aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/sparc/vm/assembler_sparc.hpp
blob: e1f7e0636b8f07ab9c139878e95eec103ac1811a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
/*
 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

class BiasedLockingCounters;

// <sys/trap.h> promises that the system will not use traps 16-31
#define ST_RESERVED_FOR_USER_0 0x10

/* Written: David Ungar 4/19/97 */

// Contains all the definitions needed for sparc assembly code generation.

// Register aliases for parts of the system:

// 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
// across context switches in V8+ ABI.  Of course, there are no 64 bit regs
// in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.

// g2-g4 are scratch registers called "application globals".  Their
// meaning is reserved to the "compilation system"--which means us!
// They are are not supposed to be touched by ordinary C code, although
// highly-optimized C code might steal them for temps.  They are safe
// across thread switches, and the ABI requires that they be safe
// across function calls.
//
// g1 and g3 are touched by more modules.  V8 allows g1 to be clobbered
// across func calls, and V8+ also allows g5 to be clobbered across
// func calls.  Also, g1 and g5 can get touched while doing shared
// library loading.
//
// We must not touch g7 (it is the thread-self register) and g6 is
// reserved for certain tools.  g0, of course, is always zero.
//
// (Sources:  SunSoft Compilers Group, thread library engineers.)

// %%%% The interpreter should be revisited to reduce global scratch regs.

// This global always holds the current JavaThread pointer:

REGISTER_DECLARATION(Register, G2_thread , G2);
REGISTER_DECLARATION(Register, G6_heapbase , G6);

// The following globals are part of the Java calling convention:

REGISTER_DECLARATION(Register, G5_method             , G5);
REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
REGISTER_DECLARATION(Register, G5_inline_cache_reg   , G5_method);

// The following globals are used for the new C1 & interpreter calling convention:
REGISTER_DECLARATION(Register, Gargs        , G4); // pointing to the last argument

// This local is used to preserve G2_thread in the interpreter and in stubs:
REGISTER_DECLARATION(Register, L7_thread_cache , L7);

// These globals are used as scratch registers in the interpreter:

REGISTER_DECLARATION(Register, Gframe_size   , G1); // SAME REG as G1_scratch
REGISTER_DECLARATION(Register, G1_scratch    , G1); // also SAME
REGISTER_DECLARATION(Register, G3_scratch    , G3);
REGISTER_DECLARATION(Register, G4_scratch    , G4);

// These globals are used as short-lived scratch registers in the compiler:

REGISTER_DECLARATION(Register, Gtemp  , G5);

// The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
// because a single patchable "set" instruction (NativeMovConstReg,
// or NativeMovConstPatching for compiler1) instruction
// serves to set up either quantity, depending on whether the compiled
// call site is an inline cache or is megamorphic.  See the function
// CompiledIC::set_to_megamorphic.
//
// On the other hand, G5_inline_cache_klass must differ from G5_method,
// because both registers are needed for an inline cache that calls
// an interpreted method.
//
// Note that G5_method is only the method-self for the interpreter,
// and is logically unrelated to G5_megamorphic_method.
//
// Invariants on G2_thread (the JavaThread pointer):
//  - it should not be used for any other purpose anywhere
//  - it must be re-initialized by StubRoutines::call_stub()
//  - it must be preserved around every use of call_VM

// We can consider using g2/g3/g4 to cache more values than the
// JavaThread, such as the card-marking base or perhaps pointers into
// Eden.  It's something of a waste to use them as scratch temporaries,
// since they are not supposed to be volatile.  (Of course, if we find
// that Java doesn't benefit from application globals, then we can just
// use them as ordinary temporaries.)
//
// Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
// it makes sense to use them routinely for procedure linkage,
// whenever the On registers are not applicable.  Examples:  G5_method,
// G5_inline_cache_klass, and a double handful of miscellaneous compiler
// stubs.  This means that compiler stubs, etc., should be kept to a
// maximum of two or three G-register arguments.


// stub frames

REGISTER_DECLARATION(Register, Lentry_args      , L0); // pointer to args passed to callee (interpreter) not stub itself

// Interpreter frames

#ifdef CC_INTERP
REGISTER_DECLARATION(Register, Lstate           , L0); // interpreter state object pointer
REGISTER_DECLARATION(Register, L1_scratch       , L1); // scratch
REGISTER_DECLARATION(Register, Lmirror          , L1); // mirror (for native methods only)
REGISTER_DECLARATION(Register, L2_scratch       , L2);
REGISTER_DECLARATION(Register, L3_scratch       , L3);
REGISTER_DECLARATION(Register, L4_scratch       , L4);
REGISTER_DECLARATION(Register, Lscratch         , L5); // C1 uses
REGISTER_DECLARATION(Register, Lscratch2        , L6); // C1 uses
REGISTER_DECLARATION(Register, L7_scratch       , L7); // constant pool cache
REGISTER_DECLARATION(Register, O5_savedSP       , O5);
REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
                                                       // a copy SP, so in 64-bit it's a biased value.  The bias
                                                       // is added and removed as needed in the frame code.
// Interface to signature handler
REGISTER_DECLARATION(Register, Llocals          , L7); // pointer to locals for signature handler
REGISTER_DECLARATION(Register, Lmethod          , L6); // methodOop when calling signature handler

#else
REGISTER_DECLARATION(Register, Lesp             , L0); // expression stack pointer
REGISTER_DECLARATION(Register, Lbcp             , L1); // pointer to next bytecode
REGISTER_DECLARATION(Register, Lmethod          , L2);
REGISTER_DECLARATION(Register, Llocals          , L3);
REGISTER_DECLARATION(Register, Largs            , L3); // pointer to locals for signature handler
                                                       // must match Llocals in asm interpreter
REGISTER_DECLARATION(Register, Lmonitors        , L4);
REGISTER_DECLARATION(Register, Lbyte_code       , L5);
// When calling out from the interpreter we record SP so that we can remove any extra stack
// space allocated during adapter transitions. This register is only live from the point
// of the call until we return.
REGISTER_DECLARATION(Register, Llast_SP         , L5);
REGISTER_DECLARATION(Register, Lscratch         , L5);
REGISTER_DECLARATION(Register, Lscratch2        , L6);
REGISTER_DECLARATION(Register, LcpoolCache      , L6); // constant pool cache

REGISTER_DECLARATION(Register, O5_savedSP       , O5);
REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
                                                       // a copy SP, so in 64-bit it's a biased value.  The bias
                                                       // is added and removed as needed in the frame code.
REGISTER_DECLARATION(Register, IdispatchTables  , I4); // Base address of the bytecode dispatch tables
REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
REGISTER_DECLARATION(Register, ImethodDataPtr   , I2); // Pointer to the current method data
#endif /* CC_INTERP */

// NOTE: Lscratch2 and LcpoolCache point to the same registers in
//       the interpreter code. If Lscratch2 needs to be used for some
//       purpose than LcpoolCache should be restore after that for
//       the interpreter to work right
// (These assignments must be compatible with L7_thread_cache; see above.)

// Since Lbcp points into the middle of the method object,
// it is temporarily converted into a "bcx" during GC.

// Exception processing
// These registers are passed into exception handlers.
// All exception handlers require the exception object being thrown.
// In addition, an nmethod's exception handler must be passed
// the address of the call site within the nmethod, to allow
// proper selection of the applicable catch block.
// (Interpreter frames use their own bcp() for this purpose.)
//
// The Oissuing_pc value is not always needed.  When jumping to a
// handler that is known to be interpreted, the Oissuing_pc value can be
// omitted.  An actual catch block in compiled code receives (from its
// nmethod's exception handler) the thrown exception in the Oexception,
// but it doesn't need the Oissuing_pc.
//
// If an exception handler (either interpreted or compiled)
// discovers there is no applicable catch block, it updates
// the Oissuing_pc to the continuation PC of its own caller,
// pops back to that caller's stack frame, and executes that
// caller's exception handler.  Obviously, this process will
// iterate until the control stack is popped back to a method
// containing an applicable catch block.  A key invariant is
// that the Oissuing_pc value is always a value local to
// the method whose exception handler is currently executing.
//
// Note:  The issuing PC value is __not__ a raw return address (I7 value).
// It is a "return pc", the address __following__ the call.
// Raw return addresses are converted to issuing PCs by frame::pc(),
// or by stubs.  Issuing PCs can be used directly with PC range tables.
//
REGISTER_DECLARATION(Register, Oexception  , O0); // exception being thrown
REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from


// These must occur after the declarations above
#ifndef DONT_USE_REGISTER_DEFINES

#define Gthread             AS_REGISTER(Register, Gthread)
#define Gmethod             AS_REGISTER(Register, Gmethod)
#define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
#define Ginline_cache_reg   AS_REGISTER(Register, Ginline_cache_reg)
#define Gargs               AS_REGISTER(Register, Gargs)
#define Lthread_cache       AS_REGISTER(Register, Lthread_cache)
#define Gframe_size         AS_REGISTER(Register, Gframe_size)
#define Gtemp               AS_REGISTER(Register, Gtemp)

#ifdef CC_INTERP
#define Lstate              AS_REGISTER(Register, Lstate)
#define Lesp                AS_REGISTER(Register, Lesp)
#define L1_scratch          AS_REGISTER(Register, L1_scratch)
#define Lmirror             AS_REGISTER(Register, Lmirror)
#define L2_scratch          AS_REGISTER(Register, L2_scratch)
#define L3_scratch          AS_REGISTER(Register, L3_scratch)
#define L4_scratch          AS_REGISTER(Register, L4_scratch)
#define Lscratch            AS_REGISTER(Register, Lscratch)
#define Lscratch2           AS_REGISTER(Register, Lscratch2)
#define L7_scratch          AS_REGISTER(Register, L7_scratch)
#define Ostate              AS_REGISTER(Register, Ostate)
#else
#define Lesp                AS_REGISTER(Register, Lesp)
#define Lbcp                AS_REGISTER(Register, Lbcp)
#define Lmethod             AS_REGISTER(Register, Lmethod)
#define Llocals             AS_REGISTER(Register, Llocals)
#define Lmonitors           AS_REGISTER(Register, Lmonitors)
#define Lbyte_code          AS_REGISTER(Register, Lbyte_code)
#define Lscratch            AS_REGISTER(Register, Lscratch)
#define Lscratch2           AS_REGISTER(Register, Lscratch2)
#define LcpoolCache         AS_REGISTER(Register, LcpoolCache)
#endif /* ! CC_INTERP */

#define Lentry_args         AS_REGISTER(Register, Lentry_args)
#define I5_savedSP          AS_REGISTER(Register, I5_savedSP)
#define O5_savedSP          AS_REGISTER(Register, O5_savedSP)
#define IdispatchAddress    AS_REGISTER(Register, IdispatchAddress)
#define ImethodDataPtr      AS_REGISTER(Register, ImethodDataPtr)
#define IdispatchTables     AS_REGISTER(Register, IdispatchTables)

#define Oexception          AS_REGISTER(Register, Oexception)
#define Oissuing_pc         AS_REGISTER(Register, Oissuing_pc)


#endif

// Address is an abstraction used to represent a memory location.
//
// Note: A register location is represented via a Register, not
//       via an address for efficiency & simplicity reasons.

class Address VALUE_OBJ_CLASS_SPEC {
 private:
  Register              _base;
#ifdef _LP64
  int                   _hi32;          // bits 63::32
  int                   _low32;         // bits 31::0
#endif
  int                   _hi;
  int                   _disp;
  RelocationHolder      _rspec;

  RelocationHolder rspec_from_rtype(relocInfo::relocType rt, address a = NULL) {
    switch (rt) {
    case relocInfo::external_word_type:
      return external_word_Relocation::spec(a);
    case relocInfo::internal_word_type:
      return internal_word_Relocation::spec(a);
#ifdef _LP64
    case relocInfo::opt_virtual_call_type:
      return opt_virtual_call_Relocation::spec();
    case relocInfo::static_call_type:
      return static_call_Relocation::spec();
    case relocInfo::runtime_call_type:
      return runtime_call_Relocation::spec();
#endif
    case relocInfo::none:
      return RelocationHolder();
    default:
      ShouldNotReachHere();
      return RelocationHolder();
    }
  }

 public:
  Address(Register b, address a, relocInfo::relocType rt = relocInfo::none)
    : _rspec(rspec_from_rtype(rt, a))
  {
    _base  = b;
#ifdef _LP64
    _hi32  = (intptr_t)a >> 32;    // top 32 bits in 64 bit word
    _low32 = (intptr_t)a & ~0;     // low 32 bits in 64 bit word
#endif
    _hi    = (intptr_t)a & ~0x3ff; // top    22 bits in low word
    _disp  = (intptr_t)a &  0x3ff; // bottom 10 bits
  }

  Address(Register b, address a, RelocationHolder const& rspec)
    : _rspec(rspec)
  {
    _base  = b;
#ifdef _LP64
    _hi32  = (intptr_t)a >> 32;    // top 32 bits in 64 bit word
    _low32 = (intptr_t)a & ~0;     // low 32 bits in 64 bit word
#endif
    _hi    = (intptr_t)a & ~0x3ff; // top    22 bits
    _disp  = (intptr_t)a &  0x3ff; // bottom 10 bits
  }

  Address(Register b, intptr_t h, intptr_t d, RelocationHolder const& rspec = RelocationHolder())
    : _rspec(rspec)
  {
    _base  = b;
#ifdef _LP64
// [RGV] Put in Assert to force me to check usage of this constructor
     assert( h == 0, "Check usage of this constructor" );
    _hi32  = h;
    _low32 = d;
    _hi    = h;
    _disp  = d;
#else
    _hi    = h;
    _disp  = d;
#endif
  }

  Address()
    : _rspec(RelocationHolder())
  {
    _base  = G0;
#ifdef _LP64
    _hi32  = 0;
    _low32 = 0;
#endif
    _hi    = 0;
    _disp  = 0;
  }

  // fancier constructors

  enum addr_type {
    extra_in_argument,  // in the In registers
    extra_out_argument  // in the Outs
  };

  Address( addr_type, int );

  // accessors

  Register               base() const { return _base; }
#ifdef _LP64
  int                   hi32()  const { return _hi32; }
  int                   low32() const { return _low32; }
#endif
  int                      hi() const { return _hi;  }
  int                    disp() const { return _disp; }
#ifdef _LP64
  intptr_t              value() const { return ((intptr_t)_hi32 << 32) |
                                                (intptr_t)(uint32_t)_low32; }
#else
  int                   value() const { return _hi | _disp; }
#endif
  const relocInfo::relocType  rtype() { return _rspec.type(); }
  const RelocationHolder&     rspec() { return _rspec; }

  RelocationHolder      rspec(int offset) const {
    return offset == 0 ? _rspec : _rspec.plus(offset);
  }

  inline bool is_simm13(int offset = 0);  // check disp+offset for overflow

  Address split_disp() const {            // deal with disp overflow
    Address a = (*this);
    int hi_disp = _disp & ~0x3ff;
    if (hi_disp != 0) {
      a._disp -= hi_disp;
      a._hi   += hi_disp;
    }
    return a;
  }

  Address after_save() const {
    Address a = (*this);
    a._base = a._base->after_save();
    return a;
  }

  Address after_restore() const {
    Address a = (*this);
    a._base = a._base->after_restore();
    return a;
  }

  friend class Assembler;
};


inline Address RegisterImpl::address_in_saved_window() const {
   return (Address(SP, 0, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
}



// Argument is an abstraction used to represent an outgoing
// actual argument or an incoming formal parameter, whether
// it resides in memory or in a register, in a manner consistent
// with the SPARC Application Binary Interface, or ABI.  This is
// often referred to as the native or C calling convention.

class Argument VALUE_OBJ_CLASS_SPEC {
 private:
  int _number;
  bool _is_in;

 public:
#ifdef _LP64
  enum {
    n_register_parameters = 6,          // only 6 registers may contain integer parameters
    n_float_register_parameters = 16    // Can have up to 16 floating registers
  };
#else
  enum {
    n_register_parameters = 6           // only 6 registers may contain integer parameters
  };
#endif

  // creation
  Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}

  int  number() const  { return _number;  }
  bool is_in()  const  { return _is_in;   }
  bool is_out() const  { return !is_in(); }

  Argument successor() const  { return Argument(number() + 1, is_in()); }
  Argument as_in()     const  { return Argument(number(), true ); }
  Argument as_out()    const  { return Argument(number(), false); }

  // locating register-based arguments:
  bool is_register() const { return _number < n_register_parameters; }

#ifdef _LP64
  // locating Floating Point register-based arguments:
  bool is_float_register() const { return _number < n_float_register_parameters; }

  FloatRegister as_float_register() const {
    assert(is_float_register(), "must be a register argument");
    return as_FloatRegister(( number() *2 ) + 1);
  }
  FloatRegister as_double_register() const {
    assert(is_float_register(), "must be a register argument");
    return as_FloatRegister(( number() *2 ));
  }
#endif

  Register as_register() const {
    assert(is_register(), "must be a register argument");
    return is_in() ? as_iRegister(number()) : as_oRegister(number());
  }

  // locating memory-based arguments
  Address as_address() const {
    assert(!is_register(), "must be a memory argument");
    return address_in_frame();
  }

  // When applied to a register-based argument, give the corresponding address
  // into the 6-word area "into which callee may store register arguments"
  // (This is a different place than the corresponding register-save area location.)
  Address address_in_frame() const {
    return Address( is_in()   ? Address::extra_in_argument
                              : Address::extra_out_argument,
                    _number );
  }

  // debugging
  const char* name() const;

  friend class Assembler;
};


// The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
// level; i.e., what you write
// is what you get. The Assembler is generating code into a CodeBuffer.

class Assembler : public AbstractAssembler  {
 protected:

  static void print_instruction(int inst);
  static int  patched_branch(int dest_pos, int inst, int inst_pos);
  static int  branch_destination(int inst, int pos);


  friend class AbstractAssembler;

  // code patchers need various routines like inv_wdisp()
  friend class NativeInstruction;
  friend class NativeGeneralJump;
  friend class Relocation;
  friend class Label;

 public:
  // op carries format info; see page 62 & 267

  enum ops {
    call_op   = 1, // fmt 1
    branch_op = 0, // also sethi (fmt2)
    arith_op  = 2, // fmt 3, arith & misc
    ldst_op   = 3  // fmt 3, load/store
  };

  enum op2s {
    bpr_op2   = 3,
    fb_op2    = 6,
    fbp_op2   = 5,
    br_op2    = 2,
    bp_op2    = 1,
    cb_op2    = 7, // V8
    sethi_op2 = 4
  };

  enum op3s {
    // selected op3s
    add_op3      = 0x00,
    and_op3      = 0x01,
    or_op3       = 0x02,
    xor_op3      = 0x03,
    sub_op3      = 0x04,
    andn_op3     = 0x05,
    orn_op3      = 0x06,
    xnor_op3     = 0x07,
    addc_op3     = 0x08,
    mulx_op3     = 0x09,
    umul_op3     = 0x0a,
    smul_op3     = 0x0b,
    subc_op3     = 0x0c,
    udivx_op3    = 0x0d,
    udiv_op3     = 0x0e,
    sdiv_op3     = 0x0f,

    addcc_op3    = 0x10,
    andcc_op3    = 0x11,
    orcc_op3     = 0x12,
    xorcc_op3    = 0x13,
    subcc_op3    = 0x14,
    andncc_op3   = 0x15,
    orncc_op3    = 0x16,
    xnorcc_op3   = 0x17,
    addccc_op3   = 0x18,
    umulcc_op3   = 0x1a,
    smulcc_op3   = 0x1b,
    subccc_op3   = 0x1c,
    udivcc_op3   = 0x1e,
    sdivcc_op3   = 0x1f,

    taddcc_op3   = 0x20,
    tsubcc_op3   = 0x21,
    taddcctv_op3 = 0x22,
    tsubcctv_op3 = 0x23,
    mulscc_op3   = 0x24,
    sll_op3      = 0x25,
    sllx_op3     = 0x25,
    srl_op3      = 0x26,
    srlx_op3     = 0x26,
    sra_op3      = 0x27,
    srax_op3     = 0x27,
    rdreg_op3    = 0x28,
    membar_op3   = 0x28,

    flushw_op3   = 0x2b,
    movcc_op3    = 0x2c,
    sdivx_op3    = 0x2d,
    popc_op3     = 0x2e,
    movr_op3     = 0x2f,

    sir_op3      = 0x30,
    wrreg_op3    = 0x30,
    saved_op3    = 0x31,

    fpop1_op3    = 0x34,
    fpop2_op3    = 0x35,
    impdep1_op3  = 0x36,
    impdep2_op3  = 0x37,
    jmpl_op3     = 0x38,
    rett_op3     = 0x39,
    trap_op3     = 0x3a,
    flush_op3    = 0x3b,
    save_op3     = 0x3c,
    restore_op3  = 0x3d,
    done_op3     = 0x3e,
    retry_op3    = 0x3e,

    lduw_op3     = 0x00,
    ldub_op3     = 0x01,
    lduh_op3     = 0x02,
    ldd_op3      = 0x03,
    stw_op3      = 0x04,
    stb_op3      = 0x05,
    sth_op3      = 0x06,
    std_op3      = 0x07,
    ldsw_op3     = 0x08,
    ldsb_op3     = 0x09,
    ldsh_op3     = 0x0a,
    ldx_op3      = 0x0b,

    ldstub_op3   = 0x0d,
    stx_op3      = 0x0e,
    swap_op3     = 0x0f,

    lduwa_op3    = 0x10,
    ldxa_op3     = 0x1b,

    stwa_op3     = 0x14,
    stxa_op3     = 0x1e,

    ldf_op3      = 0x20,
    ldfsr_op3    = 0x21,
    ldqf_op3     = 0x22,
    lddf_op3     = 0x23,
    stf_op3      = 0x24,
    stfsr_op3    = 0x25,
    stqf_op3     = 0x26,
    stdf_op3     = 0x27,

    prefetch_op3 = 0x2d,


    ldc_op3      = 0x30,
    ldcsr_op3    = 0x31,
    lddc_op3     = 0x33,
    stc_op3      = 0x34,
    stcsr_op3    = 0x35,
    stdcq_op3    = 0x36,
    stdc_op3     = 0x37,

    casa_op3     = 0x3c,
    casxa_op3    = 0x3e,

    alt_bit_op3  = 0x10,
     cc_bit_op3  = 0x10
  };

  enum opfs {
    // selected opfs
    fmovs_opf   = 0x01,
    fmovd_opf   = 0x02,

    fnegs_opf   = 0x05,
    fnegd_opf   = 0x06,

    fadds_opf   = 0x41,
    faddd_opf   = 0x42,
    fsubs_opf   = 0x45,
    fsubd_opf   = 0x46,

    fmuls_opf   = 0x49,
    fmuld_opf   = 0x4a,
    fdivs_opf   = 0x4d,
    fdivd_opf   = 0x4e,

    fcmps_opf   = 0x51,
    fcmpd_opf   = 0x52,

    fstox_opf   = 0x81,
    fdtox_opf   = 0x82,
    fxtos_opf   = 0x84,
    fxtod_opf   = 0x88,
    fitos_opf   = 0xc4,
    fdtos_opf   = 0xc6,
    fitod_opf   = 0xc8,
    fstod_opf   = 0xc9,
    fstoi_opf   = 0xd1,
    fdtoi_opf   = 0xd2
  };

  enum RCondition {  rc_z = 1,  rc_lez = 2,  rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7  };

  enum Condition {
     // for FBfcc & FBPfcc instruction
    f_never                     = 0,
    f_notEqual                  = 1,
    f_notZero                   = 1,
    f_lessOrGreater             = 2,
    f_unorderedOrLess           = 3,
    f_less                      = 4,
    f_unorderedOrGreater        = 5,
    f_greater                   = 6,
    f_unordered                 = 7,
    f_always                    = 8,
    f_equal                     = 9,
    f_zero                      = 9,
    f_unorderedOrEqual          = 10,
    f_greaterOrEqual            = 11,
    f_unorderedOrGreaterOrEqual = 12,
    f_lessOrEqual               = 13,
    f_unorderedOrLessOrEqual    = 14,
    f_ordered                   = 15,

    // V8 coproc, pp 123 v8 manual

    cp_always  = 8,
    cp_never   = 0,
    cp_3       = 7,
    cp_2       = 6,
    cp_2or3    = 5,
    cp_1       = 4,
    cp_1or3    = 3,
    cp_1or2    = 2,
    cp_1or2or3 = 1,
    cp_0       = 9,
    cp_0or3    = 10,
    cp_0or2    = 11,
    cp_0or2or3 = 12,
    cp_0or1    = 13,
    cp_0or1or3 = 14,
    cp_0or1or2 = 15,


    // for integers

    never                 =  0,
    equal                 =  1,
    zero                  =  1,
    lessEqual             =  2,
    less                  =  3,
    lessEqualUnsigned     =  4,
    lessUnsigned          =  5,
    carrySet              =  5,
    negative              =  6,
    overflowSet           =  7,
    always                =  8,
    notEqual              =  9,
    notZero               =  9,
    greater               =  10,
    greaterEqual          =  11,
    greaterUnsigned       =  12,
    greaterEqualUnsigned  =  13,
    carryClear            =  13,
    positive              =  14,
    overflowClear         =  15
  };

  enum CC {
    icc  = 0,  xcc  = 2,
    // ptr_cc is the correct condition code for a pointer or intptr_t:
    ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
    fcc0 = 0,  fcc1 = 1, fcc2 = 2, fcc3 = 3
  };

  enum PrefetchFcn {
    severalReads = 0,  oneRead = 1,  severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
  };

 public:
  // Helper functions for groups of instructions

  enum Predict { pt = 1, pn = 0 }; // pt = predict taken

  enum Membar_mask_bits { // page 184, v9
    StoreStore = 1 << 3,
    LoadStore  = 1 << 2,
    StoreLoad  = 1 << 1,
    LoadLoad   = 1 << 0,

    Sync       = 1 << 6,
    MemIssue   = 1 << 5,
    Lookaside  = 1 << 4
  };

  // test if x is within signed immediate range for nbits
  static bool is_simm(int x, int nbits) { return -( 1 << nbits-1 )  <= x   &&   x  <  ( 1 << nbits-1 ); }

  // test if -4096 <= x <= 4095
  static bool is_simm13(int x) { return is_simm(x, 13); }

  enum ASIs { // page 72, v9
    ASI_PRIMARY        = 0x80,
    ASI_PRIMARY_LITTLE = 0x88
    // add more from book as needed
  };

 protected:
  // helpers

  // x is supposed to fit in a field "nbits" wide
  // and be sign-extended. Check the range.

  static void assert_signed_range(intptr_t x, int nbits) {
    assert( nbits == 32
        ||  -(1 << nbits-1) <= x  &&  x < ( 1 << nbits-1),
      "value out of range");
  }

  static void assert_signed_word_disp_range(intptr_t x, int nbits) {
    assert( (x & 3) == 0, "not word aligned");
    assert_signed_range(x, nbits + 2);
  }

  static void assert_unsigned_const(int x, int nbits) {
    assert( juint(x)  <  juint(1 << nbits), "unsigned constant out of range");
  }

  // fields: note bits numbered from LSB = 0,
  //  fields known by inclusive bit range

  static int fmask(juint hi_bit, juint lo_bit) {
    assert( hi_bit >= lo_bit  &&  0 <= lo_bit  &&  hi_bit < 32, "bad bits");
    return (1 << ( hi_bit-lo_bit + 1 )) - 1;
  }

  // inverse of u_field

  static int inv_u_field(int x, int hi_bit, int lo_bit) {
    juint r = juint(x) >> lo_bit;
    r &= fmask( hi_bit, lo_bit);
    return int(r);
  }


  // signed version: extract from field and sign-extend

  static int inv_s_field(int x, int hi_bit, int lo_bit) {
    int sign_shift = 31 - hi_bit;
    return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
  }

  // given a field that ranges from hi_bit to lo_bit (inclusive,
  // LSB = 0), and an unsigned value for the field,
  // shift it into the field

#ifdef ASSERT
  static int u_field(int x, int hi_bit, int lo_bit) {
    assert( ( x & ~fmask(hi_bit, lo_bit))  == 0,
            "value out of range");
    int r = x << lo_bit;
    assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
    return r;
  }
#else
  // make sure this is inlined as it will reduce code size significantly
  #define u_field(x, hi_bit, lo_bit)   ((x) << (lo_bit))
#endif

  static int inv_op(  int x ) { return inv_u_field(x, 31, 30); }
  static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
  static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
  static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }

  static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }

  static Register inv_rd(  int x ) { return as_Register(inv_u_field(x, 29, 25)); }
  static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
  static Register inv_rs2( int x ) { return as_Register(inv_u_field(x,  4,  0)); }

  static int op(       int         x)  { return  u_field(x,             31, 30); }
  static int rd(       Register    r)  { return  u_field(r->encoding(), 29, 25); }
  static int fcn(      int         x)  { return  u_field(x,             29, 25); }
  static int op3(      int         x)  { return  u_field(x,             24, 19); }
  static int rs1(      Register    r)  { return  u_field(r->encoding(), 18, 14); }
  static int rs2(      Register    r)  { return  u_field(r->encoding(),  4,  0); }
  static int annul(    bool        a)  { return  u_field(a ? 1 : 0,     29, 29); }
  static int cond(     int         x)  { return  u_field(x,             28, 25); }
  static int cond_mov( int         x)  { return  u_field(x,             17, 14); }
  static int rcond(    RCondition  x)  { return  u_field(x,             12, 10); }
  static int op2(      int         x)  { return  u_field(x,             24, 22); }
  static int predict(  bool        p)  { return  u_field(p ? 1 : 0,     19, 19); }
  static int branchcc( CC       fcca)  { return  u_field(fcca,          21, 20); }
  static int cmpcc(    CC       fcca)  { return  u_field(fcca,          26, 25); }
  static int imm_asi(  int         x)  { return  u_field(x,             12,  5); }
  static int immed(    bool        i)  { return  u_field(i ? 1 : 0,     13, 13); }
  static int opf_low6( int         w)  { return  u_field(w,             10,  5); }
  static int opf_low5( int         w)  { return  u_field(w,              9,  5); }
  static int trapcc(   CC         cc)  { return  u_field(cc,            12, 11); }
  static int sx(       int         i)  { return  u_field(i,             12, 12); } // shift x=1 means 64-bit
  static int opf(      int         x)  { return  u_field(x,             13,  5); }

  static int opf_cc(   CC          c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
  static int mov_cc(   CC          c, bool useFloat ) { return u_field(useFloat ? 0 : 1,  18, 18) | u_field(c, 12, 11); }

  static int fd( FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
  static int fs1(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
  static int fs2(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa),  4,  0); };

  // some float instructions use this encoding on the op3 field
  static int alt_op3(int op, FloatRegisterImpl::Width w) {
    int r;
    switch(w) {
     case FloatRegisterImpl::S: r = op + 0;  break;
     case FloatRegisterImpl::D: r = op + 3;  break;
     case FloatRegisterImpl::Q: r = op + 2;  break;
     default: ShouldNotReachHere(); break;
    }
    return op3(r);
  }


  // compute inverse of simm
  static int inv_simm(int x, int nbits) {
    return (int)(x << (32 - nbits)) >> (32 - nbits);
  }

  static int inv_simm13( int x ) { return inv_simm(x, 13); }

  // signed immediate, in low bits, nbits long
  static int simm(int x, int nbits) {
    assert_signed_range(x, nbits);
    return x  &  (( 1 << nbits ) - 1);
  }

  // compute inverse of wdisp16
  static intptr_t inv_wdisp16(int x, intptr_t pos) {
    int lo = x & (( 1 << 14 ) - 1);
    int hi = (x >> 20) & 3;
    if (hi >= 2) hi |= ~1;
    return (((hi << 14) | lo) << 2) + pos;
  }

  // word offset, 14 bits at LSend, 2 bits at B21, B20
  static int wdisp16(intptr_t x, intptr_t off) {
    intptr_t xx = x - off;
    assert_signed_word_disp_range(xx, 16);
    int r =  (xx >> 2) & ((1 << 14) - 1)
           |  (  ( (xx>>(2+14)) & 3 )  <<  20 );
    assert( inv_wdisp16(r, off) == x,  "inverse is not inverse");
    return r;
  }


  // word displacement in low-order nbits bits

  static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
    int pre_sign_extend = x & (( 1 << nbits ) - 1);
    int r =  pre_sign_extend >= ( 1 << (nbits-1) )
       ?   pre_sign_extend | ~(( 1 << nbits ) - 1)
       :   pre_sign_extend;
    return (r << 2) + pos;
  }

  static int wdisp( intptr_t x, intptr_t off, int nbits ) {
    intptr_t xx = x - off;
    assert_signed_word_disp_range(xx, nbits);
    int r =  (xx >> 2) & (( 1 << nbits ) - 1);
    assert( inv_wdisp( r, off, nbits )  ==  x, "inverse not inverse");
    return r;
  }


  // Extract the top 32 bits in a 64 bit word
  static int32_t hi32( int64_t x ) {
    int32_t r = int32_t( (uint64_t)x >> 32 );
    return r;
  }

  // given a sethi instruction, extract the constant, left-justified
  static int inv_hi22( int x ) {
    return x << 10;
  }

  // create an imm22 field, given a 32-bit left-justified constant
  static int hi22( int x ) {
    int r = int( juint(x) >> 10 );
    assert( (r & ~((1 << 22) - 1))  ==  0, "just checkin'");
    return r;
  }

  // create a low10 __value__ (not a field) for a given a 32-bit constant
  static int low10( int x ) {
    return x & ((1 << 10) - 1);
  }

  // instruction only in v9
  static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); }

  // instruction only in v8
  static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); }

  // instruction deprecated in v9
  static void v9_dep()  { } // do nothing for now

  // some float instructions only exist for single prec. on v8
  static void v8_s_only(FloatRegisterImpl::Width w)  { if (w != FloatRegisterImpl::S)  v9_only(); }

  // v8 has no CC field
  static void v8_no_cc(CC cc)  { if (cc)  v9_only(); }

 protected:
  // Simple delay-slot scheme:
  // In order to check the programmer, the assembler keeps track of deley slots.
  // It forbids CTIs in delay slots (conservative, but should be OK).
  // Also, when putting an instruction into a delay slot, you must say
  // asm->delayed()->add(...), in order to check that you don't omit
  // delay-slot instructions.
  // To implement this, we use a simple FSA

#ifdef ASSERT
  #define CHECK_DELAY
#endif
#ifdef CHECK_DELAY
  enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
#endif

 public:
  // Tells assembler next instruction must NOT be in delay slot.
  // Use at start of multinstruction macros.
  void assert_not_delayed() {
    // This is a separate overloading to avoid creation of string constants
    // in non-asserted code--with some compilers this pollutes the object code.
#ifdef CHECK_DELAY
    assert_not_delayed("next instruction should not be a delay slot");
#endif
  }
  void assert_not_delayed(const char* msg) {
#ifdef CHECK_DELAY
    assert_msg ( delay_state == no_delay, msg);
#endif
  }

 protected:
  // Delay slot helpers
  // cti is called when emitting control-transfer instruction,
  // BEFORE doing the emitting.
  // Only effective when assertion-checking is enabled.
  void cti() {
#ifdef CHECK_DELAY
    assert_not_delayed("cti should not be in delay slot");
#endif
  }

  // called when emitting cti with a delay slot, AFTER emitting
  void has_delay_slot() {
#ifdef CHECK_DELAY
    assert_not_delayed("just checking");
    delay_state = at_delay_slot;
#endif
  }

public:
  // Tells assembler you know that next instruction is delayed
  Assembler* delayed() {
#ifdef CHECK_DELAY
    assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
    delay_state = filling_delay_slot;
#endif
    return this;
  }

  void flush() {
#ifdef CHECK_DELAY
    assert ( delay_state == no_delay, "ending code with a delay slot");
#endif
    AbstractAssembler::flush();
  }

  inline void emit_long(int);  // shadows AbstractAssembler::emit_long
  inline void emit_data(int x) { emit_long(x); }
  inline void emit_data(int, RelocationHolder const&);
  inline void emit_data(int, relocInfo::relocType rtype);
  // helper for above fcns
  inline void check_delay();


 public:
  // instructions, refer to page numbers in the SPARC Architecture Manual, V9

  // pp 135 (addc was addx in v8)

  inline void add(    Register s1, Register s2, Register d );
  inline void add(    Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none);
  inline void add(    Register s1, int simm13a, Register d, RelocationHolder const& rspec);
  inline void add(    const Address&  a,              Register d, int offset = 0);

  void addcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  void addcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void addc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | rs2(s2) ); }
  void addc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void addccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  void addccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  // pp 136

  inline void bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
  inline void bpr( RCondition c, bool a, Predict p, Register s1, Label& L);

 protected: // use MacroAssembler::br instead

  // pp 138

  inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
  inline void fb( Condition c, bool a, Label& L );

  // pp 141

  inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );

 public:

  // pp 144

  inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
  inline void br( Condition c, bool a, Label& L );

  // pp 146

  inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );

  // pp 121 (V8)

  inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
  inline void cb( Condition c, bool a, Label& L );

  // pp 149

  inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
  inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );

  // pp 150

  // These instructions compare the contents of s2 with the contents of
  // memory at address in s1. If the values are equal, the contents of memory
  // at address s1 is swapped with the data in d. If the values are not equal,
  // the the contents of memory at s1 is loaded into d, without the swap.

  void casa(  Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
  void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }

  // pp 152

  void udiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | rs2(s2)); }
  void udiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void sdiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | rs2(s2)); }
  void sdiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void udivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
  void udivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void sdivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
  void sdivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  // pp 155

  void done()  { v9_only();  cti();  emit_long( op(arith_op) | fcn(0) | op3(done_op3) ); }
  void retry() { v9_only();  cti();  emit_long( op(arith_op) | fcn(1) | op3(retry_op3) ); }

  // pp 156

  void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
  void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }

  // pp 157

  void fcmp(  FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
  void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }

  // pp 159

  void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
  void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }

  // pp 160

  void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }

  // pp 161

  void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, w)); }
  void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, w)); }

  // pp 162

  void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }

  void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }

  // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available
  // on v8 to do negation of single, double and quad precision floats.

  void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) |  opf(0x05) | fs2(sd, w)); }

  void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }

  // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available
  // on v8 to do abs operation on single/double/quad precision floats.

  void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); }

  // pp 163

  void fmul( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x48 + w)         | fs2(s2, w)); }
  void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw,  FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
  void fdiv( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x4c + w)         | fs2(s2, w)); }

  // pp 164

  void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }

  // pp 165

  inline void flush( Register s1, Register s2 );
  inline void flush( Register s1, int simm13a);

  // pp 167

  void flushw() { v9_only();  emit_long( op(arith_op) | op3(flushw_op3) ); }

  // pp 168

  void illtrap( int const22a) { if (const22a != 0) v9_only();  emit_long( op(branch_op) | u_field(const22a, 21, 0) ); }
  // v8 unimp == illtrap(0)

  // pp 169

  void impdep1( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
  void impdep2( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }

  // pp 149 (v8)

  void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
  void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }

  // pp 170

  void jmpl( Register s1, Register s2, Register d );
  void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );

  inline void jmpl( Address& a, Register d, int offset = 0);

  // 171

  inline void ldf(    FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d );
  inline void ldf(    FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d );

  inline void ldf(    FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);


  inline void ldfsr(  Register s1, Register s2 );
  inline void ldfsr(  Register s1, int simm13a);
  inline void ldxfsr( Register s1, Register s2 );
  inline void ldxfsr( Register s1, int simm13a);

  // pp 94 (v8)

  inline void ldc(   Register s1, Register s2, int crd );
  inline void ldc(   Register s1, int simm13a, int crd);
  inline void lddc(  Register s1, Register s2, int crd );
  inline void lddc(  Register s1, int simm13a, int crd);
  inline void ldcsr( Register s1, Register s2, int crd );
  inline void ldcsr( Register s1, int simm13a, int crd);


  // 173

  void ldfa(  FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void ldfa(  FloatRegisterImpl::Width w, Register s1, int simm13a,         FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  // pp 175, lduw is ld on v8

  inline void ldsb(  Register s1, Register s2, Register d );
  inline void ldsb(  Register s1, int simm13a, Register d);
  inline void ldsh(  Register s1, Register s2, Register d );
  inline void ldsh(  Register s1, int simm13a, Register d);
  inline void ldsw(  Register s1, Register s2, Register d );
  inline void ldsw(  Register s1, int simm13a, Register d);
  inline void ldub(  Register s1, Register s2, Register d );
  inline void ldub(  Register s1, int simm13a, Register d);
  inline void lduh(  Register s1, Register s2, Register d );
  inline void lduh(  Register s1, int simm13a, Register d);
  inline void lduw(  Register s1, Register s2, Register d );
  inline void lduw(  Register s1, int simm13a, Register d);
  inline void ldx(   Register s1, Register s2, Register d );
  inline void ldx(   Register s1, int simm13a, Register d);
  inline void ld(    Register s1, Register s2, Register d );
  inline void ld(    Register s1, int simm13a, Register d);
  inline void ldd(   Register s1, Register s2, Register d );
  inline void ldd(   Register s1, int simm13a, Register d);

  inline void ldsb( const Address& a, Register d, int offset = 0 );
  inline void ldsh( const Address& a, Register d, int offset = 0 );
  inline void ldsw( const Address& a, Register d, int offset = 0 );
  inline void ldub( const Address& a, Register d, int offset = 0 );
  inline void lduh( const Address& a, Register d, int offset = 0 );
  inline void lduw( const Address& a, Register d, int offset = 0 );
  inline void ldx(  const Address& a, Register d, int offset = 0 );
  inline void ld(   const Address& a, Register d, int offset = 0 );
  inline void ldd(  const Address& a, Register d, int offset = 0 );

  // pp 177

  void ldsba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void ldsba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void ldsha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void ldsha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void ldswa(  Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void ldswa(  Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void lduba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void lduba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void lduha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void lduha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void lduwa(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void lduwa(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void ldxa(   Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void ldxa(   Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void ldda(   Register s1, Register s2, int ia, Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void ldda(   Register s1, int simm13a,         Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  // pp 179

  inline void ldstub(  Register s1, Register s2, Register d );
  inline void ldstub(  Register s1, int simm13a, Register d);

  // pp 180

  void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void ldstuba( Register s1, int simm13a,         Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  // pp 181

  void and3(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3               ) | rs1(s1) | rs2(s2) ); }
  void and3(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void andcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  void andcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void andn(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | rs2(s2) ); }
  void andn(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void andncc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  void andncc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void or3(      Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | rs2(s2) ); }
  void or3(      Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void orcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  void orcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void orn(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
  void orn(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void orncc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  void orncc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void xor3(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | rs2(s2) ); }
  void xor3(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void xorcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  void xorcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void xnor(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | rs2(s2) ); }
  void xnor(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void xnorcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  void xnorcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  // pp 183

  void membar( Membar_mask_bits const7a ) { v9_only(); emit_long( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }

  // pp 185

  void fmov( FloatRegisterImpl::Width w, Condition c,  bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }

  // pp 189

  void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1,  FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }

  // pp 191

  void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
  void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }

  // pp 195

  void movr( RCondition c, Register s1, Register s2,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
  void movr( RCondition c, Register s1, int simm10a,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }

  // pp 196

  void mulx(  Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
  void mulx(  Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
  void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
  void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  // pp 197

  void umul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | rs2(s2) ); }
  void umul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void smul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | rs2(s2) ); }
  void smul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void umulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  void umulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void smulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  void smulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  // pp 199

  void mulscc(   Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); }
  void mulscc(   Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  // pp 201

  void nop() { emit_long( op(branch_op) | op2(sethi_op2) ); }


  // pp 202

  void popc( Register s,  Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
  void popc( int simm13a, Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }

  // pp 203

  void prefetch(   Register s1, Register s2,         PrefetchFcn f);
  void prefetch(   Register s1, int simm13a,         PrefetchFcn f);
  void prefetcha(  Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void prefetcha(  Register s1, int simm13a,         PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);

  // pp 208

  // not implementing read privileged register

  inline void rdy(    Register d) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
  inline void rdccr(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
  inline void rdasi(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
  inline void rdtick( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
  inline void rdpc(   Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
  inline void rdfprs( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }

  // pp 213

  inline void rett( Register s1, Register s2);
  inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);

  // pp 214

  void save(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
  void save(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  void restore( Register s1 = G0,  Register s2 = G0, Register d = G0 ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
  void restore( Register s1,       int simm13a,      Register d      ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  // pp 216

  void saved()    { v9_only();  emit_long( op(arith_op) | fcn(0) | op3(saved_op3)); }
  void restored() { v9_only();  emit_long( op(arith_op) | fcn(1) | op3(saved_op3)); }

  // pp 217

  inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
  // pp 218

  void sll(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  void sll(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  void srl(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  void srl(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
  void sra(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
  void sra(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }

  void sllx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  void sllx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  void srlx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  void srlx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
  void srax( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
  void srax( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }

  // pp 220

  void sir( int simm13a ) { emit_long( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }

  // pp 221

  void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }

  // pp 222

  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2 );
  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);

  inline void stfsr(  Register s1, Register s2 );
  inline void stfsr(  Register s1, int simm13a);
  inline void stxfsr( Register s1, Register s2 );
  inline void stxfsr( Register s1, int simm13a);

  //  pp 224

  void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  // p 226

  inline void stb(  Register d, Register s1, Register s2 );
  inline void stb(  Register d, Register s1, int simm13a);
  inline void sth(  Register d, Register s1, Register s2 );
  inline void sth(  Register d, Register s1, int simm13a);
  inline void stw(  Register d, Register s1, Register s2 );
  inline void stw(  Register d, Register s1, int simm13a);
  inline void st(   Register d, Register s1, Register s2 );
  inline void st(   Register d, Register s1, int simm13a);
  inline void stx(  Register d, Register s1, Register s2 );
  inline void stx(  Register d, Register s1, int simm13a);
  inline void std(  Register d, Register s1, Register s2 );
  inline void std(  Register d, Register s1, int simm13a);

  inline void stb(  Register d, const Address& a, int offset = 0 );
  inline void sth(  Register d, const Address& a, int offset = 0 );
  inline void stw(  Register d, const Address& a, int offset = 0 );
  inline void stx(  Register d, const Address& a, int offset = 0 );
  inline void st(   Register d, const Address& a, int offset = 0 );
  inline void std(  Register d, const Address& a, int offset = 0 );

  // pp 177

  void stba(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void stba(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void stha(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void stha(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void stwa(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void stwa(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void stxa(  Register d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void stxa(  Register d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void stda(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void stda(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  // pp 97 (v8)

  inline void stc(   int crd, Register s1, Register s2 );
  inline void stc(   int crd, Register s1, int simm13a);
  inline void stdc(  int crd, Register s1, Register s2 );
  inline void stdc(  int crd, Register s1, int simm13a);
  inline void stcsr( int crd, Register s1, Register s2 );
  inline void stcsr( int crd, Register s1, int simm13a);
  inline void stdcq( int crd, Register s1, Register s2 );
  inline void stdcq( int crd, Register s1, int simm13a);

  // pp 230

  void sub(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | rs2(s2) ); }
  void sub(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void subcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
  void subcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void subc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | rs2(s2) ); }
  void subc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
  void subccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  // pp 231

  inline void swap( Register s1, Register s2, Register d );
  inline void swap( Register s1, int simm13a, Register d);
  inline void swap( Address& a,               Register d, int offset = 0 );

  // pp 232

  void swapa(   Register s1, Register s2, int ia, Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
  void swapa(   Register s1, int simm13a,         Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  // pp 234, note op in book is wrong, see pp 268

  void taddcc(    Register s1, Register s2, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | rs2(s2) ); }
  void taddcc(    Register s1, int simm13a, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void taddcctv(  Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); }
  void taddcctv(  Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  // pp 235

  void tsubcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | rs2(s2) ); }
  void tsubcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
  void tsubcctv(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); }
  void tsubcctv(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }

  // pp 237

  void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
  void trap( Condition c, CC cc, Register s1, int trapa   ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
  // simple uncond. trap
  void trap( int trapa ) { trap( always, icc, G0, trapa ); }

  // pp 239 omit write priv register for now

  inline void wry(    Register d) { v9_dep();  emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
  inline void wrccr(Register s) { v9_only(); emit_long( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
  inline void wrccr(Register s, int simm13a) { v9_only(); emit_long( op(arith_op) |
                                                                           rs1(s) |
                                                                           op3(wrreg_op3) |
                                                                           u_field(2, 29, 25) |
                                                                           u_field(1, 13, 13) |
                                                                           simm(simm13a, 13)); }
  inline void wrasi(  Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
  inline void wrfprs( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }


  // Creation
  Assembler(CodeBuffer* code) : AbstractAssembler(code) {
#ifdef CHECK_DELAY
    delay_state = no_delay;
#endif
  }

  // Testing
#ifndef PRODUCT
  void test_v9();
  void test_v8_onlys();
#endif
};


class RegistersForDebugging : public StackObj {
 public:
  intptr_t i[8], l[8], o[8], g[8];
  float    f[32];
  double   d[32];

  void print(outputStream* s);

  static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
  static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
  static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
  static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
  static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
  static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }

  // gen asm code to save regs
  static void save_registers(MacroAssembler* a);

  // restore global registers in case C code disturbed them
  static void restore_registers(MacroAssembler* a, Register r);
};


// MacroAssembler extends Assembler by a few frequently used macros.
//
// Most of the standard SPARC synthetic ops are defined here.
// Instructions for which a 'better' code sequence exists depending
// on arguments should also go in here.

#define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
#define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
#define JUMP(a, off)     jump(a, off, __FILE__, __LINE__)
#define JUMPL(a, d, off) jumpl(a, d, off, __FILE__, __LINE__)


class MacroAssembler: public Assembler {
 protected:
  // Support for VM calls
  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  // may customize this version by overriding it for its purposes (e.g., to save/restore
  // additional registers when doing a VM call).
#ifdef CC_INTERP
  #define VIRTUAL
#else
  #define VIRTUAL virtual
#endif

  VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);

  //
  // It is imperative that all calls into the VM are handled via the call_VM macros.
  // They make sure that the stack linkage is setup correctly. call_VM's correspond
  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
  //
  // This is the base routine called by the different versions of call_VM. The interpreter
  // may customize this version by overriding it for its purposes (e.g., to save/restore
  // additional registers when doing a VM call).
  //
  // A non-volatile java_thread_cache register should be specified so
  // that the G2_thread value can be preserved across the call.
  // (If java_thread_cache is noreg, then a slow get_thread call
  // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
  // thread.
  //
  // If no last_java_sp is specified (noreg) than SP will be used instead.

  virtual void call_VM_base(
    Register        oop_result,             // where an oop-result ends up if any; use noreg otherwise
    Register        java_thread_cache,      // the thread if computed before     ; use noreg otherwise
    Register        last_java_sp,           // to set up last_Java_frame in stubs; use noreg otherwise
    address         entry_point,            // the entry point
    int             number_of_arguments,    // the number of arguments (w/o thread) to pop after call
    bool            check_exception=true    // flag which indicates if exception should be checked
  );

  // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  // The implementation is only non-empty for the InterpreterMacroAssembler,
  // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
  virtual void check_and_handle_popframe(Register scratch_reg);
  virtual void check_and_handle_earlyret(Register scratch_reg);

 public:
  MacroAssembler(CodeBuffer* code) : Assembler(code) {}

  // Support for NULL-checks
  //
  // Generates code that causes a NULL OS exception if the content of reg is NULL.
  // If the accessed location is M[reg + offset] and the offset is known, provide the
  // offset.  No explicit code generation is needed if the offset is within a certain
  // range (0 <= offset <= page_size).
  //
  // %%%%%% Currently not done for SPARC

  void null_check(Register reg, int offset = -1);
  static bool needs_explicit_null_check(intptr_t offset);

  // support for delayed instructions
  MacroAssembler* delayed() { Assembler::delayed();  return this; }

  // branches that use right instruction for v8 vs. v9
  inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  inline void br( Condition c, bool a, Predict p, Label& L );
  inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  inline void fb( Condition c, bool a, Predict p, Label& L );

  // compares register with zero and branches (V9 and V8 instructions)
  void br_zero( Condition c, bool a, Predict p, Register s1, Label& L);
  // Compares a pointer register with zero and branches on (not)null.
  // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
  void br_null   ( Register s1, bool a, Predict p, Label& L );
  void br_notnull( Register s1, bool a, Predict p, Label& L );

  inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );

  // Branch that tests xcc in LP64 and icc in !LP64
  inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  inline void brx( Condition c, bool a, Predict p, Label& L );

  // unconditional short branch
  inline void ba( bool a, Label& L );

  // Branch that tests fp condition codes
  inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
  inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );

  // get PC the best way
  inline int get_pc( Register d );

  // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
  inline void cmp(  Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
  inline void cmp(  Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }

  inline void jmp( Register s1, Register s2 );
  inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );

  inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
  inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
  inline void callr( Register s1, Register s2 );
  inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );

  // Emits nothing on V8
  inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
  inline void iprefetch( Label& L);

  inline void tst( Register s ) { orcc( G0, s, G0 ); }

#ifdef PRODUCT
  inline void ret(  bool trace = TraceJumps )   { if (trace) {
                                                    mov(I7, O7); // traceable register
                                                    JMP(O7, 2 * BytesPerInstWord);
                                                  } else {
                                                    jmpl( I7, 2 * BytesPerInstWord, G0 );
                                                  }
                                                }

  inline void retl( bool trace = TraceJumps )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
                                                 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
#else
  void ret(  bool trace = TraceJumps );
  void retl( bool trace = TraceJumps );
#endif /* PRODUCT */

  // Required platform-specific helpers for Label::patch_instructions.
  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  void pd_patch_instruction(address branch, address target);
#ifndef PRODUCT
  static void pd_print_patched_instruction(address branch);
#endif

  // sethi Macro handles optimizations and relocations
  void sethi( Address& a, bool ForceRelocatable = false );
  void sethi( intptr_t imm22a, Register d, bool ForceRelocatable = false, RelocationHolder const& rspec = RelocationHolder());

  // compute the size of a sethi/set
  static int  size_of_sethi( address a, bool worst_case = false );
  static int  worst_case_size_of_set();

  // set may be either setsw or setuw (high 32 bits may be zero or sign)
  void set(    intptr_t value, Register d, RelocationHolder const& rspec = RelocationHolder() );
  void setsw(  int value, Register d, RelocationHolder const& rspec = RelocationHolder() );
  void set64(  jlong value, Register d, Register tmp);

  // sign-extend 32 to 64
  inline void signx( Register s, Register d ) { sra( s, G0, d); }
  inline void signx( Register d )             { sra( d, G0, d); }

  inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
  inline void not1( Register d )             { xnor( d, G0, d ); }

  inline void neg( Register s, Register d ) { sub( G0, s, d ); }
  inline void neg( Register d )             { sub( G0, d, d ); }

  inline void cas(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
  inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
  // Functions for isolating 64 bit atomic swaps for LP64
  // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
  inline void cas_ptr(  Register s1, Register s2, Register d) {
#ifdef _LP64
    casx( s1, s2, d );
#else
    cas( s1, s2, d );
#endif
  }

  // Functions for isolating 64 bit shifts for LP64
  inline void sll_ptr( Register s1, Register s2, Register d );
  inline void sll_ptr( Register s1, int imm6a,   Register d );
  inline void srl_ptr( Register s1, Register s2, Register d );
  inline void srl_ptr( Register s1, int imm6a,   Register d );

  // little-endian
  inline void casl(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
  inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }

  inline void inc(   Register d,  int const13 = 1 ) { add(   d, const13, d); }
  inline void inccc( Register d,  int const13 = 1 ) { addcc( d, const13, d); }

  inline void dec(   Register d,  int const13 = 1 ) { sub(   d, const13, d); }
  inline void deccc( Register d,  int const13 = 1 ) { subcc( d, const13, d); }

  inline void btst( Register s1,  Register s2 ) { andcc( s1, s2, G0 ); }
  inline void btst( int simm13a,  Register s )  { andcc( s,  simm13a, G0 ); }

  inline void bset( Register s1,  Register s2 ) { or3( s1, s2, s2 ); }
  inline void bset( int simm13a,  Register s )  { or3( s,  simm13a, s ); }

  inline void bclr( Register s1,  Register s2 ) { andn( s1, s2, s2 ); }
  inline void bclr( int simm13a,  Register s )  { andn( s,  simm13a, s ); }

  inline void btog( Register s1,  Register s2 ) { xor3( s1, s2, s2 ); }
  inline void btog( int simm13a,  Register s )  { xor3( s,  simm13a, s ); }

  inline void clr( Register d ) { or3( G0, G0, d ); }

  inline void clrb( Register s1, Register s2);
  inline void clrh( Register s1, Register s2);
  inline void clr(  Register s1, Register s2);
  inline void clrx( Register s1, Register s2);

  inline void clrb( Register s1, int simm13a);
  inline void clrh( Register s1, int simm13a);
  inline void clr(  Register s1, int simm13a);
  inline void clrx( Register s1, int simm13a);

  // copy & clear upper word
  inline void clruw( Register s, Register d ) { srl( s, G0, d); }
  // clear upper word
  inline void clruwu( Register d ) { srl( d, G0, d); }

  // membar psuedo instruction.  takes into account target memory model.
  inline void membar( Assembler::Membar_mask_bits const7a );

  // returns if membar generates anything.
  inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );

  // mov pseudo instructions
  inline void mov( Register s,  Register d) {
    if ( s != d )    or3( G0, s, d);
    else             assert_not_delayed();  // Put something useful in the delay slot!
  }

  inline void mov_or_nop( Register s,  Register d) {
    if ( s != d )    or3( G0, s, d);
    else             nop();
  }

  inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }

  // address pseudos: make these names unlike instruction names to avoid confusion
  inline void split_disp(    Address& a, Register temp );
  inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
  inline void load_address(  Address& a, int offset = 0 );
  inline void load_contents( Address& a, Register d, int offset = 0 );
  inline void load_ptr_contents( Address& a, Register d, int offset = 0 );
  inline void store_contents( Register s, Address& a, int offset = 0 );
  inline void store_ptr_contents( Register s, Address& a, int offset = 0 );
  inline void jumpl_to( Address& a, Register d, int offset = 0 );
  inline void jump_to(  Address& a,             int offset = 0 );

  // ring buffer traceable jumps

  void jmp2( Register r1, Register r2, const char* file, int line );
  void jmp ( Register r1, int offset,  const char* file, int line );

  void jumpl( Address& a, Register d, int offset, const char* file, int line );
  void jump ( Address& a,             int offset, const char* file, int line );


  // argument pseudos:

  inline void load_argument( Argument& a, Register  d );
  inline void store_argument( Register s, Argument& a );
  inline void store_ptr_argument( Register s, Argument& a );
  inline void store_float_argument( FloatRegister s, Argument& a );
  inline void store_double_argument( FloatRegister s, Argument& a );
  inline void store_long_argument( Register s, Argument& a );

  // handy macros:

  inline void round_to( Register r, int modulus ) {
    assert_not_delayed();
    inc( r, modulus - 1 );
    and3( r, -modulus, r );
  }

  // --------------------------------------------------

  // Functions for isolating 64 bit loads for LP64
  // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
  // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
  inline void ld_ptr(   Register s1, Register s2, Register d );
  inline void ld_ptr(   Register s1, int simm13a, Register d);
  inline void ld_ptr(  const Address& a, Register d, int offset = 0 );
  inline void st_ptr(  Register d, Register s1, Register s2 );
  inline void st_ptr(  Register d, Register s1, int simm13a);
  inline void st_ptr(  Register d, const Address& a, int offset = 0 );

  // ld_long will perform ld for 32 bit VM's and ldx for 64 bit VM's
  // st_long will perform st for 32 bit VM's and stx for 64 bit VM's
  inline void ld_long( Register s1, Register s2, Register d );
  inline void ld_long( Register s1, int simm13a, Register d );
  inline void ld_long( const Address& a, Register d, int offset = 0 );
  inline void st_long( Register d, Register s1, Register s2 );
  inline void st_long( Register d, Register s1, int simm13a );
  inline void st_long( Register d, const Address& a, int offset = 0 );

  // --------------------------------------------------

 public:
  // traps as per trap.h (SPARC ABI?)

  void breakpoint_trap();
  void breakpoint_trap(Condition c, CC cc = icc);
  void flush_windows_trap();
  void clean_windows_trap();
  void get_psr_trap();
  void set_psr_trap();

  // V8/V9 flush_windows
  void flush_windows();

  // Support for serializing memory accesses between threads
  void serialize_memory(Register thread, Register tmp1, Register tmp2);

  // Stack frame creation/removal
  void enter();
  void leave();

  // V8/V9 integer multiply
  void mult(Register s1, Register s2, Register d);
  void mult(Register s1, int simm13a, Register d);

  // V8/V9 read and write of condition codes.
  void read_ccr(Register d);
  void write_ccr(Register s);

  // Manipulation of C++ bools
  // These are idioms to flag the need for care with accessing bools but on
  // this platform we assume byte size

  inline void stbool( Register d, const Address& a, int offset = 0 ) { stb(d, a, offset); }
  inline void ldbool( const Address& a, Register d, int offset = 0 ) { ldsb( a, d, offset ); }
  inline void tstbool( Register s ) { tst(s); }
  inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }

  // klass oop manipulations if compressed
  void load_klass(Register src_oop, Register klass);
  void store_klass(Register klass, Register dst_oop);
  void store_klass_gap(Register s, Register dst_oop);

   // oop manipulations
  void load_heap_oop(const Address& s, Register d, int offset = 0);
  void load_heap_oop(Register s1, Register s2, Register d);
  void load_heap_oop(Register s1, int simm13a, Register d);
  void store_heap_oop(Register d, Register s1, Register s2);
  void store_heap_oop(Register d, Register s1, int simm13a);
  void store_heap_oop(Register d, const Address& a, int offset = 0);

  void encode_heap_oop(Register src, Register dst);
  void encode_heap_oop(Register r) {
    encode_heap_oop(r, r);
  }
  void decode_heap_oop(Register src, Register dst);
  void decode_heap_oop(Register r) {
    decode_heap_oop(r, r);
  }
  void encode_heap_oop_not_null(Register r);
  void decode_heap_oop_not_null(Register r);
  void encode_heap_oop_not_null(Register src, Register dst);
  void decode_heap_oop_not_null(Register src, Register dst);

  // Support for managing the JavaThread pointer (i.e.; the reference to
  // thread-local information).
  void get_thread();                                // load G2_thread
  void verify_thread();                             // verify G2_thread contents
  void save_thread   (const Register threache); // save to cache
  void restore_thread(const Register thread_cache); // restore from cache

  // Support for last Java frame (but use call_VM instead where possible)
  void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
  void reset_last_Java_frame(void);

  // Call into the VM.
  // Passes the thread pointer (in O0) as a prepended argument.
  // Makes sure oop return values are visible to the GC.
  void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
  void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);

  // these overloadings are not presently used on SPARC:
  void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);

  void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);

  void get_vm_result  (Register oop_result);
  void get_vm_result_2(Register oop_result);

  // vm result is currently getting hijacked to for oop preservation
  void set_vm_result(Register oop_result);

  // if call_VM_base was called with check_exceptions=false, then call
  // check_and_forward_exception to handle exceptions when it is safe
  void check_and_forward_exception(Register scratch_reg);

 private:
  // For V8
  void read_ccr_trap(Register ccr_save);
  void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);

#ifdef ASSERT
  // For V8 debugging.  Uses V8 instruction sequence and checks
  // result with V9 insturctions rdccr and wrccr.
  // Uses Gscatch and Gscatch2
  void read_ccr_v8_assert(Register ccr_save);
  void write_ccr_v8_assert(Register ccr_save);
#endif // ASSERT

 public:
  // Stores
  void store_check(Register tmp, Register obj);                // store check for obj - register is destroyed afterwards
  void store_check(Register tmp, Register obj, Register offset); // store check for obj - register is destroyed afterwards

  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  void push_fTOS();

  // pops double TOS element from CPU stack and pushes on FPU stack
  void pop_fTOS();

  void empty_FPU_stack();

  void push_IU_state();
  void pop_IU_state();

  void push_FPU_state();
  void pop_FPU_state();

  void push_CPU_state();
  void pop_CPU_state();

  // if heap base register is used - reinit it with the correct value
  void reinit_heapbase();

  // Debugging
  void _verify_oop(Register reg, const char * msg, const char * file, int line);
  void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);

#define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
#define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)

        // only if +VerifyOops
  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
        // only if +VerifyFPU
  void stop(const char* msg);                          // prints msg, dumps registers and stops execution
  void warn(const char* msg);                          // prints msg, but don't stop
  void untested(const char* what = "");
  void unimplemented(const char* what = "")              { char* b = new char[1024];  sprintf(b, "unimplemented: %s", what);  stop(b); }
  void should_not_reach_here()                   { stop("should not reach here"); }
  void print_CPU_state();

  // oops in code
  Address allocate_oop_address( jobject obj, Register d ); // allocate_index
  Address constant_oop_address( jobject obj, Register d ); // find_index
  inline void set_oop         ( jobject obj, Register d ); // uses allocate_oop_address
  inline void set_oop_constant( jobject obj, Register d ); // uses constant_oop_address
  inline void set_oop         ( Address obj_addr );        // same as load_address

  void set_narrow_oop( jobject obj, Register d );

  // nop padding
  void align(int modulus);

  // declare a safepoint
  void safepoint();

  // factor out part of stop into subroutine to save space
  void stop_subroutine();
  // factor out part of verify_oop into subroutine to save space
  void verify_oop_subroutine();

  // side-door communication with signalHandler in os_solaris.cpp
  static address _verify_oop_implicit_branch[3];

#ifndef PRODUCT
  static void test();
#endif

  // convert an incoming arglist to varargs format; put the pointer in d
  void set_varargs( Argument a, Register d );

  int total_frame_size_in_bytes(int extraWords);

  // used when extraWords known statically
  void save_frame(int extraWords);
  void save_frame_c1(int size_in_bytes);
  // make a frame, and simultaneously pass up one or two register value
  // into the new register window
  void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());

  // give no. (outgoing) params, calc # of words will need on frame
  void calc_mem_param_words(Register Rparam_words, Register Rresult);

  // used to calculate frame size dynamically
  // result is in bytes and must be negated for save inst
  void calc_frame_size(Register extraWords, Register resultReg);

  // calc and also save
  void calc_frame_size_and_save(Register extraWords, Register resultReg);

  static void debug(char* msg, RegistersForDebugging* outWindow);

  // implementations of bytecodes used by both interpreter and compiler

  void lcmp( Register Ra_hi, Register Ra_low,
             Register Rb_hi, Register Rb_low,
             Register Rresult);

  void lneg( Register Rhi, Register Rlow );

  void lshl(  Register Rin_high,  Register Rin_low,  Register Rcount,
              Register Rout_high, Register Rout_low, Register Rtemp );

  void lshr(  Register Rin_high,  Register Rin_low,  Register Rcount,
              Register Rout_high, Register Rout_low, Register Rtemp );

  void lushr( Register Rin_high,  Register Rin_low,  Register Rcount,
              Register Rout_high, Register Rout_low, Register Rtemp );

#ifdef _LP64
  void lcmp( Register Ra, Register Rb, Register Rresult);
#endif

  void float_cmp( bool is_float, int unordered_result,
                  FloatRegister Fa, FloatRegister Fb,
                  Register Rresult);

  void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
  void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
  void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
  void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);

  void save_all_globals_into_locals();
  void restore_globals_from_locals();

  void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
    address lock_addr=0, bool use_call_vm=false);
  void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
    address lock_addr=0, bool use_call_vm=false);
  void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;

  // These set the icc condition code to equal if the lock succeeded
  // and notEqual if it failed and requires a slow case
  void compiler_lock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch,
                              BiasedLockingCounters* counters = NULL);
  void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch);

  // Biased locking support
  // Upon entry, lock_reg must point to the lock record on the stack,
  // obj_reg must contain the target object, and mark_reg must contain
  // the target object's header.
  // Destroys mark_reg if an attempt is made to bias an anonymously
  // biased lock. In this case a failure will go either to the slow
  // case or fall through with the notEqual condition code set with
  // the expectation that the slow case in the runtime will be called.
  // In the fall-through case where the CAS-based lock is done,
  // mark_reg is not destroyed.
  void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
                            Label& done, Label* slow_case = NULL,
                            BiasedLockingCounters* counters = NULL);
  // Upon entry, the base register of mark_addr must contain the oop.
  // Destroys temp_reg.

  // If allow_delay_slot_filling is set to true, the next instruction
  // emitted after this one will go in an annulled delay slot if the
  // biased locking exit case failed.
  void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);

  // allocation
  void eden_allocate(
    Register obj,                      // result: pointer to object after successful allocation
    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
    int      con_size_in_bytes,        // object size in bytes if   known at compile time
    Register t1,                       // temp register
    Register t2,                       // temp register
    Label&   slow_case                 // continuation point if fast allocation fails
  );
  void tlab_allocate(
    Register obj,                      // result: pointer to object after successful allocation
    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
    int      con_size_in_bytes,        // object size in bytes if   known at compile time
    Register t1,                       // temp register
    Label&   slow_case                 // continuation point if fast allocation fails
  );
  void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);

  // Stack overflow checking

  // Note: this clobbers G3_scratch
  void bang_stack_with_offset(int offset) {
    // stack grows down, caller passes positive offset
    assert(offset > 0, "must bang with negative offset");
    set((-offset)+STACK_BIAS, G3_scratch);
    st(G0, SP, G3_scratch);
  }

  // Writes to stack successive pages until offset reached to check for
  // stack overflow + shadow pages.  Clobbers tsp and scratch registers.
  void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);

  void verify_tlab();

  Condition negate_condition(Condition cond);

  // Helper functions for statistics gathering.
  // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
  void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
  // Unconditional increment.
  void inc_counter(address counter_addr, Register Rtemp1, Register Rtemp2);

#undef VIRTUAL

};

/**
 * class SkipIfEqual:
 *
 * Instantiating this class will result in assembly code being output that will
 * jump around any code emitted between the creation of the instance and it's
 * automatic destruction at the end of a scope block, depending on the value of
 * the flag passed to the constructor, which will be checked at run-time.
 */
class SkipIfEqual : public StackObj {
 private:
  MacroAssembler* _masm;
  Label _label;

 public:
   // 'temp' is a temp register that this object can use (and trash)
   SkipIfEqual(MacroAssembler*, Register temp,
               const bool* flag_addr, Assembler::Condition condition);
   ~SkipIfEqual();
};

#ifdef ASSERT
// On RISC, there's no benefit to verifying instruction boundaries.
inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
#endif