xmm0);
    } else {
      __ fstp_s(Address(rdi, 0));
    }
    __ jmp(exit);

    __ BIND(is_double);
    // interpreter uses xmm0 for return values
    if (UseSSE >= 2) {
      __ movdbl(Address(rdi, 0), xmm0);
    } else {
      __ fstp_d(Address(rdi, 0));
    }
    __ jmp(exit);

    return start;
  }


  //------------------------------------------------------------------------------------------------------------------------
  // Return point for a Java call if there's an exception thrown in Java code.
  // The exception is caught and transformed into a pending exception stored in
  // JavaThread that can be tested from within the VM.
  //
  // Note: Usually the parameters are removed by the callee. In case of an exception
  //       crossing an activation frame boundary, that is not the case if the callee
  //       is compiled code => need to setup the rsp.
  //
  // rax,: exception oop

  address generate_catch_exception() {
    StubCodeMark mark(this, "StubRoutines", "catch_exception");
    const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
    const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
    address start = __ pc();

    // get thread directly
    __ movptr(rcx, thread);
#ifdef ASSERT
    // verify that threads correspond
    { Label L;
      __ get_thread(rbx);
      __ cmpptr(rbx, rcx);
      __ jcc(Assembler::equal, L);
      __ stop("StubRoutines::catch_exception: threads must correspond");
      __ bind(L);
    }
#endif
    // set pending exception
    __ verify_oop(rax);
    __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
    __ lea(Address(rcx, Thread::exception_file_offset   ()),
           ExternalAddress((address)__FILE__));
    __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
    // complete return to VM
    assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
    __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));

    return start;
  }


  //------------------------------------------------------------------------------------------------------------------------
  // Continuation point for runtime calls returning with a pending exception.
  // The pending exception check happened in the runtime or native call stub.
  // The pending exception in Thread is converted into a Java-level exception.
  //
  // Contract with Java-level exception handlers:
  // rax: exception
  // rdx: throwing pc
  //
  // NOTE: At entry of this stub, exception-pc must be on stack !!

  address generate_forward_exception() {
    StubCodeMark mark(this, "StubRoutines", "forward exception");
    address start = __ pc();
    const Register thread = rcx;

    // other registers used in this stub
    const Register exception_oop = rax;
    const Register handler_addr  = rbx;
    const Register exception_pc  = rdx;

    // Upon entry, the sp points to the return address returning into Java
    // (interpreted or compiled) code; i.e., the return address becomes the
    // throwing pc.
    //
    // Arguments pushed before the runtime call are still on the stack but
    // the exception handler will reset the stack pointer -> ignore them.
    // A potential result in registers can be ignored as well.

#ifdef ASSERT
    // make sure this code is only executed if there is a pending exception
    { Label L;
      __ get_thread(thread);
      __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
      __ jcc(Assembler::notEqual, L);
      __ stop("StubRoutines::forward exception: no pending exception (1)");
      __ bind(L);
    }
#endif

    // compute exception handler into rbx,
    __ get_thread(thread);
    __ movptr(exception_pc, Address(rsp, 0));
    BLOCK_COMMENT("call exception_handler_for_return_address");
    __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
    __ mov(handler_addr, rax);

    // setup rax & rdx, remove return address & clear pending exception
    __ get_thread(thread);
    __ pop(exception_pc);
    __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
    __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);

#ifdef ASSERT
    // make sure exception is set
    { Label L;
      __ testptr(exception_oop, exception_oop);
      __ jcc(Assembler::notEqual, L);
      __ stop("StubRoutines::forward exception: no pending exception (2)");
      __ bind(L);
    }
#endif

    // Verify that there is really a valid exception in RAX.
    __ verify_oop(exception_oop);

    // continue at exception handler (return address removed)
    // rax: exception
    // rbx: exception handler
    // rdx: throwing pc
    __ jmp(handler_addr);

    return start;
  }


  //----------------------------------------------------------------------------------------------------
  // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
  //
  // xchg exists as far back as 8086, lock needed for MP only
  // Stack layout immediately after call:
  //
  // 0 [ret addr ] <--- rsp
  // 1 [  ex     ]
  // 2 [  dest   ]
  //
  // Result:   *dest <- ex, return (old *dest)
  //
  // Note: win32 does not currently use this code

  address generate_atomic_xchg() {
    StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
    address start = __ pc();

    __ push(rdx);
    Address exchange(rsp, 2 * wordSize);
    Address dest_addr(rsp, 3 * wordSize);
    __ movl(rax, exchange);
    __ movptr(rdx, dest_addr);
    __ xchgl(rax, Address(rdx, 0));
    __ pop(rdx);
    __ ret(0);

    return start;
  }

  //----------------------------------------------------------------------------------------------------
  // Support for void verify_mxcsr()
  //
  // This routine is used with -Xcheck:jni to verify that native
  // JNI code does not return to Java code without restoring the
  // MXCSR register to our expected state.


  address generate_verify_mxcsr() {
    StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
    address start = __ pc();

    const Address mxcsr_save(rsp, 0);

    if (CheckJNICalls && UseSSE > 0 ) {
      Label ok_ret;
      ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
      __ push(rax);
      __ subptr(rsp, wordSize);      // allocate a temp location
      __ stmxcsr(mxcsr_save);
      __ movl(rax, mxcsr_save);
      __ andl(rax, MXCSR_MASK);
      __ cmp32(rax, mxcsr_std);
      __ jcc(Assembler::equal, ok_ret);

      __ warn("MXCSR changed by native JNI code.");

      __ ldmxcsr(mxcsr_std);

      __ bind(ok_ret);
      __ addptr(rsp, wordSize);
      __ pop(rax);
    }

    __ ret(0);

    return start;
  }


  //---------------------------------------------------------------------------
  // Support for void verify_fpu_cntrl_wrd()
  //
  // This routine is used with -Xcheck:jni to verify that native
  // JNI code does not return to Java code without restoring the
  // FP control word to our expected state.

  address generate_verify_fpu_cntrl_wrd() {
    StubCodeMark mark(this, "StubRoutines", "verify_spcw");
    address start = __ pc();

    const Address fpu_cntrl_wrd_save(rsp, 0);

    if (CheckJNICalls) {
      Label ok_ret;
      __ push(rax);
      __ subptr(rsp, wordSize);      // allocate a temp location
      __ fnstcw(fpu_cntrl_wrd_save);
      __ movl(rax, fpu_cntrl_wrd_save);
      __ andl(rax, FPU_CNTRL_WRD_MASK);
      ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
      __ cmp32(rax, fpu_std);
      __ jcc(Assembler::equal, ok_ret);

      __ warn("Floating point control word changed by native JNI code.");

      __ fldcw(fpu_std);

      __ bind(ok_ret);
      __ addptr(rsp, wordSize);
      __ pop(rax);
    }

    __ ret(0);

    return start;
  }

  //---------------------------------------------------------------------------
  // Wrapper for slow-case handling of double-to-integer conversion
  // d2i or f2i fast case failed either because it is nan or because
  // of under/overflow.
  // Input:  FPU TOS: float value
  // Output: rax, (rdx): integer (long) result

  address generate_d2i_wrapper(BasicType t, address fcn) {
    StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
    address start = __ pc();

  // Capture info about frame layout
  enum layout { FPUState_off         = 0,
                rbp_off              = FPUStateSizeInWords,
                rdi_off,
                rsi_off,
                rcx_off,
                rbx_off,
                saved_argument_off,
                saved_argument_off2, // 2nd half of double
                framesize
  };

  assert(FPUStateSizeInWords == 27, "update stack layout");

    // Save outgoing argument to stack across push_FPU_state()
    __ subptr(rsp, wordSize * 2);
    __ fstp_d(Address(rsp, 0));

    // Save CPU & FPU state
    __ push(rbx);
    __ push(rcx);
    __ push(rsi);
    __ push(rdi);
    __ push(rbp);
    __ push_FPU_state();

    // push_FPU_state() resets the FP top of stack
    // Load original double into FP top of stack
    __ fld_d(Address(rsp, saved_argument_off * wordSize));
    // Store double into stack as outgoing argument
    __ subptr(rsp, wordSize*2);
    __ fst_d(Address(rsp, 0));

    // Prepare FPU for doing math in C-land
    __ empty_FPU_stack();
    // Call the C code to massage the double.  Result in EAX
    if (t == T_INT)
      { BLOCK_COMMENT("SharedRuntime::d2i"); }
    else if (t == T_LONG)
      { BLOCK_COMMENT("SharedRuntime::d2l"); }
    __ call_VM_leaf( fcn, 2 );

    // Restore CPU & FPU state
    __ pop_FPU_state();
    __ pop(rbp);
    __ pop(rdi);
    __ pop(rsi);
    __ pop(rcx);
    __ pop(rbx);
    __ addptr(rsp, wordSize * 2);

    __ ret(0);

    return start;
  }


  //---------------------------------------------------------------------------
  // The following routine generates a subroutine to throw an asynchronous
  // UnknownError when an unsafe access gets a fault that could not be
  // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
  address generate_handler_for_unsafe_access() {
    StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
    address start = __ pc();

    __ push(0);                       // hole for return address-to-be
    __ pusha();                       // push registers
    Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
    BLOCK_COMMENT("call handle_unsafe_access");
    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
    __ movptr(next_pc, rax);          // stuff next address
    __ popa();
    __ ret(0);                        // jump to next address

    return start;
  }


  //----------------------------------------------------------------------------------------------------
  // Non-destructive plausibility checks for oops

  address generate_verify_oop() {
    StubCodeMark mark(this, "StubRoutines", "verify_oop");
    address start = __ pc();

    // Incoming arguments on stack after saving rax,:
    //
    // [tos    ]: saved rdx
    // [tos + 1]: saved EFLAGS
    // [tos + 2]: return address
    // [tos + 3]: char* error message
    // [tos + 4]: oop   object to verify
    // [tos + 5]: saved rax, - saved by caller and bashed

    Label exit, error;
    __ pushf();
    __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
    __ push(rdx);                                // save rdx
    // make sure object is 'reasonable'
    __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
    __ testptr(rax, rax);
    __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok

    // Check if the oop is in the right area of memory
    const int oop_mask = Universe::verify_oop_mask();
    const int oop_bits = Universe::verify_oop_bits();
    __ mov(rdx, rax);
    __ andptr(rdx, oop_mask);
    __ cmpptr(rdx, oop_bits);
    __ jcc(Assembler::notZero, error);

    // make sure klass is 'reasonable', which is not zero.
    __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
    __ testptr(rax, rax);
    __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
    // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers

    // return if everything seems ok
    __ bind(exit);
    __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
    __ pop(rdx);                                 // restore rdx
    __ popf();                                   // restore EFLAGS
    __ ret(3 * wordSize);                        // pop arguments

    // handle errors
    __ bind(error);
    __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
    __ pop(rdx);                                 // get saved rdx back
    __ popf();                                   // get saved EFLAGS off stack -- will be ignored
    __ pusha();                                  // push registers (eip = return address & msg are already pushed)
    BLOCK_COMMENT("call MacroAssembler::debug");
    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
    __ popa();
    __ ret(3 * wordSize);                        // pop arguments
    return start;
  }

  //
  //  Generate pre-barrier for array stores
  //
  //  Input:
  //     start   -  starting address
  //     count   -  element count
  void  gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
    assert_different_registers(start, count);
    BarrierSet* bs = Universe::heap()->barrier_set();
    switch (bs->kind()) {
      case BarrierSet::G1SATBCT:
      case BarrierSet::G1SATBCTLogging:
        // With G1, don't generate the call if we statically know that the target in uninitialized
        if (!uninitialized_target) {
           __ pusha();                      // push registers
           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
                           start, count);
           __ popa();
         }
        break;
      case BarrierSet::CardTableModRef:
      case BarrierSet::CardTableExtension:
      case BarrierSet::ModRef:
        break;
      default      :
        ShouldNotReachHere();

    }
  }


  //
  // Generate a post-barrier for an array store
  //
  //     start    -  starting address
  //     count    -  element count
  //
  //  The two input registers are overwritten.
  //
  void  gen_write_ref_array_post_barrier(Register start, Register count) {
    BarrierSet* bs = Universe::heap()->barrier_set();
    assert_different_registers(start, count);
    switch (bs->kind()) {
      case BarrierSet::G1SATBCT:
      case BarrierSet::G1SATBCTLogging:
        {
          __ pusha();                      // push registers
          __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
                          start, count);
          __ popa();
        }
        break;

      case BarrierSet::CardTableModRef:
      case BarrierSet::CardTableExtension:
        {
          CardTableModRefBS* ct = (CardTableModRefBS*)bs;
          assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");

          Label L_loop;
          const Register end = count;  // elements count; end == start+count-1
          assert_different_registers(start, end);

          __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
          __ shrptr(start, CardTableModRefBS::card_shift);
          __ shrptr(end,   CardTableModRefBS::card_shift);
          __ subptr(end, start); // end --> count
        __ BIND(L_loop);
          intptr_t disp = (intptr_t) ct->byte_map_base;
          Address cardtable(start, count, Address::times_1, disp);
          __ movb(cardtable, 0);
          __ decrement(count);
          __ jcc(Assembler::greaterEqual, L_loop);
        }
        break;
      case BarrierSet::ModRef:
        break;
      default      :
        ShouldNotReachHere();

    }
  }


  // Copy 64 bytes chunks
  //
  // Inputs:
  //   from        - source array address
  //   to_from     - destination array address - from
  //   qword_count - 8-bytes element count, negative
  //
  void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
    assert( UseSSE >= 2, "supported cpu only" );
    Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
    // Copy 64-byte chunks
    __ jmpb(L_copy_64_bytes);
    __ align(OptoLoopAlignment);
  __ BIND(L_copy_64_bytes_loop);

    if(UseUnalignedLoadStores) {
      __ movdqu(xmm0, Address(from, 0));
      __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
      __ movdqu(xmm1, Address(from, 16));
      __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
      __ movdqu(xmm2, Address(from, 32));
      __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
      __ movdqu(xmm3, Address(from, 48));
      __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);

    } else {
      __ movq(xmm0, Address(from, 0));
      __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
      __ movq(xmm1, Address(from, 8));
      __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
      __ movq(xmm2, Address(from, 16));
      __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
      __ movq(xmm3, Address(from, 24));
      __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
      __ movq(xmm4, Address(from, 32));
      __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
      __ movq(xmm5, Address(from, 40));
      __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
      __ movq(xmm6, Address(from, 48));
      __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
      __ movq(xmm7, Address(from, 56));
      __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
    }

    __ addl(from, 64);
  __ BIND(L_copy_64_bytes);
    __ subl(qword_count, 8);
    __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
    __ addl(qword_count, 8);
    __ jccb(Assembler::zero, L_exit);
    //
    // length is too short, just copy qwords
    //
  __ BIND(L_copy_8_bytes);
    __ movq(xmm0, Address(from, 0));
    __ movq(Address(from, to_from, Address::times_1), xmm0);
    __ addl(from, 8);
    __ decrement(qword_count);
    __ jcc(Assembler::greater, L_copy_8_bytes);
  __ BIND(L_exit);
  }

  // Copy 64 bytes chunks
  //
  // Inputs:
  //   from        - source array address
  //   to_from     - destination array address - from
  //   qword_count - 8-bytes element count, negative
  //
  void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
    assert( VM_Version::supports_mmx(), "supported cpu only" );
    Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
    // Copy 64-byte chunks
    __ jmpb(L_copy_64_bytes);
    __ align(OptoLoopAlignment);
  __ BIND(L_copy_64_bytes_loop);
    __ movq(mmx0, Address(from, 0));
    __ movq(mmx1, Address(from, 8));
    __ movq(mmx2, Address(from, 16));
    __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
    __ movq(mmx3, Address(from, 24));
    __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
    __ movq(mmx4, Address(from, 32));
    __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
    __ movq(mmx5, Address(from, 40));
    __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
    __ movq(mmx6, Address(from, 48));
    __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
    __ movq(mmx7, Address(from, 56));
    __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
    __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
    __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
    __ addptr(from, 64);
  __ BIND(L_copy_64_bytes);
    __ subl(qword_count, 8);
    __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
    __ addl(qword_count, 8);
    __ jccb(Assembler::zero, L_exit);
    //
    // length is too short, just copy qwords
    //
  __ BIND(L_copy_8_bytes);
    __ movq(mmx0, Address(from, 0));
    __ movq(Address(from, to_from, Address::times_1), mmx0);
    __ addptr(from, 8);
    __ decrement(qword_count);
    __ jcc(Assembler::greater, L_copy_8_bytes);
  __ BIND(L_exit);
    __ emms();
  }

  address generate_disjoint_copy(BasicType t, bool aligned,
                                 Address::ScaleFactor sf,
                                 address* entry, const char *name,
                                 bool dest_uninitialized = false) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
    Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;

    int shift = Address::times_ptr - sf;

    const Register from     = rsi;  // source array address
    const Register to       = rdi;  // destination array address
    const Register count    = rcx;  // elements count
    const Register to_from  = to;   // (to - from)
    const Register saved_to = rdx;  // saved destination array address

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    __ push(rsi);
    __ push(rdi);
    __ movptr(from , Address(rsp, 12+ 4));
    __ movptr(to   , Address(rsp, 12+ 8));
    __ movl(count, Address(rsp, 12+ 12));

    if (entry != NULL) {
      *entry = __ pc(); // Entry point from conjoint arraycopy stub.
      BLOCK_COMMENT("Entry:");
    }

    if (t == T_OBJECT) {
      __ testl(count, count);
      __ jcc(Assembler::zero, L_0_count);
      gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
      __ mov(saved_to, to);          // save 'to'
    }

    __ subptr(to, from); // to --> to_from
    __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
    __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
    if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
      // align source address at 4 bytes address boundary
      if (t == T_BYTE) {
        // One byte misalignment happens only for byte arrays
        __ testl(from, 1);
        __ jccb(Assembler::zero, L_skip_align1);
        __ movb(rax, Address(from, 0));
        __ movb(Address(from, to_from, Address::times_1, 0), rax);
        __ increment(from);
        __ decrement(count);
      __ BIND(L_skip_align1);
      }
      // Two bytes misalignment happens only for byte and short (char) arrays
      __ testl(from, 2);
      __ jccb(Assembler::zero, L_skip_align2);
      __ movw(rax, Address(from, 0));
      __ movw(Address(from, to_from, Address::times_1, 0), rax);
      __ addptr(from, 2);
      __ subl(count, 1<<(shift-1));
    __ BIND(L_skip_align2);
    }
    if (!VM_Version::supports_mmx()) {
      __ mov(rax, count);      // save 'count'
      __ shrl(count, shift); // bytes count
      __ addptr(to_from, from);// restore 'to'
      __ rep_mov();
      __ subptr(to_from, from);// restore 'to_from'
      __ mov(count, rax);      // restore 'count'
      __ jmpb(L_copy_2_bytes); // all dwords were copied
    } else {
      if (!UseUnalignedLoadStores) {
        // align to 8 bytes, we know we are 4 byte aligned to start
        __ testptr(from, 4);
        __ jccb(Assembler::zero, L_copy_64_bytes);
        __ movl(rax, Address(from, 0));
        __ movl(Address(from, to_from, Address::times_1, 0), rax);
        __ addptr(from, 4);
        __ subl(count, 1<<shift);
      }
    __ BIND(L_copy_64_bytes);
      __ mov(rax, count);
      __ shrl(rax, shift+1);  // 8 bytes chunk count
      //
      // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
      //
      if (UseXMMForArrayCopy) {
        xmm_copy_forward(from, to_from, rax);
      } else {
        mmx_copy_forward(from, to_from, rax);
      }
    }
    // copy tailing dword
  __ BIND(L_copy_4_bytes);
    __ testl(count, 1<<shift);
    __ jccb(Assembler::zero, L_copy_2_bytes);
    __ movl(rax, Address(from, 0));
    __ movl(Address(from, to_from, Address::times_1, 0), rax);
    if (t == T_BYTE || t == T_SHORT) {
      __ addptr(from, 4);
    __ BIND(L_copy_2_bytes);
      // copy tailing word
      __ testl(count, 1<<(shift-1));
      __ jccb(Assembler::zero, L_copy_byte);
      __ movw(rax, Address(from, 0));
      __ movw(Address(from, to_from, Address::times_1, 0), rax);
      if (t == T_BYTE) {
        __ addptr(from, 2);
      __ BIND(L_copy_byte);
        // copy tailing byte
        __ testl(count, 1);
        __ jccb(Assembler::zero, L_exit);
        __ movb(rax, Address(from, 0));
        __ movb(Address(from, to_from, Address::times_1, 0), rax);
      __ BIND(L_exit);
      } else {
      __ BIND(L_copy_byte);
      }
    } else {
    __ BIND(L_copy_2_bytes);
    }

    if (t == T_OBJECT) {
      __ movl(count, Address(rsp, 12+12)); // reread 'count'
      __ mov(to, saved_to); // restore 'to'
      gen_write_ref_array_post_barrier(to, count);
    __ BIND(L_0_count);
    }
    inc_copy_counter_np(t);
    __ pop(rdi);
    __ pop(rsi);
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ xorptr(rax, rax); // return 0
    __ ret(0);
    return start;
  }


  address generate_fill(BasicType t, bool aligned, const char *name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    BLOCK_COMMENT("Entry:");

    const Register to       = rdi;  // source array address
    const Register value    = rdx;  // value
    const Register count    = rsi;  // elements count

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    __ push(rsi);
    __ push(rdi);
    __ movptr(to   , Address(rsp, 12+ 4));
    __ movl(value, Address(rsp, 12+ 8));
    __ movl(count, Address(rsp, 12+ 12));

    __ generate_fill(t, aligned, to, value, count, rax, xmm0);

    __ pop(rdi);
    __ pop(rsi);
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);
    return start;
  }

  address generate_conjoint_copy(BasicType t, bool aligned,
                                 Address::ScaleFactor sf,
                                 address nooverlap_target,
                                 address* entry, const char *name,
                                 bool dest_uninitialized = false) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
    Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;

    int shift = Address::times_ptr - sf;

    const Register src   = rax;  // source array address
    const Register dst   = rdx;  // destination array address
    const Register from  = rsi;  // source array address
    const Register to    = rdi;  // destination array address
    const Register count = rcx;  // elements count
    const Register end   = rax;  // array end address

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    __ push(rsi);
    __ push(rdi);
    __ movptr(src  , Address(rsp, 12+ 4));   // from
    __ movptr(dst  , Address(rsp, 12+ 8));   // to
    __ movl2ptr(count, Address(rsp, 12+12)); // count

    if (entry != NULL) {
      *entry = __ pc(); // Entry point from generic arraycopy stub.
      BLOCK_COMMENT("Entry:");
    }

    // nooverlap_target expects arguments in rsi and rdi.
    __ mov(from, src);
    __ mov(to  , dst);

    // arrays overlap test: dispatch to disjoint stub if necessary.
    RuntimeAddress nooverlap(nooverlap_target);
    __ cmpptr(dst, src);
    __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
    __ jump_cc(Assembler::belowEqual, nooverlap);
    __ cmpptr(dst, end);
    __ jump_cc(Assembler::aboveEqual, nooverlap);

    if (t == T_OBJECT) {
      __ testl(count, count);
      __ jcc(Assembler::zero, L_0_count);
      gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
    }

    // copy from high to low
    __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
    __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
    if (t == T_BYTE || t == T_SHORT) {
      // Align the end of destination array at 4 bytes address boundary
      __ lea(end, Address(dst, count, sf, 0));
      if (t == T_BYTE) {
        // One byte misalignment happens only for byte arrays
        __ testl(end, 1);
        __ jccb(Assembler::zero, L_skip_align1);
        __ decrement(count);
        __ movb(rdx, Address(from, count, sf, 0));
        __ movb(Address(to, count, sf, 0), rdx);
      __ BIND(L_skip_align1);
      }
      // Two bytes misalignment happens only for byte and short (char) arrays
      __ testl(end, 2);
      __ jccb(Assembler::zero, L_skip_align2);
      __ subptr(count, 1<<(shift-1));
      __ movw(rdx, Address(from, count, sf, 0));
      __ movw(Address(to, count, sf, 0), rdx);
    __ BIND(L_skip_align2);
      __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
      __ jcc(Assembler::below, L_copy_4_bytes);
    }

    if (!VM_Version::supports_mmx()) {
      __ std();
      __ mov(rax, count); // Save 'count'
      __ mov(rdx, to);    // Save 'to'
      __ lea(rsi, Address(from, count, sf, -4));
      __ lea(rdi, Address(to  , count, sf, -4));
      __ shrptr(count, shift); // bytes count
      __ rep_mov();
      __ cld();
      __ mov(count, rax); // restore 'count'
      __ andl(count, (1<<shift)-1);      // mask the number of rest elements
      __ movptr(from, Address(rsp, 12+4)); // reread 'from'
      __ mov(to, rdx);   // restore 'to'
      __ jmpb(L_copy_2_bytes); // all dword were copied
   } else {
      // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
      __ testptr(end, 4);
      __ jccb(Assembler::zero, L_copy_8_bytes);
      __ subl(count, 1<<shift);
      __ movl(rdx, Address(from, count, sf, 0));
      __ movl(Address(to, count, sf, 0), rdx);
      __ jmpb(L_copy_8_bytes);

      __ align(OptoLoopAlignment);
      // Move 8 bytes
    __ BIND(L_copy_8_bytes_loop);
      if (UseXMMForArrayCopy) {
        __ movq(xmm0, Address(from, count, sf, 0));
        __ movq(Address(to, count, sf, 0), xmm0);
      } else {
        __ movq(mmx0, Address(from, count, sf, 0));
        __ movq(Address(to, count, sf, 0), mmx0);
      }
    __ BIND(L_copy_8_bytes);
      __ subl(count, 2<<shift);
      __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
      __ addl(count, 2<<shift);
      if (!UseXMMForArrayCopy) {
        __ emms();
      }
    }
  __ BIND(L_copy_4_bytes);
    // copy prefix qword
    __ testl(count, 1<<shift);
    __ jccb(Assembler::zero, L_copy_2_bytes);
    __ movl(rdx, Address(from, count, sf, -4));
    __ movl(Address(to, count, sf, -4), rdx);

    if (t == T_BYTE || t == T_SHORT) {
        __ subl(count, (1<<shift));
      __ BIND(L_copy_2_bytes);
        // copy prefix dword
        __ testl(count, 1<<(shift-1));
        __ jccb(Assembler::zero, L_copy_byte);
        __ movw(rdx, Address(from, count, sf, -2));
        __ movw(Address(to, count, sf, -2), rdx);
        if (t == T_BYTE) {
          __ subl(count, 1<<(shift-1));
        __ BIND(L_copy_byte);
          // copy prefix byte
          __ testl(count, 1);
          __ jccb(Assembler::zero, L_exit);
          __ movb(rdx, Address(from, 0));
          __ movb(Address(to, 0), rdx);
        __ BIND(L_exit);
        } else {
        __ BIND(L_copy_byte);
        }
    } else {
    __ BIND(L_copy_2_bytes);
    }
    if (t == T_OBJECT) {
      __ movl2ptr(count, Address(rsp, 12+12)); // reread count
      gen_write_ref_array_post_barrier(to, count);
    __ BIND(L_0_count);
    }
    inc_copy_counter_np(t);
    __ pop(rdi);
    __ pop(rsi);
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ xorptr(rax, rax); // return 0
    __ ret(0);
    return start;
  }


  address generate_disjoint_long_copy(address* entry, const char *name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_copy_8_bytes, L_copy_8_bytes_loop;
    const Register from       = rax;  // source array address
    const Register to         = rdx;  // destination array address
    const Register count      = rcx;  // elements count
    const Register to_from    = rdx;  // (to - from)

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    __ movptr(from , Address(rsp, 8+0));       // from
    __ movptr(to   , Address(rsp, 8+4));       // to
    __ movl2ptr(count, Address(rsp, 8+8));     // count

    *entry = __ pc(); // Entry point from conjoint arraycopy stub.
    BLOCK_COMMENT("Entry:");

    __ subptr(to, from); // to --> to_from
    if (VM_Version::supports_mmx()) {
      if (UseXMMForArrayCopy) {
        xmm_copy_forward(from, to_from, count);
      } else {
        mmx_copy_forward(from, to_from, count);
      }
    } else {
      __ jmpb(L_copy_8_bytes);
      __ align(OptoLoopAlignment);
    __ BIND(L_copy_8_bytes_loop);
      __ fild_d(Address(from, 0));
      __ fistp_d(Address(from, to_from, Address::times_1));
      __ addptr(from, 8);
    __ BIND(L_copy_8_bytes);
      __ decrement(count);
      __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
    }
    inc_copy_counter_np(T_LONG);
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ xorptr(rax, rax); // return 0
    __ ret(0);
    return start;
  }

  address generate_conjoint_long_copy(address nooverlap_target,
                                      address* entry, const char *name) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_copy_8_bytes, L_copy_8_bytes_loop;
    const Register from       = rax;  // source array address
    const Register to         = rdx;  // destination array address
    const Register count      = rcx;  // elements count
    const Register end_from   = rax;  // source array end address

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    __ movptr(from , Address(rsp, 8+0));       // from
    __ movptr(to   , Address(rsp, 8+4));       // to
    __ movl2ptr(count, Address(rsp, 8+8));     // count

    *entry = __ pc(); // Entry point from generic arraycopy stub.
    BLOCK_COMMENT("Entry:");

    // arrays overlap test
    __ cmpptr(to, from);
    RuntimeAddress nooverlap(nooverlap_target);
    __ jump_cc(Assembler::belowEqual, nooverlap);
    __ lea(end_from, Address(from, count, Address::times_8, 0));
    __ cmpptr(to, end_from);
    __ movptr(from, Address(rsp, 8));  // from
    __ jump_cc(Assembler::aboveEqual, nooverlap);

    __ jmpb(L_copy_8_bytes);

    __ align(OptoLoopAlignment);
  __ BIND(L_copy_8_bytes_loop);
    if (VM_Version::supports_mmx()) {
      if (UseXMMForArrayCopy) {
        __ movq(xmm0, Address(from, count, Address::times_8));
        __ movq(Address(to, count, Address::times_8), xmm0);
      } else {
        __ movq(mmx0, Address(from, count, Address::times_8));
        __ movq(Address(to, count, Address::times_8), mmx0);
      }
    } else {
      __ fild_d(Address(from, count, Address::times_8));
      __ fistp_d(Address(to, count, Address::times_8));
    }
  __ BIND(L_copy_8_bytes);
    __ decrement(count);
    __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);

    if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
      __ emms();
    }
    inc_copy_counter_np(T_LONG);
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ xorptr(rax, rax); // return 0
    __ ret(0);
    return start;
  }


  // Helper for generating a dynamic type check.
  // The sub_klass must be one of {rbx, rdx, rsi}.
  // The temp is killed.
  void generate_type_check(Register sub_klass,
                           Address& super_check_offset_addr,
                           Address& super_klass_addr,
                           Register temp,
                           Label* L_success, Label* L_failure) {
    BLOCK_COMMENT("type_check:");

    Label L_fallthrough;
#define LOCAL_JCC(assembler_con, label_ptr)                             \
    if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
    else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/

    // The following is a strange variation of the fast path which requires
    // one less register, because needed values are on the argument stack.
    // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
    //                                  L_success, L_failure, NULL);
    assert_different_registers(sub_klass, temp);

    int sc_offset = in_bytes(Klass::secondary_super_cache_offset());

    // if the pointers are equal, we are done (e.g., String[] elements)
    __ cmpptr(sub_klass, super_klass_addr);
    LOCAL_JCC(Assembler::equal, L_success);

    // check the supertype display:
    __ movl2ptr(temp, super_check_offset_addr);
    Address super_check_addr(sub_klass, temp, Address::times_1, 0);
    __ movptr(temp, super_check_addr); // load displayed supertype
    __ cmpptr(temp, super_klass_addr); // test the super type
    LOCAL_JCC(Assembler::equal, L_success);

    // if it was a primary super, we can just fail immediately
    __ cmpl(super_check_offset_addr, sc_offset);
    LOCAL_JCC(Assembler::notEqual, L_failure);

    // The repne_scan instruction uses fixed registers, which will get spilled.
    // We happen to know this works best when super_klass is in rax.
    Register super_klass = temp;
    __ movptr(super_klass, super_klass_addr);
    __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
                                     L_success, L_failure);

    __ bind(L_fallthrough);

    if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
    if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }

#undef LOCAL_JCC
  }

  //
  //  Generate checkcasting array copy stub
  //
  //  Input:
  //    4(rsp)   - source array address
  //    8(rsp)   - destination array address
  //   12(rsp)   - element count, can be zero
  //   16(rsp)   - size_t ckoff (super_check_offset)
  //   20(rsp)   - oop ckval (super_klass)
  //
  //  Output:
  //    rax, ==  0  -  success
  //    rax, == -1^K - failure, where K is partial transfer count
  //
  address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    Label L_load_element, L_store_element, L_do_card_marks, L_done;

    // register use:
    //  rax, rdx, rcx -- loop control (end_from, end_to, count)
    //  rdi, rsi      -- element access (oop, klass)
    //  rbx,           -- temp
    const Register from       = rax;    // source array address
    const Register to         = rdx;    // destination array address
    const Register length     = rcx;    // elements count
    const Register elem       = rdi;    // each oop copied
    const Register elem_klass = rsi;    // each elem._klass (sub_klass)
    const Register temp       = rbx;    // lone remaining temp

    __ enter(); // required for proper stackwalking of RuntimeStub frame

    __ push(rsi);
    __ push(rdi);
    __ push(rbx);

    Address   from_arg(rsp, 16+ 4);     // from
    Address     to_arg(rsp, 16+ 8);     // to
    Address length_arg(rsp, 16+12);     // elements count
    Address  ckoff_arg(rsp, 16+16);     // super_check_offset
    Address  ckval_arg(rsp, 16+20);     // super_klass

    // Load up:
    __ movptr(from,     from_arg);
    __ movptr(to,         to_arg);
    __ movl2ptr(length, length_arg);

    if (entry != NULL) {
      *entry = __ pc(); // Entry point from generic arraycopy stub.
      BLOCK_COMMENT("Entry:");
    }

    //---------------------------------------------------------------
    // Assembler stub will be used for this call to arraycopy
    // if the two arrays are subtypes of Object[] but the
    // destination array type is not equal to or a supertype
    // of the source type.  Each element must be separately
    // checked.

    // Loop-invariant addresses.  They are exclusive end pointers.
    Address end_from_addr(from, length, Address::times_ptr, 0);
    Address   end_to_addr(to,   length, Address::times_ptr, 0);

    Register end_from = from;           // re-use
    Register end_to   = to;             // re-use
    Register count    = length;         // re-use

    // Loop-variant addresses.  They assume post-incremented count < 0.
    Address from_element_addr(end_from, count, Address::times_ptr, 0);
    Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
    Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());

    // Copy from low to high addresses, indexed from the end of each array.
    gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
    __ lea(end_from, end_from_addr);
    __ lea(end_to,   end_to_addr);
    assert(length == count, "");        // else fix next line:
    __ negptr(count);                   // negate and test the length
    __ jccb(Assembler::notZero, L_load_element);

    // Empty array:  Nothing to do.
    __ xorptr(rax, rax);                  // return 0 on (trivial) success
    __ jmp(L_done);

    // ======== begin loop ========
    // (Loop is rotated; its entry is L_load_element.)
    // Loop control:
    //   for (count = -count; count != 0; count++)
    // Base pointers src, dst are biased by 8*count,to last element.
    __ align(OptoLoopAlignment);

    __ BIND(L_store_element);
    __ movptr(to_element_addr, elem);     // store the oop
    __ increment(count);                // increment the count toward zero
    __ jccb(Assembler::zero, L_do_card_marks);

    // ======== loop entry is here ========
    __ BIND(L_load_element);
    __ movptr(elem, from_element_addr);   // load the oop
    __ testptr(elem, elem);
    __ jccb(Assembler::zero, L_store_element);

    // (Could do a trick here:  Remember last successful non-null
    // element stored and make a quick oop equality check on it.)

    __ movptr(elem_klass, elem_klass_addr); // query the object klass
    generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
                        &L_store_element, NULL);
      // (On fall-through, we have failed the element type check.)
    // ======== end loop ========

    // It was a real error; we must depend on the caller to finish the job.
    // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
    // Emit GC store barriers for the oops we have copied (length_arg + count),
    // and report their number to the caller.
    __ addl(count, length_arg);         // transfers = (length - remaining)
    __ movl2ptr(rax, count);            // save the value
    __ notptr(rax);                     // report (-1^K) to caller
    __ movptr(to, to_arg);              // reload
    assert_different_registers(to, count, rax);
    gen_write_ref_array_post_barrier(to, count);
    __ jmpb(L_done);

    // Come here on success only.
    __ BIND(L_do_card_marks);
    __ movl2ptr(count, length_arg);
    __ movptr(to, to_arg);                // reload
    gen_write_ref_array_post_barrier(to, count);
    __ xorptr(rax, rax);                  // return 0 on success

    // Common exit point (success or failure).
    __ BIND(L_done);
    __ pop(rbx);
    __ pop(rdi);
    __ pop(rsi);
    inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    return start;
  }

  //
  //  Generate 'unsafe' array copy stub
  //  Though just as safe as the other stubs, it takes an unscaled
  //  size_t argument instead of an element count.
  //
  //  Input:
  //    4(rsp)   - source array address
  //    8(rsp)   - destination array address
  //   12(rsp)   - byte count, can be zero
  //
  //  Output:
  //    rax, ==  0  -  success
  //    rax, == -1  -  need to call System.arraycopy
  //
  // Examines the alignment of the operands and dispatches
  // to a long, int, short, or byte copy loop.
  //
  address generate_unsafe_copy(const char *name,
                               address byte_copy_entry,
                               address short_copy_entry,
                               address int_copy_entry,
                               address long_copy_entry) {

    Label L_long_aligned, L_int_aligned, L_short_aligned;

    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ pc();

    const Register from       = rax;  // source array address
    const Register to         = rdx;  // destination array address
    const Register count      = rcx;  // elements count

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    __ push(rsi);
    __ push(rdi);
    Address  from_arg(rsp, 12+ 4);      // from
    Address    to_arg(rsp, 12+ 8);      // to
    Address count_arg(rsp, 12+12);      // byte count

    // Load up:
    __ movptr(from ,  from_arg);
    __ movptr(to   ,    to_arg);
    __ movl2ptr(count, count_arg);

    // bump this on entry, not on exit:
    inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);

    const Register bits = rsi;
    __ mov(bits, from);
    __ orptr(bits, to);
    __ orptr(bits, count);

    __ testl(bits, BytesPerLong-1);
    __ jccb(Assembler::zero, L_long_aligned);

    __ testl(bits, BytesPerInt-1);
    __ jccb(Assembler::zero, L_int_aligned);

    __ testl(bits, BytesPerShort-1);
    __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));

    __ BIND(L_short_aligned);
    __ shrptr(count, LogBytesPerShort); // size => short_count
    __ movl(count_arg, count);          // update 'count'
    __ jump(RuntimeAddress(short_copy_entry));

    __ BIND(L_int_aligned);
    __ shrptr(count, LogBytesPerInt); // size => int_count
    __ movl(count_arg, count);          // update 'count'
    __ jump(RuntimeAddress(int_copy_entry));

    __ BIND(L_long_aligned);
    __ shrptr(count, LogBytesPerLong); // size => qword_count
    __ movl(count_arg, count);          // update 'count'
    __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
    __ pop(rsi);
    __ jump(RuntimeAddress(long_copy_entry));

    return start;
  }


  // Perform range checks on the proposed arraycopy.
  // Smashes src_pos and dst_pos.  (Uses them up for temps.)
  void arraycopy_range_checks(Register src,
                              Register src_pos,
                              Register dst,
                              Register dst_pos,
                              Address& length,
                              Label& L_failed) {
    BLOCK_COMMENT("arraycopy_range_checks:");
    const Register src_end = src_pos;   // source array end position
    const Register dst_end = dst_pos;   // destination array end position
    __ addl(src_end, length); // src_pos + length
    __ addl(dst_end, length); // dst_pos + length

    //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
    __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
    __ jcc(Assembler::above, L_failed);

    //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
    __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
    __ jcc(Assembler::above, L_failed);

    BLOCK_COMMENT("arraycopy_range_checks done");
  }


  //
  //  Generate generic array copy stubs
  //
  //  Input:
  //     4(rsp)    -  src oop
  //     8(rsp)    -  src_pos
  //    12(rsp)    -  dst oop
  //    16(rsp)    -  dst_pos
  //    20(rsp)    -  element count
  //
  //  Output:
  //    rax, ==  0  -  success
  //    rax, == -1^K - failure, where K is partial transfer count
  //
  address generate_generic_copy(const char *name,
                                address entry_jbyte_arraycopy,
                                address entry_jshort_arraycopy,
                                address entry_jint_arraycopy,
                                address entry_oop_arraycopy,
                                address entry_jlong_arraycopy,
                                address entry_checkcast_arraycopy) {
    Label L_failed, L_failed_0, L_objArray;

    { int modulus = CodeEntryAlignment;
      int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
      int advance = target - (__ offset() % modulus);
      if (advance < 0)  advance += modulus;
      if (advance > 0)  __ nop(advance);
    }
    StubCodeMark mark(this, "StubRoutines", name);

    // Short-hop target to L_failed.  Makes for denser prologue code.
    __ BIND(L_failed_0);
    __ jmp(L_failed);
    assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");

    __ align(CodeEntryAlignment);
    address start = __ pc();

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    __ push(rsi);
    __ push(rdi);

    // bump this on entry, not on exit:
    inc_counter_np(SharedRuntime::_generic_array_copy_ctr);

    // Input values
    Address SRC     (rsp, 12+ 4);
    Address SRC_POS (rsp, 12+ 8);
    Address DST     (rsp, 12+12);
    Address DST_POS (rsp, 12+16);
    Address LENGTH  (rsp, 12+20);

    //-----------------------------------------------------------------------
    // Assembler stub will be used for this call to arraycopy
    // if the following conditions are met:
    //
    // (1) src and dst must not be null.
    // (2) src_pos must not be negative.
    // (3) dst_pos must not be negative.
    // (4) length  must not be negative.
    // (5) src klass and dst klass should be the same and not NULL.
    // (6) src and dst should be arrays.
    // (7) src_pos + length must not exceed length of src.
    // (8) dst_pos + length must not exceed length of dst.
    //

    const Register src     = rax;       // source array oop
    const Register src_pos = rsi;
    const Register dst     = rdx;       // destination array oop
    const Register dst_pos = rdi;
    const Register length  = rcx;       // transfer count

    //  if (src == NULL) return -1;
    __ movptr(src, SRC);      // src oop
    __ testptr(src, src);
    __ jccb(Assembler::zero, L_failed_0);

    //  if (src_pos < 0) return -1;
    __ movl2ptr(src_pos, SRC_POS);  // src_pos
    __ testl(src_pos, src_pos);
    __ jccb(Assembler::negative, L_failed_0);

    //  if (dst == NULL) return -1;
    __ movptr(dst, DST);      // dst oop
    __ testptr(dst, dst);
    __ jccb(Assembler::zero, L_failed_0);

    //  if (dst_pos < 0) return -1;
    __ movl2ptr(dst_pos, DST_POS);  // dst_pos
    __ testl(dst_pos, dst_pos);
    __ jccb(Assembler::negative, L_failed_0);

    //  if (length < 0) return -1;
    __ movl2ptr(length, LENGTH);   // length
    __ testl(length, length);
    __ jccb(Assembler::negative, L_failed_0);

    //  if (src->klass() == NULL) return -1;
    Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
    Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
    const Register rcx_src_klass = rcx;    // array klass
    __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));

#ifdef ASSERT
    //  assert(src->klass() != NULL);
    BLOCK_COMMENT("assert klasses not null");
    { Label L1, L2;
      __ testptr(rcx_src_klass, rcx_src_klass);
      __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
      __ bind(L1);
      __ stop("broken null klass");
      __ bind(L2);
      __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
      __ jccb(Assembler::equal, L1);      // this would be broken also
      BLOCK_COMMENT("assert done");
    }
#endif //ASSERT

    // Load layout helper (32-bits)
    //
    //  |array_tag|     | header_size | element_type |     |log2_element_size|
    // 32        30    24            16              8     2                 0
    //
    //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
    //

    int lh_offset = in_bytes(Klass::layout_helper_offset());
    Address src_klass_lh_addr(rcx_src_klass, lh_offset);

    // Handle objArrays completely differently...
    jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
    __ cmpl(src_klass_lh_addr, objArray_lh);
    __ jcc(Assembler::equal, L_objArray);

    //  if (src->klass() != dst->klass()) return -1;
    __ cmpptr(rcx_src_klass, dst_klass_addr);
    __ jccb(Assembler::notEqual, L_failed_0);

    const Register rcx_lh = rcx;  // layout helper
    assert(rcx_lh == rcx_src_klass, "known alias");
    __ movl(rcx_lh, src_klass_lh_addr);

    //  if (!src->is_Array()) return -1;
    __ cmpl(rcx_lh, Klass::_lh_neutral_value);
    __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp

    // At this point, it is known to be a typeArray (array_tag 0x3).
#ifdef ASSERT
    { Label L;
      __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
      __ jcc(Assembler::greaterEqual, L); // signed cmp
      __ stop("must be a primitive array");
      __ bind(L);
    }
#endif

    assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
    arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);

    // TypeArrayKlass
    //
    // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
    // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
    //
    const Register rsi_offset = rsi; // array offset
    const Register src_array  = src; // src array offset
    const Register dst_array  = dst; // dst array offset
    const Register rdi_elsize = rdi; // log2 element size

    __ mov(rsi_offset, rcx_lh);
    __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
    __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
    __ addptr(src_array, rsi_offset);  // src array offset
    __ addptr(dst_array, rsi_offset);  // dst array offset
    __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize

    // next registers should be set before the jump to corresponding stub
    const Register from       = src; // source array address
    const Register to         = dst; // destination array address
    const Register count      = rcx; // elements count
    // some of them should be duplicated on stack
#define FROM   Address(rsp, 12+ 4)
#define TO     Address(rsp, 12+ 8)   // Not used now
#define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy

    BLOCK_COMMENT("scale indexes to element size");
    __ movl2ptr(rsi, SRC_POS);  // src_pos
    __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
    assert(src_array == from, "");
    __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
    __ movl2ptr(rdi, DST_POS);  // dst_pos
    __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
    assert(dst_array == to, "");
    __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
    __ movptr(FROM, from);      // src_addr
    __ mov(rdi_elsize, rcx_lh); // log2 elsize
    __ movl2ptr(count, LENGTH); // elements count

    BLOCK_COMMENT("choose copy loop based on element size");
    __ cmpl(rdi_elsize, 0);

    __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
    __ cmpl(rdi_elsize, LogBytesPerShort);
    __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
    __ cmpl(rdi_elsize, LogBytesPerInt);
    __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
#ifdef ASSERT
    __ cmpl(rdi_elsize, LogBytesPerLong);
    __ jccb(Assembler::notEqual, L_failed);
#endif
    __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
    __ pop(rsi);
    __ jump(RuntimeAddress(entry_jlong_arraycopy));

  __ BIND(L_failed);
    __ xorptr(rax, rax);
    __ notptr(rax); // return -1
    __ pop(rdi);
    __ pop(rsi);
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    // ObjArrayKlass
  __ BIND(L_objArray);
    // live at this point:  rcx_src_klass, src[_pos], dst[_pos]

    Label L_plain_copy, L_checkcast_copy;
    //  test array classes for subtyping
    __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
    __ jccb(Assembler::notEqual, L_checkcast_copy);

    // Identically typed arrays can be copied without element-wise checks.
    assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
    arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);

  __ BIND(L_plain_copy);
    __ movl2ptr(count, LENGTH); // elements count
    __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
    __ lea(from, Address(src, src_pos, Address::times_ptr,
                 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
    __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
    __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
                 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
    __ movptr(FROM,  from);   // src_addr
    __ movptr(TO,    to);     // dst_addr
    __ movl(COUNT, count);  // count
    __ jump(RuntimeAddress(entry_oop_arraycopy));

  __ BIND(L_checkcast_copy);
    // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
    {
      // Handy offsets:
      int  ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
      int sco_offset = in_bytes(Klass::super_check_offset_offset());

      Register rsi_dst_klass = rsi;
      Register rdi_temp      = rdi;
      assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
      assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
      Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);

      // Before looking at dst.length, make sure dst is also an objArray.
      __ movptr(rsi_dst_klass, dst_klass_addr);
      __ cmpl(dst_klass_lh_addr, objArray_lh);
      __ jccb(Assembler::notEqual, L_failed);

      // It is safe to examine both src.length and dst.length.
      __ movl2ptr(src_pos, SRC_POS);        // reload rsi
      arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
      // (Now src_pos and dst_pos are killed, but not src and dst.)

      // We'll need this temp (don't forget to pop it after the type check).
      __ push(rbx);
      Register rbx_src_klass = rbx;

      __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
      __ movptr(rsi_dst_klass, dst_klass_addr);
      Address super_check_offset_addr(rsi_dst_klass, sco_offset);
      Label L_fail_array_check;
      generate_type_check(rbx_src_klass,
                          super_check_offset_addr, dst_klass_addr,
                          rdi_temp, NULL, &L_fail_array_check);
      // (On fall-through, we have passed the array type check.)
      __ pop(rbx);
      __ jmp(L_plain_copy);

      __ BIND(L_fail_array_check);
      // Reshuffle arguments so we can call checkcast_arraycopy:

      // match initial saves for checkcast_arraycopy
      // push(rsi);    // already done; see above
      // push(rdi);    // already done; see above
      // push(rbx);    // already done; see above

      // Marshal outgoing arguments now, freeing registers.
      Address   from_arg(rsp, 16+ 4);   // from
      Address     to_arg(rsp, 16+ 8);   // to
      Address length_arg(rsp, 16+12);   // elements count
      Address  ckoff_arg(rsp, 16+16);   // super_check_offset
      Address  ckval_arg(rsp, 16+20);   // super_klass

      Address SRC_POS_arg(rsp, 16+ 8);
      Address DST_POS_arg(rsp, 16+16);
      Address  LENGTH_arg(rsp, 16+20);
      // push rbx, changed the incoming offsets (why not just use rbp,??)
      // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");

      __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
      __ movl2ptr(length, LENGTH_arg);    // reload elements count
      __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
      __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos

      __ movptr(ckval_arg, rbx);          // destination element type
      __ movl(rbx, Address(rbx, sco_offset));
      __ movl(ckoff_arg, rbx);          // corresponding class check offset

      __ movl(length_arg, length);      // outgoing length argument

      __ lea(from, Address(src, src_pos, Address::times_ptr,
                            arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
      __ movptr(from_arg, from);

      __ lea(to, Address(dst, dst_pos, Address::times_ptr,
                          arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
      __ movptr(to_arg, to);
      __ jump(RuntimeAddress(entry_checkcast_arraycopy));
    }

    return start;
  }

  void generate_arraycopy_stubs() {
    address entry;
    address entry_jbyte_arraycopy;
    address entry_jshort_arraycopy;
    address entry_jint_arraycopy;
    address entry_oop_arraycopy;
    address entry_jlong_arraycopy;
    address entry_checkcast_arraycopy;

    StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
        generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
                               "arrayof_jbyte_disjoint_arraycopy");
    StubRoutines::_arrayof_jbyte_arraycopy =
        generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
                               NULL, "arrayof_jbyte_arraycopy");
    StubRoutines::_jbyte_disjoint_arraycopy =
        generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
                               "jbyte_disjoint_arraycopy");
    StubRoutines::_jbyte_arraycopy =
        generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
                               &entry_jbyte_arraycopy, "jbyte_arraycopy");

    StubRoutines::_arrayof_jshort_disjoint_arraycopy =
        generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
                               "arrayof_jshort_disjoint_arraycopy");
    StubRoutines::_arrayof_jshort_arraycopy =
        generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
                               NULL, "arrayof_jshort_arraycopy");
    StubRoutines::_jshort_disjoint_arraycopy =
        generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
                               "jshort_disjoint_arraycopy");
    StubRoutines::_jshort_arraycopy =
        generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
                               &entry_jshort_arraycopy, "jshort_arraycopy");

    // Next arrays are always aligned on 4 bytes at least.
    StubRoutines::_jint_disjoint_arraycopy =
        generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
                               "jint_disjoint_arraycopy");
    StubRoutines::_jint_arraycopy =
        generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
                               &entry_jint_arraycopy, "jint_arraycopy");

    StubRoutines::_oop_disjoint_arraycopy =
        generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
                               "oop_disjoint_arraycopy");
    StubRoutines::_oop_arraycopy =
        generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
                               &entry_oop_arraycopy, "oop_arraycopy");

    StubRoutines::_oop_disjoint_arraycopy_uninit =
        generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
                               "oop_disjoint_arraycopy_uninit",
                               /*dest_uninitialized*/true);
    StubRoutines::_oop_arraycopy_uninit =
        generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
                               NULL, "oop_arraycopy_uninit",
                               /*dest_uninitialized*/true);

    StubRoutines::_jlong_disjoint_arraycopy =
        generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
    StubRoutines::_jlong_arraycopy =
        generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
                                    "jlong_arraycopy");

    StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
    StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
    StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
    StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
    StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
    StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");

    StubRoutines::_arrayof_jint_disjoint_arraycopy       = StubRoutines::_jint_disjoint_arraycopy;
    StubRoutines::_arrayof_oop_disjoint_arraycopy        = StubRoutines::_oop_disjoint_arraycopy;
    StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
    StubRoutines::_arrayof_jlong_disjoint_arraycopy      = StubRoutines::_jlong_disjoint_arraycopy;

    StubRoutines::_arrayof_jint_arraycopy       = StubRoutines::_jint_arraycopy;
    StubRoutines::_arrayof_oop_arraycopy        = StubRoutines::_oop_arraycopy;
    StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
    StubRoutines::_arrayof_jlong_arraycopy      = StubRoutines::_jlong_arraycopy;

    StubRoutines::_checkcast_arraycopy =
        generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
    StubRoutines::_checkcast_arraycopy_uninit =
        generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);

    StubRoutines::_unsafe_arraycopy =
        generate_unsafe_copy("unsafe_arraycopy",
                               entry_jbyte_arraycopy,
                               entry_jshort_arraycopy,
                               entry_jint_arraycopy,
                               entry_jlong_arraycopy);

    StubRoutines::_generic_arraycopy =
        generate_generic_copy("generic_arraycopy",
                               entry_jbyte_arraycopy,
                               entry_jshort_arraycopy,
                               entry_jint_arraycopy,
                               entry_oop_arraycopy,
                               entry_jlong_arraycopy,
                               entry_checkcast_arraycopy);
  }

  void generate_math_stubs() {
    {
      StubCodeMark mark(this, "StubRoutines", "log");
      StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();

      __ fld_d(Address(rsp, 4));
      __ flog();
      __ ret(0);
    }
    {
      StubCodeMark mark(this, "StubRoutines", "log10");
      StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();

      __ fld_d(Address(rsp, 4));
      __ flog10();
      __ ret(0);
    }
    {
      StubCodeMark mark(this, "StubRoutines", "sin");
      StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();

      __ fld_d(Address(rsp, 4));
      __ trigfunc('s');
      __ ret(0);
    }
    {
      StubCodeMark mark(this, "StubRoutines", "cos");
      StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();

      __ fld_d(Address(rsp, 4));
      __ trigfunc('c');
      __ ret(0);
    }
    {
      StubCodeMark mark(this, "StubRoutines", "tan");
      StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();

      __ fld_d(Address(rsp, 4));
      __ trigfunc('t');
      __ ret(0);
    }
    {
      StubCodeMark mark(this, "StubRoutines", "exp");
      StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();

      __ fld_d(Address(rsp, 4));
      __ exp_with_fallback(0);
      __ ret(0);
    }
    {
      StubCodeMark mark(this, "StubRoutines", "pow");
      StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();

      __ fld_d(Address(rsp, 12));
      __ fld_d(Address(rsp, 4));
      __ pow_with_fallback(0);
      __ ret(0);
    }
  }

  // AES intrinsic stubs
  enum {AESBlockSize = 16};

  address generate_key_shuffle_mask() {
    __ align(16);
    StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
    address start = __ pc();
    __ emit_data(0x00010203, relocInfo::none, 0 );
    __ emit_data(0x04050607, relocInfo::none, 0 );
    __ emit_data(0x08090a0b, relocInfo::none, 0 );
    __ emit_data(0x0c0d0e0f, relocInfo::none, 0 );
    return start;
  }

  // Utility routine for loading a 128-bit key word in little endian format
  // can optionally specify that the shuffle mask is already in an xmmregister
  void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
    __ movdqu(xmmdst, Address(key, offset));
    if (xmm_shuf_mask != NULL) {
      __ pshufb(xmmdst, xmm_shuf_mask);
    } else {
      __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
    }
  }

  // aesenc using specified key+offset
  // can optionally specify that the shuffle mask is already in an xmmregister
  void aes_enc_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
    load_key(xmmtmp, key, offset, xmm_shuf_mask);
    __ aesenc(xmmdst, xmmtmp);
  }

  // aesdec using specified key+offset
  // can optionally specify that the shuffle mask is already in an xmmregister
  void aes_dec_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
    load_key(xmmtmp, key, offset, xmm_shuf_mask);
    __ aesdec(xmmdst, xmmtmp);
  }


  // Arguments:
  //
  // Inputs:
  //   c_rarg0   - source byte array address
  //   c_rarg1   - destination byte array address
  //   c_rarg2   - K (key) in little endian int array
  //
  address generate_aescrypt_encryptBlock() {
    assert(UseAES, "need AES instructions and misaligned SSE support");
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
    Label L_doLast;
    address start = __ pc();

    const Register from        = rdx;      // source array address
    const Register to          = rdx;      // destination array address
    const Register key         = rcx;      // key array address
    const Register keylen      = rax;
    const Address  from_param(rbp, 8+0);
    const Address  to_param  (rbp, 8+4);
    const Address  key_param (rbp, 8+8);

    const XMMRegister xmm_result = xmm0;
    const XMMRegister xmm_key_shuf_mask = xmm1;
    const XMMRegister xmm_temp1  = xmm2;
    const XMMRegister xmm_temp2  = xmm3;
    const XMMRegister xmm_temp3  = xmm4;
    const XMMRegister xmm_temp4  = xmm5;

    __ enter();   // required for proper stackwalking of RuntimeStub frame
    __ movptr(from, from_param);
    __ movptr(key, key_param);

    // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
    __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));

    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
    __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input
    __ movptr(to, to_param);

    // For encryption, the java expanded key ordering is just what we need

    load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
    __ pxor(xmm_result, xmm_temp1);

    load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
    load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
    load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);

    __ aesenc(xmm_result, xmm_temp1);
    __ aesenc(xmm_result, xmm_temp2);
    __ aesenc(xmm_result, xmm_temp3);
    __ aesenc(xmm_result, xmm_temp4);

    load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
    load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
    load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);

    __ aesenc(xmm_result, xmm_temp1);
    __ aesenc(xmm_result, xmm_temp2);
    __ aesenc(xmm_result, xmm_temp3);
    __ aesenc(xmm_result, xmm_temp4);

    load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);

    __ cmpl(keylen, 44);
    __ jccb(Assembler::equal, L_doLast);

    __ aesenc(xmm_result, xmm_temp1);
    __ aesenc(xmm_result, xmm_temp2);

    load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);

    __ cmpl(keylen, 52);
    __ jccb(Assembler::equal, L_doLast);

    __ aesenc(xmm_result, xmm_temp1);
    __ aesenc(xmm_result, xmm_temp2);

    load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);

    __ BIND(L_doLast);
    __ aesenc(xmm_result, xmm_temp1);
    __ aesenclast(xmm_result, xmm_temp2);
    __ movdqu(Address(to, 0), xmm_result);        // store the result
    __ xorptr(rax, rax); // return 0
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    return start;
  }


  // Arguments:
  //
  // Inputs:
  //   c_rarg0   - source byte array address
  //   c_rarg1   - destination byte array address
  //   c_rarg2   - K (key) in little endian int array
  //
  address generate_aescrypt_decryptBlock() {
    assert(UseAES, "need AES instructions and misaligned SSE support");
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
    Label L_doLast;
    address start = __ pc();

    const Register from        = rdx;      // source array address
    const Register to          = rdx;      // destination array address
    const Register key         = rcx;      // key array address
    const Register keylen      = rax;
    const Address  from_param(rbp, 8+0);
    const Address  to_param  (rbp, 8+4);
    const Address  key_param (rbp, 8+8);

    const XMMRegister xmm_result = xmm0;
    const XMMRegister xmm_key_shuf_mask = xmm1;
    const XMMRegister xmm_temp1  = xmm2;
    const XMMRegister xmm_temp2  = xmm3;
    const XMMRegister xmm_temp3  = xmm4;
    const XMMRegister xmm_temp4  = xmm5;

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    __ movptr(from, from_param);
    __ movptr(key, key_param);

    // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
    __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));

    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
    __ movdqu(xmm_result, Address(from, 0));
    __ movptr(to, to_param);

    // for decryption java expanded key ordering is rotated one position from what we want
    // so we start from 0x10 here and hit 0x00 last
    // we don't know if the key is aligned, hence not using load-execute form
    load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
    load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
    load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);

    __ pxor  (xmm_result, xmm_temp1);
    __ aesdec(xmm_result, xmm_temp2);
    __ aesdec(xmm_result, xmm_temp3);
    __ aesdec(xmm_result, xmm_temp4);

    load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
    load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
    load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);

    __ aesdec(xmm_result, xmm_temp1);
    __ aesdec(xmm_result, xmm_temp2);
    __ aesdec(xmm_result, xmm_temp3);
    __ aesdec(xmm_result, xmm_temp4);

    load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
    load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);

    __ cmpl(keylen, 44);
    __ jccb(Assembler::equal, L_doLast);

    __ aesdec(xmm_result, xmm_temp1);
    __ aesdec(xmm_result, xmm_temp2);

    load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);

    __ cmpl(keylen, 52);
    __ jccb(Assembler::equal, L_doLast);

    __ aesdec(xmm_result, xmm_temp1);
    __ aesdec(xmm_result, xmm_temp2);

    load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
    load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);

    __ BIND(L_doLast);
    __ aesdec(xmm_result, xmm_temp1);
    __ aesdec(xmm_result, xmm_temp2);

    // for decryption the aesdeclast operation is always on key+0x00
    __ aesdeclast(xmm_result, xmm_temp3);
    __ movdqu(Address(to, 0), xmm_result);  // store the result
    __ xorptr(rax, rax); // return 0
    __ leave(); // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    return start;
  }

  void handleSOERegisters(bool saving) {
    const int saveFrameSizeInBytes = 4 * wordSize;
    const Address saved_rbx     (rbp, -3 * wordSize);
    const Address saved_rsi     (rbp, -2 * wordSize);
    const Address saved_rdi     (rbp, -1 * wordSize);

    if (saving) {
      __ subptr(rsp, saveFrameSizeInBytes);
      __ movptr(saved_rsi, rsi);
      __ movptr(saved_rdi, rdi);
      __ movptr(saved_rbx, rbx);
    } else {
      // restoring
      __ movptr(rsi, saved_rsi);
      __ movptr(rdi, saved_rdi);
      __ movptr(rbx, saved_rbx);
    }
  }

  // Arguments:
  //
  // Inputs:
  //   c_rarg0   - source byte array address
  //   c_rarg1   - destination byte array address
  //   c_rarg2   - K (key) in little endian int array
  //   c_rarg3   - r vector byte array address
  //   c_rarg4   - input length
  //
  address generate_cipherBlockChaining_encryptAESCrypt() {
    assert(UseAES, "need AES instructions and misaligned SSE support");
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
    address start = __ pc();

    Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
    const Register from        = rsi;      // source array address
    const Register to          = rdx;      // destination array address
    const Register key         = rcx;      // key array address
    const Register rvec        = rdi;      // r byte array initialized from initvector array address
                                           // and left with the results of the last encryption block
    const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
    const Register pos         = rax;

    // xmm register assignments for the loops below
    const XMMRegister xmm_result = xmm0;
    const XMMRegister xmm_temp   = xmm1;
    // first 6 keys preloaded into xmm2-xmm7
    const int XMM_REG_NUM_KEY_FIRST = 2;
    const int XMM_REG_NUM_KEY_LAST  = 7;
    const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    handleSOERegisters(true /*saving*/);

    // load registers from incoming parameters
    const Address  from_param(rbp, 8+0);
    const Address  to_param  (rbp, 8+4);
    const Address  key_param (rbp, 8+8);
    const Address  rvec_param (rbp, 8+12);
    const Address  len_param  (rbp, 8+16);
    __ movptr(from , from_param);
    __ movptr(to   , to_param);
    __ movptr(key  , key_param);
    __ movptr(rvec , rvec_param);
    __ movptr(len_reg , len_param);

    const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
    // load up xmm regs 2 thru 7 with keys 0-5
    for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
      load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
      offset += 0x10;
    }

    __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec

    // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
    __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
    __ cmpl(rax, 44);
    __ jcc(Assembler::notEqual, L_key_192_256);

    // 128 bit code follows here
    __ movl(pos, 0);
    __ align(OptoLoopAlignment);
    __ BIND(L_loopTop_128);
    __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
    __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector

    __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
      __ aesenc(xmm_result, as_XMMRegister(rnum));
    }
    for (int key_offset = 0x60; key_offset <= 0x90; key_offset += 0x10) {
      aes_enc_key(xmm_result, xmm_temp, key, key_offset);
    }
    load_key(xmm_temp, key, 0xa0);
    __ aesenclast(xmm_result, xmm_temp);

    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
    // no need to store r to memory until we exit
    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jcc(Assembler::notEqual, L_loopTop_128);

    __ BIND(L_exit);
    __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object

    handleSOERegisters(false /*restoring*/);
    __ movl(rax, 0);                             // return 0 (why?)
    __ leave();                                  // required for proper stackwalking of RuntimeStub frame
    __ ret(0);

    __ BIND(L_key_192_256);
    // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
    __ cmpl(rax, 52);
    __ jcc(Assembler::notEqual, L_key_256);

    // 192-bit code follows here (could be changed to use more xmm registers)
    __ movl(pos, 0);
    __ align(OptoLoopAlignment);
    __ BIND(L_loopTop_192);
    __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
    __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector

    __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
      __ aesenc(xmm_result, as_XMMRegister(rnum));
    }
    for (int key_offset = 0x60; key_offset <= 0xb0; key_offset += 0x10) {
      aes_enc_key(xmm_result, xmm_temp, key, key_offset);
    }
    load_key(xmm_temp, key, 0xc0);
    __ aesenclast(xmm_result, xmm_temp);

    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
    // no need to store r to memory until we exit
    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jcc(Assembler::notEqual, L_loopTop_192);
    __ jmp(L_exit);

    __ BIND(L_key_256);
    // 256-bit code follows here (could be changed to use more xmm registers)
    __ movl(pos, 0);
    __ align(OptoLoopAlignment);
    __ BIND(L_loopTop_256);
    __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
    __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector

    __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
      __ aesenc(xmm_result, as_XMMRegister(rnum));
    }
    for (int key_offset = 0x60; key_offset <= 0xd0; key_offset += 0x10) {
      aes_enc_key(xmm_result, xmm_temp, key, key_offset);
    }
    load_key(xmm_temp, key, 0xe0);
    __ aesenclast(xmm_result, xmm_temp);

    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
    // no need to store r to memory until we exit
    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jcc(Assembler::notEqual, L_loopTop_256);
    __ jmp(L_exit);

    return start;
  }


  // CBC AES Decryption.
  // In 32-bit stub, because of lack of registers we do not try to parallelize 4 blocks at a time.
  //
  // Arguments:
  //
  // Inputs:
  //   c_rarg0   - source byte array address
  //   c_rarg1   - destination byte array address
  //   c_rarg2   - K (key) in little endian int array
  //   c_rarg3   - r vector byte array address
  //   c_rarg4   - input length
  //

  address generate_cipherBlockChaining_decryptAESCrypt() {
    assert(UseAES, "need AES instructions and misaligned SSE support");
    __ align(CodeEntryAlignment);
    StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
    address start = __ pc();

    Label L_exit, L_key_192_256, L_key_256;
    Label L_singleBlock_loopTop_128;
    Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
    const Register from        = rsi;      // source array address
    const Register to          = rdx;      // destination array address
    const Register key         = rcx;      // key array address
    const Register rvec        = rdi;      // r byte array initialized from initvector array address
                                           // and left with the results of the last encryption block
    const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
    const Register pos         = rax;

    // xmm register assignments for the loops below
    const XMMRegister xmm_result = xmm0;
    const XMMRegister xmm_temp   = xmm1;
    // first 6 keys preloaded into xmm2-xmm7
    const int XMM_REG_NUM_KEY_FIRST = 2;
    const int XMM_REG_NUM_KEY_LAST  = 7;
    const int FIRST_NON_REG_KEY_offset = 0x70;
    const XMMRegister xmm_key_first   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);

    __ enter(); // required for proper stackwalking of RuntimeStub frame
    handleSOERegisters(true /*saving*/);

    // load registers from incoming parameters
    const Address  from_param(rbp, 8+0);
    const Address  to_param  (rbp, 8+4);
    const Address  key_param (rbp, 8+8);
    const Address  rvec_param (rbp, 8+12);
    const Address  len_param  (rbp, 8+16);
    __ movptr(from , from_param);
    __ movptr(to   , to_param);
    __ movptr(key  , key_param);
    __ movptr(rvec , rvec_param);
    __ movptr(len_reg , len_param);

    // the java expanded key ordering is rotated one position from what we want
    // so we start from 0x10 here and hit 0x00 last
    const XMMRegister xmm_key_shuf_mask = xmm1;  // used temporarily to swap key bytes up front
    __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
    // load up xmm regs 2 thru 6 with first 5 keys
    for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
      load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
      offset += 0x10;
    }

    // inside here, use the rvec register to point to previous block cipher
    // with which we xor at the end of each newly decrypted block
    const Register  prev_block_cipher_ptr = rvec;

    // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
    __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
    __ cmpl(rax, 44);
    __ jcc(Assembler::notEqual, L_key_192_256);


    // 128-bit code follows here, parallelized
    __ movl(pos, 0);
    __ align(OptoLoopAlignment);
    __ BIND(L_singleBlock_loopTop_128);
    __ cmpptr(len_reg, 0);           // any blocks left??
    __ jcc(Assembler::equal, L_exit);
    __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
    __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
      __ aesdec(xmm_result, as_XMMRegister(rnum));
    }
    for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xa0; key_offset += 0x10) {   // 128-bit runs up to key offset a0
      aes_dec_key(xmm_result, xmm_temp, key, key_offset);
    }
    load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
    __ aesdeclast(xmm_result, xmm_temp);
    __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
    __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
    // no need to store r to memory until we exit
    __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jmp(L_singleBlock_loopTop_128);


    __ BIND(L_exit);
    __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
    __ movptr(rvec , rvec_param);                                     // restore this since used in loop
    __ movdqu(Address(rvec, 0), xmm_temp);                            // final value of r stored in rvec of CipherBlockChaining object
    handleSOERegisters(false /*restoring*/);
    __ movl(rax, 0);                                                  // return 0 (why?)
    __ leave();                                                       // required for proper stackwalking of RuntimeStub frame
    __ ret(0);


    __ BIND(L_key_192_256);
    // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
    __ cmpl(rax, 52);
    __ jcc(Assembler::notEqual, L_key_256);

    // 192-bit code follows here (could be optimized to use parallelism)
    __ movl(pos, 0);
    __ align(OptoLoopAlignment);
    __ BIND(L_singleBlock_loopTop_192);
    __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
    __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
      __ aesdec(xmm_result, as_XMMRegister(rnum));
    }
    for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xc0; key_offset += 0x10) {   // 192-bit runs up to key offset c0
      aes_dec_key(xmm_result, xmm_temp, key, key_offset);
    }
    load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
    __ aesdeclast(xmm_result, xmm_temp);
    __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
    __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
    // no need to store r to memory until we exit
    __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
    __ jmp(L_exit);

    __ BIND(L_key_256);
    // 256-bit code follows here (could be optimized to use parallelism)
    __ movl(pos, 0);
    __ align(OptoLoopAlignment);
    __ BIND(L_singleBlock_loopTop_256);
    __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
    __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
    for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
      __ aesdec(xmm_result, as_XMMRegister(rnum));
    }
    for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xe0; key_offset += 0x10) {   // 256-bit runs up to key offset e0
      aes_dec_key(xmm_result, xmm_temp, key, key_offset);
    }
    load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
    __ aesdeclast(xmm_result, xmm_temp);
    __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
    __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
    __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
    // no need to store r to memory until we exit
    __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
    __ addptr(pos, AESBlockSize);
    __ subptr(len_reg, AESBlockSize);
    __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
    __ jmp(L_exit);

    return start;
  }


 public:
  // Information about frame layout at time of blocking runtime call.
  // Note that we only have to preserve callee-saved registers since
  // the compilers are responsible for supplying a continuation point
  // if they expect all registers to be preserved.
  enum layout {
    thread_off,    // last_java_sp
    arg1_off,
    arg2_off,
    rbp_off,       // callee saved register
    ret_pc,
    framesize
  };

 private:

#undef  __
#define __ masm->

  //------------------------------------------------------------------------------------------------------------------------
  // Continuation point for throwing of implicit exceptions that are not handled in
  // the current activation. Fabricates an exception oop and initiates normal
  // exception dispatching in this frame.
  //
  // Previously the compiler (c2) allowed for callee save registers on Java calls.
  // This is no longer true after adapter frames were removed but could possibly
  // be brought back in the future if the interpreter code was reworked and it
  // was deemed worthwhile. The comment below was left to describe what must
  // happen here if callee saves were resurrected. As it stands now this stub
  // could actually be a vanilla BufferBlob and have now oopMap at all.
  // Since it doesn't make much difference we've chosen to leave it the
  // way it was in the callee save days and keep the comment.

  // If we need to preserve callee-saved values we need a callee-saved oop map and
  // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
  // If the compiler needs all registers to be preserved between the fault
  // point and the exception handler then it must assume responsibility for that in
  // AbstractCompiler::continuation_for_implicit_null_exception or
  // continuation_for_implicit_division_by_zero_exception. All other implicit
  // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
  // either at call sites or otherwise assume that stack unwinding will be initiated,
  // so caller saved registers were assumed volatile in the compiler.
  address generate_throw_exception(const char* name, address runtime_entry,
                                   Register arg1 = noreg, Register arg2 = noreg) {

    int insts_size = 256;
    int locs_size  = 32;

    CodeBuffer code(name, insts_size, locs_size);
    OopMapSet* oop_maps  = new OopMapSet();
    MacroAssembler* masm = new MacroAssembler(&code);

    address start = __ pc();

    // This is an inlined and slightly modified version of call_VM
    // which has the ability to fetch the return PC out of
    // thread-local storage and also sets up last_Java_sp slightly
    // differently than the real call_VM
    Register java_thread = rbx;
    __ get_thread(java_thread);

    __ enter(); // required for proper stackwalking of RuntimeStub frame

    // pc and rbp, already pushed
    __ subptr(rsp, (framesize-2) * wordSize); // prolog

    // Frame is now completed as far as size and linkage.

    int frame_complete = __ pc() - start;

    // push java thread (becomes first argument of C function)
    __ movptr(Address(rsp, thread_off * wordSize), java_thread);
    if (arg1 != noreg) {
      __ movptr(Address(rsp, arg1_off * wordSize), arg1);
    }
    if (arg2 != noreg) {
      assert(arg1 != noreg, "missing reg arg");
      __ movptr(Address(rsp, arg2_off * wordSize), arg2);
    }

    // Set up last_Java_sp and last_Java_fp
    __ set_last_Java_frame(java_thread, rsp, rbp, NULL);

    // Call runtime
    BLOCK_COMMENT("call runtime_entry");
    __ call(RuntimeAddress(runtime_entry));
    // Generate oop map
    OopMap* map =  new OopMap(framesize, 0);
    oop_maps->add_gc_map(__ pc() - start, map);

    // restore the thread (cannot use the pushed argument since arguments
    // may be overwritten by C code generated by an optimizing compiler);
    // however can use the register value directly if it is callee saved.
    __ get_thread(java_thread);

    __ reset_last_Java_frame(java_thread, true, false);

    __ leave(); // required for proper stackwalking of RuntimeStub frame

    // check for pending exceptions
#ifdef ASSERT
    Label L;
    __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
    __ jcc(Assembler::notEqual, L);
    __ should_not_reach_here();
    __ bind(L);
#endif /* ASSERT */
    __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));


    RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
    return stub->entry_point();
  }


  void create_control_words() {
    // Round to nearest, 53-bit mode, exceptions masked
    StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
    // Round to zero, 53-bit mode, exception mased
    StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
    // Round to nearest, 24-bit mode, exceptions masked
    StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
    // Round to nearest, 64-bit mode, exceptions masked
    StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
    // Round to nearest, 64-bit mode, exceptions masked
    StubRoutines::_mxcsr_std           = 0x1F80;
    // Note: the following two constants are 80-bit values
    //       layout is critical for correct loading by FPU.
    // Bias for strict fp multiply/divide
    StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
    StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
    StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
    // Un-Bias for strict fp multiply/divide
    StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
    StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
    StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
  }

  //---------------------------------------------------------------------------
  // Initialization

  void generate_initial() {
    // Generates all stubs and initializes the entry points

    //------------------------------------------------------------------------------------------------------------------------
    // entry points that exist in all platforms
    // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
    //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
    StubRoutines::_forward_exception_entry      = generate_forward_exception();

    StubRoutines::_call_stub_entry              =
      generate_call_stub(StubRoutines::_call_stub_return_address);
    // is referenced by megamorphic call
    StubRoutines::_catch_exception_entry        = generate_catch_exception();

    // These are currently used by Solaris/Intel
    StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();

    StubRoutines::_handler_for_unsafe_access_entry =
      generate_handler_for_unsafe_access();

    // platform dependent
    create_control_words();

    StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
    StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
    StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
                                                                                   CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
    StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
                                                                                   CAST_FROM_FN_PTR(address, SharedRuntime::d2l));

    // Build this early so it's available for the interpreter
    StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
  }


  void generate_all() {
    // Generates all stubs and initializes the entry points

    // These entry points require SharedInfo::stack0 to be set up in non-core builds
    // and need to be relocatable, so they each fabricate a RuntimeStub internally.
    StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
    StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
    StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));

    //------------------------------------------------------------------------------------------------------------------------
    // entry points that are platform specific

    // support for verify_oop (must happen after universe_init)
    StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();

    // arraycopy stubs used by compilers
    generate_arraycopy_stubs();

    generate_math_stubs();

    // don't bother generating these AES intrinsic stubs unless global flag is set
    if (UseAESIntrinsics) {
      StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // might be needed by the others

      StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
      StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
      StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
      StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
    }
  }


 public:
  StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
    if (all) {
      generate_all();
    } else {
      generate_initial();
    }
  }
}; // end class declaration


void StubGenerator_generate(CodeBuffer* code, bool all) {
  StubGenerator g(code, all);
}