aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/ppc/vm/cppInterpreter_ppc.cpp
blob: 5cf5a6a6573c34ce3cbed9ba842b14d95f668d54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * Copyright 2012, 2013 SAP AG. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/cppInterpreter.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterGenerator.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "oops/arrayOop.hpp"
#include "oops/methodData.hpp"
#include "oops/method.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/arguments.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/interfaceSupport.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/synchronizer.hpp"
#include "runtime/timer.hpp"
#include "runtime/vframeArray.hpp"
#include "utilities/debug.hpp"
#ifdef SHARK
#include "shark/shark_globals.hpp"
#endif

#ifdef CC_INTERP

#define __ _masm->

// Contains is used for identifying interpreter frames during a stack-walk.
// A frame with a PC in InterpretMethod must be identified as a normal C frame.
bool CppInterpreter::contains(address pc) {
  return _code->contains(pc);
}

#ifdef PRODUCT
#define BLOCK_COMMENT(str) // nothing
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif

#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")

static address interpreter_frame_manager        = NULL;
static address frame_manager_specialized_return = NULL;
static address native_entry                     = NULL;

static address interpreter_return_address       = NULL;

static address unctrap_frame_manager_entry      = NULL;

static address deopt_frame_manager_return_atos  = NULL;
static address deopt_frame_manager_return_btos  = NULL;
static address deopt_frame_manager_return_itos  = NULL;
static address deopt_frame_manager_return_ltos  = NULL;
static address deopt_frame_manager_return_ftos  = NULL;
static address deopt_frame_manager_return_dtos  = NULL;
static address deopt_frame_manager_return_vtos  = NULL;

// A result handler converts/unboxes a native call result into
// a java interpreter/compiler result. The current frame is an
// interpreter frame.
address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
  return AbstractInterpreterGenerator::generate_result_handler_for(type);
}

// tosca based result to c++ interpreter stack based result.
address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
  //
  // A result is in the native abi result register from a native
  // method call. We need to return this result to the interpreter by
  // pushing the result on the interpreter's stack.
  //
  // Registers alive:
  //   R3_ARG1(R3_RET)/F1_ARG1(F1_RET) - result to move
  //   R4_ARG2                         - address of tos
  //   LR
  //
  // Registers updated:
  //   R3_RET(R3_ARG1)   - address of new tos (== R17_tos for T_VOID)
  //

  int number_of_used_slots = 1;

  const Register tos = R4_ARG2;
  Label done;
  Label is_false;

  address entry = __ pc();

  switch (type) {
  case T_BOOLEAN:
    __ cmpwi(CCR0, R3_RET, 0);
    __ beq(CCR0, is_false);
    __ li(R3_RET, 1);
    __ stw(R3_RET, 0, tos);
    __ b(done);
    __ bind(is_false);
    __ li(R3_RET, 0);
    __ stw(R3_RET, 0, tos);
    break;
  case T_BYTE:
  case T_CHAR:
  case T_SHORT:
  case T_INT:
    __ stw(R3_RET, 0, tos);
    break;
  case T_LONG:
    number_of_used_slots = 2;
    // mark unused slot for debugging
    // long goes to topmost slot
    __ std(R3_RET, -BytesPerWord, tos);
    __ li(R3_RET, 0);
    __ std(R3_RET, 0, tos);
    break;
  case T_OBJECT:
    __ verify_oop(R3_RET);
    __ std(R3_RET, 0, tos);
    break;
  case T_FLOAT:
    __ stfs(F1_RET, 0, tos);
    break;
  case T_DOUBLE:
    number_of_used_slots = 2;
    // mark unused slot for debugging
    __ li(R3_RET, 0);
    __ std(R3_RET, 0, tos);
    // double goes to topmost slot
    __ stfd(F1_RET, -BytesPerWord, tos);
    break;
  case T_VOID:
    number_of_used_slots = 0;
    break;
  default:
    ShouldNotReachHere();
  }

  __ BIND(done);

  // new expression stack top
  __ addi(R3_RET, tos, -BytesPerWord * number_of_used_slots);

  __ blr();

  return entry;
}

address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
  //
  // Copy the result from the callee's stack to the caller's stack,
  // caller and callee both being interpreted.
  //
  // Registers alive
  //   R3_ARG1        - address of callee's tos + BytesPerWord
  //   R4_ARG2        - address of caller's tos [i.e. free location]
  //   LR
  //
  //   stack grows upwards, memory grows downwards.
  //
  //   [      free         ]  <-- callee's tos
  //   [  optional result  ]  <-- R3_ARG1
  //   [  optional dummy   ]
  //          ...
  //   [      free         ]  <-- caller's tos, R4_ARG2
  //          ...
  // Registers updated
  //   R3_RET(R3_ARG1) - address of caller's new tos
  //
  //   stack grows upwards, memory grows downwards.
  //
  //   [      free         ]  <-- current tos, R3_RET
  //   [  optional result  ]
  //   [  optional dummy   ]
  //          ...
  //

  const Register from = R3_ARG1;
  const Register ret  = R3_ARG1;
  const Register tos  = R4_ARG2;
  const Register tmp1 = R21_tmp1;
  const Register tmp2 = R22_tmp2;

  address entry = __ pc();

  switch (type) {
  case T_BOOLEAN:
  case T_BYTE:
  case T_CHAR:
  case T_SHORT:
  case T_INT:
  case T_FLOAT:
    __ lwz(tmp1, 0, from);
    __ stw(tmp1, 0, tos);
    // New expression stack top.
    __ addi(ret, tos, - BytesPerWord);
    break;
  case T_LONG:
  case T_DOUBLE:
    // Move both entries for debug purposes even though only one is live.
    __ ld(tmp1, BytesPerWord, from);
    __ ld(tmp2, 0, from);
    __ std(tmp1, 0, tos);
    __ std(tmp2, -BytesPerWord, tos);
    // New expression stack top.
    __ addi(ret, tos, - 2 * BytesPerWord); // two slots
    break;
  case T_OBJECT:
    __ ld(tmp1, 0, from);
    __ verify_oop(tmp1);
    __ std(tmp1, 0, tos);
    // New expression stack top.
    __ addi(ret, tos, - BytesPerWord);
    break;
  case T_VOID:
    // New expression stack top.
    __ mr(ret, tos);
    break;
  default:
    ShouldNotReachHere();
  }

  __ blr();

  return entry;
}

address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
  //
  // Load a result from the callee's stack into the caller's expecting
  // return register, callee being interpreted, caller being call stub
  // or jit code.
  //
  // Registers alive
  //   R3_ARG1   - callee expression tos + BytesPerWord
  //   LR
  //
  //   stack grows upwards, memory grows downwards.
  //
  //   [      free         ]  <-- callee's tos
  //   [  optional result  ]  <-- R3_ARG1
  //   [  optional dummy   ]
  //          ...
  //
  // Registers updated
  //   R3_RET(R3_ARG1)/F1_RET - result
  //

  const Register from = R3_ARG1;
  const Register ret = R3_ARG1;
  const FloatRegister fret = F1_ARG1;

  address entry = __ pc();

  // Implemented uniformly for both kinds of endianness. The interpreter
  // implements boolean, byte, char, and short as jint (4 bytes).
  switch (type) {
  case T_BOOLEAN:
  case T_CHAR:
    // zero extension
    __ lwz(ret, 0, from);
    break;
  case T_BYTE:
  case T_SHORT:
  case T_INT:
    // sign extension
    __ lwa(ret, 0, from);
    break;
  case T_LONG:
    __ ld(ret, 0, from);
    break;
  case T_OBJECT:
    __ ld(ret, 0, from);
    __ verify_oop(ret);
    break;
  case T_FLOAT:
    __ lfs(fret, 0, from);
    break;
  case T_DOUBLE:
    __ lfd(fret, 0, from);
    break;
  case T_VOID:
    break;
  default:
    ShouldNotReachHere();
  }

  __ blr();

  return entry;
}

address CppInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
  assert(interpreter_return_address != NULL, "Not initialized");
  return interpreter_return_address;
}

address CppInterpreter::deopt_entry(TosState state, int length) {
  address ret = NULL;
  if (length != 0) {
    switch (state) {
      case atos: ret = deopt_frame_manager_return_atos; break;
      case btos: ret = deopt_frame_manager_return_itos; break;
      case ctos:
      case stos:
      case itos: ret = deopt_frame_manager_return_itos; break;
      case ltos: ret = deopt_frame_manager_return_ltos; break;
      case ftos: ret = deopt_frame_manager_return_ftos; break;
      case dtos: ret = deopt_frame_manager_return_dtos; break;
      case vtos: ret = deopt_frame_manager_return_vtos; break;
      default: ShouldNotReachHere();
    }
  } else {
    ret = unctrap_frame_manager_entry;  // re-execute the bytecode (e.g. uncommon trap, popframe)
  }
  assert(ret != NULL, "Not initialized");
  return ret;
}

//
// Helpers for commoning out cases in the various type of method entries.
//

//
// Registers alive
//   R16_thread      - JavaThread*
//   R1_SP           - old stack pointer
//   R19_method      - callee's Method
//   R17_tos         - address of caller's tos (prepushed)
//   R15_prev_state  - address of caller's BytecodeInterpreter or 0
//   return_pc in R21_tmp15 (only when called within generate_native_entry)
//
// Registers updated
//   R14_state       - address of callee's interpreter state
//   R1_SP           - new stack pointer
//   CCR4_is_synced  - current method is synchronized
//
void CppInterpreterGenerator::generate_compute_interpreter_state(Label& stack_overflow_return) {
  //
  // Stack layout at this point:
  //
  //   F1      [TOP_IJAVA_FRAME_ABI]              <-- R1_SP
  //           alignment (optional)
  //           [F1's outgoing Java arguments]     <-- R17_tos
  //           ...
  //   F2      [PARENT_IJAVA_FRAME_ABI]
  //            ...

  //=============================================================================
  // Allocate space for locals other than the parameters, the
  // interpreter state, monitors, and the expression stack.

  const Register local_count        = R21_tmp1;
  const Register parameter_count    = R22_tmp2;
  const Register max_stack          = R23_tmp3;
  // Must not be overwritten within this method!
  // const Register return_pc         = R29_tmp9;

  const ConditionRegister is_synced = CCR4_is_synced;
  const ConditionRegister is_native = CCR6;
  const ConditionRegister is_static = CCR7;

  assert(is_synced != is_native, "condition code registers must be distinct");
  assert(is_synced != is_static, "condition code registers must be distinct");
  assert(is_native != is_static, "condition code registers must be distinct");

  {

  // Local registers
  const Register top_frame_size     = R24_tmp4;
  const Register access_flags       = R25_tmp5;
  const Register state_offset       = R26_tmp6;
  Register mem_stack_limit          = R27_tmp7;
  const Register page_size          = R28_tmp8;

  BLOCK_COMMENT("compute_interpreter_state {");

  // access_flags = method->access_flags();
  // TODO: PPC port: assert(4 == methodOopDesc::sz_access_flags(), "unexpected field size");
  __ lwa(access_flags, method_(access_flags));

  // parameter_count = method->constMethod->size_of_parameters();
  // TODO: PPC port: assert(2 == ConstMethod::sz_size_of_parameters(), "unexpected field size");
  __ ld(max_stack, in_bytes(Method::const_offset()), R19_method);   // Max_stack holds constMethod for a while.
  __ lhz(parameter_count, in_bytes(ConstMethod::size_of_parameters_offset()), max_stack);

  // local_count = method->constMethod()->max_locals();
  // TODO: PPC port: assert(2 == ConstMethod::sz_max_locals(), "unexpected field size");
  __ lhz(local_count, in_bytes(ConstMethod::size_of_locals_offset()), max_stack);

  // max_stack = method->constMethod()->max_stack();
  // TODO: PPC port: assert(2 == ConstMethod::sz_max_stack(), "unexpected field size");
  __ lhz(max_stack, in_bytes(ConstMethod::max_stack_offset()), max_stack);

  if (EnableInvokeDynamic) {
    // Take into account 'extra_stack_entries' needed by method handles (see method.hpp).
    __ addi(max_stack, max_stack, Method::extra_stack_entries());
  }

  // mem_stack_limit = thread->stack_limit();
  __ ld(mem_stack_limit, thread_(stack_overflow_limit));

  // Point locals at the first argument. Method's locals are the
  // parameters on top of caller's expression stack.

  // tos points past last Java argument
  __ sldi(R18_locals, parameter_count, Interpreter::logStackElementSize);
  __ add(R18_locals, R17_tos, R18_locals);

  // R18_locals - i*BytesPerWord points to i-th Java local (i starts at 0)

  // Set is_native, is_synced, is_static - will be used later.
  __ testbitdi(is_native, R0, access_flags, JVM_ACC_NATIVE_BIT);
  __ testbitdi(is_synced, R0, access_flags, JVM_ACC_SYNCHRONIZED_BIT);
  assert(is_synced->is_nonvolatile(), "is_synced must be non-volatile");
  __ testbitdi(is_static, R0, access_flags, JVM_ACC_STATIC_BIT);

  // PARENT_IJAVA_FRAME_ABI
  //
  // frame_size =
  //   round_to((local_count - parameter_count)*BytesPerWord +
  //              2*BytesPerWord +
  //              alignment +
  //              frame::interpreter_frame_cinterpreterstate_size_in_bytes()
  //              sizeof(PARENT_IJAVA_FRAME_ABI)
  //              method->is_synchronized() ? sizeof(BasicObjectLock) : 0 +
  //              max_stack*BytesPerWord,
  //            16)
  //
  // Note that this calculation is exactly mirrored by
  // AbstractInterpreter::layout_activation_impl() [ and
  // AbstractInterpreter::size_activation() ]. Which is used by
  // deoptimization so that it can allocate the proper sized
  // frame. This only happens for interpreted frames so the extra
  // notes below about max_stack below are not important. The other
  // thing to note is that for interpreter frames other than the
  // current activation the size of the stack is the size of the live
  // portion of the stack at the particular bcp and NOT the maximum
  // stack that the method might use.
  //
  // If we're calling a native method, we replace max_stack (which is
  // zero) with space for the worst-case signature handler varargs
  // vector, which is:
  //
  //   max_stack = max(Argument::n_register_parameters, parameter_count+2);
  //
  // We add two slots to the parameter_count, one for the jni
  // environment and one for a possible native mirror.  We allocate
  // space for at least the number of ABI registers, even though
  // InterpreterRuntime::slow_signature_handler won't write more than
  // parameter_count+2 words when it creates the varargs vector at the
  // top of the stack.  The generated slow signature handler will just
  // load trash into registers beyond the necessary number.  We're
  // still going to cut the stack back by the ABI register parameter
  // count so as to get SP+16 pointing at the ABI outgoing parameter
  // area, so we need to allocate at least that much even though we're
  // going to throw it away.
  //

  // Adjust max_stack for native methods:
  Label skip_native_calculate_max_stack;
  __ bfalse(is_native, skip_native_calculate_max_stack);
  // if (is_native) {
  //  max_stack = max(Argument::n_register_parameters, parameter_count+2);
  __ addi(max_stack, parameter_count, 2*Interpreter::stackElementWords);
  __ cmpwi(CCR0, max_stack, Argument::n_register_parameters);
  __ bge(CCR0, skip_native_calculate_max_stack);
  __ li(max_stack,  Argument::n_register_parameters);
  // }
  __ bind(skip_native_calculate_max_stack);
  // max_stack is now in bytes
  __ slwi(max_stack, max_stack, Interpreter::logStackElementSize);

  // Calculate number of non-parameter locals (in slots):
  Label not_java;
  __ btrue(is_native, not_java);
  // if (!is_native) {
  //   local_count = non-parameter local count
  __ sub(local_count, local_count, parameter_count);
  // } else {
  //   // nothing to do: method->max_locals() == 0 for native methods
  // }
  __ bind(not_java);


  // Calculate top_frame_size and parent_frame_resize.
  {
  const Register parent_frame_resize = R12_scratch2;

  BLOCK_COMMENT("Compute top_frame_size.");
  // top_frame_size = TOP_IJAVA_FRAME_ABI
  //                  + size of interpreter state
  __ li(top_frame_size, frame::top_ijava_frame_abi_size
                        + frame::interpreter_frame_cinterpreterstate_size_in_bytes());
  //                  + max_stack
  __ add(top_frame_size, top_frame_size, max_stack);
  //                  + stack slots for a BasicObjectLock for synchronized methods
  {
    Label not_synced;
    __ bfalse(is_synced, not_synced);
    __ addi(top_frame_size, top_frame_size, frame::interpreter_frame_monitor_size_in_bytes());
    __ bind(not_synced);
  }
  // align
  __ round_to(top_frame_size, frame::alignment_in_bytes);


  BLOCK_COMMENT("Compute parent_frame_resize.");
  // parent_frame_resize = R1_SP - R17_tos
  __ sub(parent_frame_resize, R1_SP, R17_tos);
  //__ li(parent_frame_resize, 0);
  //                       + PARENT_IJAVA_FRAME_ABI
  //                       + extra two slots for the no-parameter/no-locals
  //                         method result
  __ addi(parent_frame_resize, parent_frame_resize,
                                      frame::parent_ijava_frame_abi_size
                                    + 2*Interpreter::stackElementSize);
  //                       + (locals_count - params_count)
  __ sldi(R0, local_count, Interpreter::logStackElementSize);
  __ add(parent_frame_resize, parent_frame_resize, R0);
  // align
  __ round_to(parent_frame_resize, frame::alignment_in_bytes);

  //
  // Stack layout at this point:
  //
  // The new frame F0 hasn't yet been pushed, F1 is still the top frame.
  //
  //   F0      [TOP_IJAVA_FRAME_ABI]
  //           alignment (optional)
  //           [F0's full operand stack]
  //           [F0's monitors] (optional)
  //           [F0's BytecodeInterpreter object]
  //   F1      [PARENT_IJAVA_FRAME_ABI]
  //           alignment (optional)
  //           [F0's Java result]
  //           [F0's non-arg Java locals]
  //           [F1's outgoing Java arguments]     <-- R17_tos
  //           ...
  //   F2      [PARENT_IJAVA_FRAME_ABI]
  //            ...


  // Calculate new R14_state
  // and
  // test that the new memory stack pointer is above the limit,
  // throw a StackOverflowError otherwise.
  __ sub(R11_scratch1/*F1's SP*/,  R1_SP, parent_frame_resize);
  __ addi(R14_state, R11_scratch1/*F1's SP*/,
              -frame::interpreter_frame_cinterpreterstate_size_in_bytes());
  __ sub(R11_scratch1/*F0's SP*/,
             R11_scratch1/*F1's SP*/, top_frame_size);

  BLOCK_COMMENT("Test for stack overflow:");
  __ cmpld(CCR0/*is_stack_overflow*/, R11_scratch1, mem_stack_limit);
  __ blt(CCR0/*is_stack_overflow*/, stack_overflow_return);


  //=============================================================================
  // Frame_size doesn't overflow the stack. Allocate new frame and
  // initialize interpreter state.

  // Register state
  //
  //   R15            - local_count
  //   R16            - parameter_count
  //   R17            - max_stack
  //
  //   R18            - frame_size
  //   R19            - access_flags
  //   CCR4_is_synced - is_synced
  //
  //   GR_Lstate      - pointer to the uninitialized new BytecodeInterpreter.

  // _last_Java_pc just needs to be close enough that we can identify
  // the frame as an interpreted frame. It does not need to be the
  // exact return address from either calling
  // BytecodeInterpreter::InterpretMethod or the call to a jni native method.
  // So we can initialize it here with a value of a bundle in this
  // code fragment. We only do this initialization for java frames
  // where InterpretMethod needs a a way to get a good pc value to
  // store in the thread state. For interpreter frames used to call
  // jni native code we just zero the value in the state and move an
  // ip as needed in the native entry code.
  //
  // const Register last_Java_pc_addr     = GR24_SCRATCH;  // QQQ 27
  // const Register last_Java_pc          = GR26_SCRATCH;

  // Must reference stack before setting new SP since Windows
  // will not be able to deliver the exception on a bad SP.
  // Windows also insists that we bang each page one at a time in order
  // for the OS to map in the reserved pages. If we bang only
  // the final page, Windows stops delivering exceptions to our
  // VectoredExceptionHandler and terminates our program.
  // Linux only requires a single bang but it's rare to have
  // to bang more than 1 page so the code is enabled for both OS's.

  // BANG THE STACK
  //
  // Nothing to do for PPC, because updating the SP will automatically
  // bang the page.

  // Up to here we have calculated the delta for the new C-frame and
  // checked for a stack-overflow. Now we can savely update SP and
  // resize the C-frame.

  // R14_state has already been calculated.
  __ push_interpreter_frame(top_frame_size, parent_frame_resize,
                            R25_tmp5, R26_tmp6, R27_tmp7, R28_tmp8);

  }

  //
  // Stack layout at this point:
  //
  //   F0 has been been pushed!
  //
  //   F0      [TOP_IJAVA_FRAME_ABI]              <-- R1_SP
  //           alignment (optional)               (now it's here, if required)
  //           [F0's full operand stack]
  //           [F0's monitors] (optional)
  //           [F0's BytecodeInterpreter object]
  //   F1      [PARENT_IJAVA_FRAME_ABI]
  //           alignment (optional)               (now it's here, if required)
  //           [F0's Java result]
  //           [F0's non-arg Java locals]
  //           [F1's outgoing Java arguments]
  //           ...
  //   F2      [PARENT_IJAVA_FRAME_ABI]
  //           ...
  //
  // R14_state points to F0's BytecodeInterpreter object.
  //

  }

  //=============================================================================
  // new BytecodeInterpreter-object is save, let's initialize it:
  BLOCK_COMMENT("New BytecodeInterpreter-object is save.");

  {
  // Locals
  const Register bytecode_addr = R24_tmp4;
  const Register constants     = R25_tmp5;
  const Register tos           = R26_tmp6;
  const Register stack_base    = R27_tmp7;
  const Register local_addr    = R28_tmp8;
  {
    Label L;
    __ btrue(is_native, L);
    // if (!is_native) {
      // bytecode_addr = constMethod->codes();
      __ ld(bytecode_addr, method_(const));
      __ addi(bytecode_addr, bytecode_addr, in_bytes(ConstMethod::codes_offset()));
    // }
    __ bind(L);
  }

  __ ld(constants, in_bytes(Method::const_offset()), R19_method);
  __ ld(constants, in_bytes(ConstMethod::constants_offset()), constants);

  // state->_prev_link = prev_state;
  __ std(R15_prev_state, state_(_prev_link));

  // For assertions only.
  // TODO: not needed anyway because it coincides with `_monitor_base'. remove!
  // state->_self_link = state;
  DEBUG_ONLY(__ std(R14_state, state_(_self_link));)

  // state->_thread = thread;
  __ std(R16_thread, state_(_thread));

  // state->_method = method;
  __ std(R19_method, state_(_method));

  // state->_locals = locals;
  __ std(R18_locals, state_(_locals));

  // state->_oop_temp = NULL;
  __ li(R0, 0);
  __ std(R0, state_(_oop_temp));

  // state->_last_Java_fp = *R1_SP // Use *R1_SP as fp
  __ ld(R0, _abi(callers_sp), R1_SP);
  __ std(R0, state_(_last_Java_fp));

  BLOCK_COMMENT("load Stack base:");
  {
    // Stack_base.
    // if (!method->synchronized()) {
    //   stack_base = state;
    // } else {
    //   stack_base = (uintptr_t)state - sizeof(BasicObjectLock);
    // }
    Label L;
    __ mr(stack_base, R14_state);
    __ bfalse(is_synced, L);
    __ addi(stack_base, stack_base, -frame::interpreter_frame_monitor_size_in_bytes());
    __ bind(L);
  }

  // state->_mdx = NULL;
  __ li(R0, 0);
  __ std(R0, state_(_mdx));

  {
    // if (method->is_native()) state->_bcp = NULL;
    // else state->_bcp = bytecode_addr;
    Label label1, label2;
    __ bfalse(is_native, label1);
    __ std(R0, state_(_bcp));
    __ b(label2);
    __ bind(label1);
    __ std(bytecode_addr, state_(_bcp));
    __ bind(label2);
  }


  // state->_result._to_call._callee = NULL;
  __ std(R0, state_(_result._to_call._callee));

  // state->_monitor_base = state;
  __ std(R14_state, state_(_monitor_base));

  // state->_msg = BytecodeInterpreter::method_entry;
  __ li(R0, BytecodeInterpreter::method_entry);
  __ stw(R0, state_(_msg));

  // state->_last_Java_sp = R1_SP;
  __ std(R1_SP, state_(_last_Java_sp));

  // state->_stack_base = stack_base;
  __ std(stack_base, state_(_stack_base));

  // tos = stack_base - 1 slot (prepushed);
  // state->_stack.Tos(tos);
  __ addi(tos, stack_base, - Interpreter::stackElementSize);
  __ std(tos,  state_(_stack));


  {
    BLOCK_COMMENT("get last_Java_pc:");
    // if (!is_native) state->_last_Java_pc = <some_ip_in_this_code_buffer>;
    // else state->_last_Java_pc = NULL; (just for neatness)
    Label label1, label2;
    __ btrue(is_native, label1);
    __ get_PC_trash_LR(R0);
    __ std(R0, state_(_last_Java_pc));
    __ b(label2);
    __ bind(label1);
    __ li(R0, 0);
    __ std(R0, state_(_last_Java_pc));
    __ bind(label2);
  }


  // stack_limit = tos - max_stack;
  __ sub(R0, tos, max_stack);
  // state->_stack_limit = stack_limit;
  __ std(R0, state_(_stack_limit));


  // cache = method->constants()->cache();
   __ ld(R0, ConstantPool::cache_offset_in_bytes(), constants);
  // state->_constants = method->constants()->cache();
  __ std(R0, state_(_constants));



  //=============================================================================
  // synchronized method, allocate and initialize method object lock.
  // if (!method->is_synchronized()) goto fill_locals_with_0x0s;
  Label fill_locals_with_0x0s;
  __ bfalse(is_synced, fill_locals_with_0x0s);

  //   pool_holder = method->constants()->pool_holder();
  const int mirror_offset = in_bytes(Klass::java_mirror_offset());
  {
    Label label1, label2;
    // lockee = NULL; for java methods, correct value will be inserted in BytecodeInterpretMethod.hpp
    __ li(R0,0);
    __ bfalse(is_native, label2);

    __ bfalse(is_static, label1);
    // if (method->is_static()) lockee =
    // pool_holder->klass_part()->java_mirror();
    __ ld(R11_scratch1/*pool_holder*/, ConstantPool::pool_holder_offset_in_bytes(), constants);
    __ ld(R0/*lockee*/, mirror_offset, R11_scratch1/*pool_holder*/);
    __ b(label2);

    __ bind(label1);
    // else lockee = *(oop*)locals;
    __ ld(R0/*lockee*/, 0, R18_locals);
    __ bind(label2);

    // monitor->set_obj(lockee);
    __ std(R0/*lockee*/, BasicObjectLock::obj_offset_in_bytes(), stack_base);
  }

  // See if we need to zero the locals
  __ BIND(fill_locals_with_0x0s);


  //=============================================================================
  // fill locals with 0x0s
  Label locals_zeroed;
  __ btrue(is_native, locals_zeroed);

  if (true /* zerolocals */ || ClearInterpreterLocals) {
    // local_count is already num_locals_slots - num_param_slots
    __ sldi(R0, parameter_count, Interpreter::logStackElementSize);
    __ sub(local_addr, R18_locals, R0);
    __ cmpdi(CCR0, local_count, 0);
    __ ble(CCR0, locals_zeroed);

    __ mtctr(local_count);
    //__ ld_const_addr(R0, (address) 0xcafe0000babe);
    __ li(R0, 0);

    Label zero_slot;
    __ bind(zero_slot);

    // first local is at local_addr
    __ std(R0, 0, local_addr);
    __ addi(local_addr, local_addr, -BytesPerWord);
    __ bdnz(zero_slot);
  }

   __ BIND(locals_zeroed);

  }
  BLOCK_COMMENT("} compute_interpreter_state");
}

// Generate code to initiate compilation on invocation counter overflow.
void CppInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
  // Registers alive
  //   R14_state
  //   R16_thread
  //
  // Registers updated
  //   R14_state
  //   R3_ARG1 (=R3_RET)
  //   R4_ARG2

  // After entering the vm we remove the activation and retry the
  // entry point in case the compilation is complete.

  // InterpreterRuntime::frequency_counter_overflow takes one argument
  // that indicates if the counter overflow occurs at a backwards
  // branch (NULL bcp). We pass zero. The call returns the address
  // of the verified entry point for the method or NULL if the
  // compilation did not complete (either went background or bailed
  // out).
  __ li(R4_ARG2, 0);

  // Pass false to call_VM so it doesn't check for pending exceptions,
  // since at this point in the method invocation the exception
  // handler would try to exit the monitor of synchronized methods
  // which haven't been entered yet.
  //
  // Returns verified_entry_point or NULL, we don't care which.
  //
  // Do not use the variant `frequency_counter_overflow' that returns
  // a structure, because this will change the argument list by a
  // hidden parameter (gcc 4.1).

  __ call_VM(noreg,
             CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow),
             R4_ARG2,
             false);
  // Returns verified_entry_point or NULL, we don't care which as we ignore it
  // and run interpreted.

  // Reload method, it may have moved.
  __ ld(R19_method, state_(_method));

  // We jump now to the label "continue_after_compile".
  __ b(continue_entry);
}

// Increment invocation count and check for overflow.
//
// R19_method must contain Method* of method to profile.
void CppInterpreterGenerator::generate_counter_incr(Label& overflow) {
  Label done;
  const Register Rcounters             = R12_scratch2;
  const Register iv_be_count           = R11_scratch1;
  const Register invocation_limit      = R12_scratch2;
  const Register invocation_limit_addr = invocation_limit;

  // Load and ev. allocate MethodCounters object.
  __ get_method_counters(R19_method, Rcounters, done);

  // Update standard invocation counters.
  __ increment_invocation_counter(Rcounters, iv_be_count, R0);

  // Compare against limit.
  BLOCK_COMMENT("Compare counter against limit:");
  assert(4 == sizeof(InvocationCounter::InterpreterInvocationLimit),
         "must be 4 bytes");
  __ load_const(invocation_limit_addr, (address)&InvocationCounter::InterpreterInvocationLimit);
  __ lwa(invocation_limit, 0, invocation_limit_addr);
  __ cmpw(CCR0, iv_be_count, invocation_limit);
  __ bge(CCR0, overflow);
  __ bind(done);
}

//
// Call a JNI method.
//
// Interpreter stub for calling a native method. (C++ interpreter)
// This sets up a somewhat different looking stack for calling the native method
// than the typical interpreter frame setup.
//
address CppInterpreterGenerator::generate_native_entry(void) {
  if (native_entry != NULL) return native_entry;
  address entry = __ pc();

  // Read
  //   R16_thread
  //   R15_prev_state  - address of caller's BytecodeInterpreter, if this snippet
  //                     gets called by the frame manager.
  //   R19_method      - callee's Method
  //   R17_tos         - address of caller's tos
  //   R1_SP           - caller's stack pointer
  //   R21_sender_SP   - initial caller sp
  //
  // Update
  //   R14_state       - address of caller's BytecodeInterpreter
  //   R3_RET          - integer result, if any.
  //   F1_RET          - float result, if any.
  //
  //
  // Stack layout at this point:
  //
  //    0       [TOP_IJAVA_FRAME_ABI]         <-- R1_SP
  //            alignment (optional)
  //            [outgoing Java arguments]     <-- R17_tos
  //            ...
  //    PARENT  [PARENT_IJAVA_FRAME_ABI]
  //            ...
  //

  const bool inc_counter = UseCompiler || CountCompiledCalls;

  const Register signature_handler_fd   = R21_tmp1;
  const Register pending_exception      = R22_tmp2;
  const Register result_handler_addr    = R23_tmp3;
  const Register native_method_fd       = R24_tmp4;
  const Register access_flags           = R25_tmp5;
  const Register active_handles         = R26_tmp6;
  const Register sync_state             = R27_tmp7;
  const Register sync_state_addr        = sync_state;     // Address is dead after use.
  const Register suspend_flags          = R24_tmp4;

  const Register return_pc              = R28_tmp8;       // Register will be locked for some time.

  const ConditionRegister is_synced     = CCR4_is_synced; // Live-on-exit from compute_interpreter_state.


  // R1_SP still points to caller's SP at this point.

  // Save initial_caller_sp to caller's abi. The caller frame must be
  // resized before returning to get rid of the c2i arguments (if
  // any).
  // Override the saved SP with the senderSP so we can pop c2i
  // arguments (if any) off when we return
  __ std(R21_sender_SP, _top_ijava_frame_abi(initial_caller_sp), R1_SP);

  // Save LR to caller's frame. We don't use _abi(lr) here, because it is not safe.
  __ mflr(return_pc);
  __ std(return_pc, _top_ijava_frame_abi(frame_manager_lr), R1_SP);

  assert(return_pc->is_nonvolatile(), "return_pc must be a non-volatile register");

  __ verify_method_ptr(R19_method);

  //=============================================================================

  // If this snippet gets called by the frame manager (at label
  // `call_special'), then R15_prev_state is valid. If this snippet
  // is not called by the frame manager, but e.g. by the call stub or
  // by compiled code, then R15_prev_state is invalid.
  {
    // Set R15_prev_state to 0 if we don't return to the frame
    // manager; we will return to the call_stub or to compiled code
    // instead. If R15_prev_state is 0 there will be only one
    // interpreter frame (we will set this up later) in this C frame!
    // So we must take care about retrieving prev_state_(_prev_link)
    // and restoring R1_SP when popping that interpreter.
    Label prev_state_is_valid;

    __ load_const(R11_scratch1/*frame_manager_returnpc_addr*/, (address)&frame_manager_specialized_return);
    __ ld(R12_scratch2/*frame_manager_returnpc*/, 0, R11_scratch1/*frame_manager_returnpc_addr*/);
    __ cmpd(CCR0, return_pc, R12_scratch2/*frame_manager_returnpc*/);
    __ beq(CCR0, prev_state_is_valid);

    __ li(R15_prev_state, 0);

    __ BIND(prev_state_is_valid);
  }

  //=============================================================================
  // Allocate new frame and initialize interpreter state.

  Label exception_return;
  Label exception_return_sync_check;
  Label stack_overflow_return;

  // Generate new interpreter state and jump to stack_overflow_return in case of
  // a stack overflow.
  generate_compute_interpreter_state(stack_overflow_return);

  //=============================================================================
  // Increment invocation counter. On overflow, entry to JNI method
  // will be compiled.
  Label invocation_counter_overflow;
  if (inc_counter) {
    generate_counter_incr(invocation_counter_overflow);
  }

  Label continue_after_compile;
  __ BIND(continue_after_compile);

  // access_flags = method->access_flags();
  // Load access flags.
  assert(access_flags->is_nonvolatile(),
         "access_flags must be in a non-volatile register");
  // Type check.
  // TODO: PPC port: assert(4 == methodOopDesc::sz_access_flags(), "unexpected field size");
  __ lwz(access_flags, method_(access_flags));

  // We don't want to reload R19_method and access_flags after calls
  // to some helper functions.
  assert(R19_method->is_nonvolatile(), "R19_method must be a non-volatile register");

  // Check for synchronized methods. Must happen AFTER invocation counter
  // check, so method is not locked if counter overflows.

  {
    Label method_is_not_synced;
    // Is_synced is still alive.
    assert(is_synced->is_nonvolatile(), "is_synced must be non-volatile");
    __ bfalse(is_synced, method_is_not_synced);

    lock_method();
    // Reload method, it may have moved.
    __ ld(R19_method, state_(_method));

    __ BIND(method_is_not_synced);
  }

  // jvmti/jvmpi support
  __ notify_method_entry();

  // Reload method, it may have moved.
  __ ld(R19_method, state_(_method));

  //=============================================================================
  // Get and call the signature handler

  __ ld(signature_handler_fd, method_(signature_handler));
  Label call_signature_handler;

  __ cmpdi(CCR0, signature_handler_fd, 0);
  __ bne(CCR0, call_signature_handler);

  // Method has never been called. Either generate a specialized
  // handler or point to the slow one.
  //
  // Pass parameter 'false' to avoid exception check in call_VM.
  __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);

  // Check for an exception while looking up the target method. If we
  // incurred one, bail.
  __ ld(pending_exception, thread_(pending_exception));
  __ cmpdi(CCR0, pending_exception, 0);
  __ bne(CCR0, exception_return_sync_check); // has pending exception

  // reload method
  __ ld(R19_method, state_(_method));

  // Reload signature handler, it may have been created/assigned in the meanwhile
  __ ld(signature_handler_fd, method_(signature_handler));

  __ BIND(call_signature_handler);

  // Before we call the signature handler we push a new frame to
  // protect the interpreter frame volatile registers when we return
  // from jni but before we can get back to Java.

  // First set the frame anchor while the SP/FP registers are
  // convenient and the slow signature handler can use this same frame
  // anchor.

  // We have a TOP_IJAVA_FRAME here, which belongs to us.
  __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);

  // Now the interpreter frame (and its call chain) have been
  // invalidated and flushed. We are now protected against eager
  // being enabled in native code. Even if it goes eager the
  // registers will be reloaded as clean and we will invalidate after
  // the call so no spurious flush should be possible.

  // Call signature handler and pass locals address.
  //
  // Our signature handlers copy required arguments to the C stack
  // (outgoing C args), R3_ARG1 to R10_ARG8, and F1_ARG1 to
  // F13_ARG13.
  __ mr(R3_ARG1, R18_locals);
#if !defined(ABI_ELFv2)
  __ ld(signature_handler_fd, 0, signature_handler_fd);
#endif
  __ call_stub(signature_handler_fd);
  // reload method
  __ ld(R19_method, state_(_method));

  // Remove the register parameter varargs slots we allocated in
  // compute_interpreter_state. SP+16 ends up pointing to the ABI
  // outgoing argument area.
  //
  // Not needed on PPC64.
  //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);

  assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
  // Save across call to native method.
  __ mr(result_handler_addr, R3_RET);

  // Set up fixed parameters and call the native method.
  // If the method is static, get mirror into R4_ARG2.

  {
    Label method_is_not_static;
    // access_flags is non-volatile and still, no need to restore it

    // restore access flags
    __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
    __ bfalse(CCR0, method_is_not_static);

    // constants = method->constants();
    __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
    __ ld(R11_scratch1/*constants*/, in_bytes(ConstMethod::constants_offset()), R11_scratch1);
    // pool_holder = method->constants()->pool_holder();
    __ ld(R11_scratch1/*pool_holder*/, ConstantPool::pool_holder_offset_in_bytes(),
          R11_scratch1/*constants*/);

    const int mirror_offset = in_bytes(Klass::java_mirror_offset());

    // mirror = pool_holder->klass_part()->java_mirror();
    __ ld(R0/*mirror*/, mirror_offset, R11_scratch1/*pool_holder*/);
    // state->_native_mirror = mirror;
    __ std(R0/*mirror*/, state_(_oop_temp));
    // R4_ARG2 = &state->_oop_temp;
    __ addir(R4_ARG2, state_(_oop_temp));

    __ BIND(method_is_not_static);
  }

  // At this point, arguments have been copied off the stack into
  // their JNI positions. Oops are boxed in-place on the stack, with
  // handles copied to arguments. The result handler address is in a
  // register.

  // pass JNIEnv address as first parameter
  __ addir(R3_ARG1, thread_(jni_environment));

  // Load the native_method entry before we change the thread state.
  __ ld(native_method_fd, method_(native_function));

  //=============================================================================
  // Transition from _thread_in_Java to _thread_in_native. As soon as
  // we make this change the safepoint code needs to be certain that
  // the last Java frame we established is good. The pc in that frame
  // just needs to be near here not an actual return address.

  // We use release_store_fence to update values like the thread state, where
  // we don't want the current thread to continue until all our prior memory
  // accesses (including the new thread state) are visible to other threads.
  __ li(R0, _thread_in_native);
  __ release();

  // TODO: PPC port: assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
  __ stw(R0, thread_(thread_state));

  if (UseMembar) {
    __ fence();
  }

  //=============================================================================
  // Call the native method. Argument registers must not have been
  // overwritten since "__ call_stub(signature_handler);" (except for
  // ARG1 and ARG2 for static methods)
  __ call_c(native_method_fd);

  __ std(R3_RET, state_(_native_lresult));
  __ stfd(F1_RET, state_(_native_fresult));

  // The frame_manager_lr field, which we use for setting the last
  // java frame, gets overwritten by the signature handler. Restore
  // it now.
  __ get_PC_trash_LR(R11_scratch1);
  __ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);

  // Because of GC R19_method may no longer be valid.

  // Block, if necessary, before resuming in _thread_in_Java state.
  // In order for GC to work, don't clear the last_Java_sp until after
  // blocking.



  //=============================================================================
  // Switch thread to "native transition" state before reading the
  // synchronization state.  This additional state is necessary
  // because reading and testing the synchronization state is not
  // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
  // in _thread_in_native state, loads _not_synchronized and is
  // preempted.  VM thread changes sync state to synchronizing and
  // suspends threads for GC. Thread A is resumed to finish this
  // native method, but doesn't block here since it didn't see any
  // synchronization in progress, and escapes.

  // We use release_store_fence to update values like the thread state, where
  // we don't want the current thread to continue until all our prior memory
  // accesses (including the new thread state) are visible to other threads.
  __ li(R0/*thread_state*/, _thread_in_native_trans);
  __ release();
  __ stw(R0/*thread_state*/, thread_(thread_state));
  if (UseMembar) {
    __ fence();
  }
  // Write serialization page so that the VM thread can do a pseudo remote
  // membar. We use the current thread pointer to calculate a thread
  // specific offset to write to within the page. This minimizes bus
  // traffic due to cache line collision.
  else {
    __ serialize_memory(R16_thread, R11_scratch1, R12_scratch2);
  }

  // Now before we return to java we must look for a current safepoint
  // (a new safepoint can not start since we entered native_trans).
  // We must check here because a current safepoint could be modifying
  // the callers registers right this moment.

  // Acquire isn't strictly necessary here because of the fence, but
  // sync_state is declared to be volatile, so we do it anyway.
  __ load_const(sync_state_addr, SafepointSynchronize::address_of_state());

  // TODO: PPC port: assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
  __ lwz(sync_state, 0, sync_state_addr);

  // TODO: PPC port: assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
  __ lwz(suspend_flags, thread_(suspend_flags));

  __ acquire();

  Label sync_check_done;
  Label do_safepoint;
  // No synchronization in progress nor yet synchronized
  __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
  // not suspended
  __ cmpwi(CCR1, suspend_flags, 0);

  __ bne(CCR0, do_safepoint);
  __ beq(CCR1, sync_check_done);
  __ bind(do_safepoint);
  // Block.  We do the call directly and leave the current
  // last_Java_frame setup undisturbed.  We must save any possible
  // native result acrosss the call. No oop is present

  __ mr(R3_ARG1, R16_thread);
#if defined(ABI_ELFv2)
  __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
            relocInfo::none);
#else
  __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
            relocInfo::none);
#endif
  __ bind(sync_check_done);

  //=============================================================================
  // <<<<<< Back in Interpreter Frame >>>>>

  // We are in thread_in_native_trans here and back in the normal
  // interpreter frame. We don't have to do anything special about
  // safepoints and we can switch to Java mode anytime we are ready.

  // Note: frame::interpreter_frame_result has a dependency on how the
  // method result is saved across the call to post_method_exit. For
  // native methods it assumes that the non-FPU/non-void result is
  // saved in _native_lresult and a FPU result in _native_fresult. If
  // this changes then the interpreter_frame_result implementation
  // will need to be updated too.

  // On PPC64, we have stored the result directly after the native call.

  //=============================================================================
  // back in Java

  // We use release_store_fence to update values like the thread state, where
  // we don't want the current thread to continue until all our prior memory
  // accesses (including the new thread state) are visible to other threads.
  __ li(R0/*thread_state*/, _thread_in_Java);
  __ release();
  __ stw(R0/*thread_state*/, thread_(thread_state));
  if (UseMembar) {
    __ fence();
  }

  __ reset_last_Java_frame();

  // Reload GR27_method, call killed it. We can't look at
  // state->_method until we're back in java state because in java
  // state gc can't happen until we get to a safepoint.
  //
  // We've set thread_state to _thread_in_Java already, so restoring
  // R19_method from R14_state works; R19_method is invalid, because
  // GC may have happened.
  __ ld(R19_method, state_(_method)); // reload method, may have moved

  // jvmdi/jvmpi support. Whether we've got an exception pending or
  // not, and whether unlocking throws an exception or not, we notify
  // on native method exit. If we do have an exception, we'll end up
  // in the caller's context to handle it, so if we don't do the
  // notify here, we'll drop it on the floor.

  __ notify_method_exit(true/*native method*/,
                        ilgl /*illegal state (not used for native methods)*/,
                        InterpreterMacroAssembler::NotifyJVMTI,
                        false /*check_exceptions*/);

  //=============================================================================
  // Handle exceptions

  // See if we must unlock.
  //
  {
    Label method_is_not_synced;
    // is_synced is still alive
    assert(is_synced->is_nonvolatile(), "is_synced must be non-volatile");
    __ bfalse(is_synced, method_is_not_synced);

    unlock_method();

    __ bind(method_is_not_synced);
  }

  // Reset active handles after returning from native.
  // thread->active_handles()->clear();
  __ ld(active_handles, thread_(active_handles));
  // JNIHandleBlock::_top is an int.
  // TODO:  PPC port: assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
  __ li(R0, 0);
  __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);

  Label no_pending_exception_from_native_method;
  __ ld(R0/*pending_exception*/, thread_(pending_exception));
  __ cmpdi(CCR0, R0/*pending_exception*/, 0);
  __ beq(CCR0, no_pending_exception_from_native_method);


  //-----------------------------------------------------------------------------
  // An exception is pending. We call into the runtime only if the
  // caller was not interpreted. If it was interpreted the
  // interpreter will do the correct thing. If it isn't interpreted
  // (call stub/compiled code) we will change our return and continue.
  __ BIND(exception_return);

  Label return_to_initial_caller_with_pending_exception;
  __ cmpdi(CCR0, R15_prev_state, 0);
  __ beq(CCR0, return_to_initial_caller_with_pending_exception);

  // We are returning to an interpreter activation, just pop the state,
  // pop our frame, leave the exception pending, and return.
  __ pop_interpreter_state(/*prev_state_may_be_0=*/false);
  __ pop_interpreter_frame(R11_scratch1, R12_scratch2, R21_tmp1 /* set to return pc */, R22_tmp2);
  __ mtlr(R21_tmp1);
  __ blr();

  __ BIND(exception_return_sync_check);

  assert(is_synced->is_nonvolatile(), "is_synced must be non-volatile");
  __ bfalse(is_synced, exception_return);
  unlock_method();
  __ b(exception_return);


  __ BIND(return_to_initial_caller_with_pending_exception);
  // We are returning to a c2i-adapter / call-stub, get the address of the
  // exception handler, pop the frame and return to the handler.

  // First, pop to caller's frame.
  __ pop_interpreter_frame(R11_scratch1, R12_scratch2, R21_tmp1  /* set to return pc */, R22_tmp2);

  __ push_frame_reg_args(0, R11_scratch1);
  // Get the address of the exception handler.
  __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
                  R16_thread,
                  R21_tmp1 /* return pc */);
  __ pop_frame();

  // Load the PC of the the exception handler into LR.
  __ mtlr(R3_RET);

  // Load exception into R3_ARG1 and clear pending exception in thread.
  __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
  __ li(R4_ARG2, 0);
  __ std(R4_ARG2, thread_(pending_exception));

  // Load the original return pc into R4_ARG2.
  __ mr(R4_ARG2/*issuing_pc*/, R21_tmp1);

  // Resize frame to get rid of a potential extension.
  __ resize_frame_to_initial_caller(R11_scratch1, R12_scratch2);

  // Return to exception handler.
  __ blr();


  //-----------------------------------------------------------------------------
  // No exception pending.
  __ BIND(no_pending_exception_from_native_method);

  // Move native method result back into proper registers and return.
  // Invoke result handler (may unbox/promote).
  __ ld(R3_RET, state_(_native_lresult));
  __ lfd(F1_RET, state_(_native_fresult));
  __ call_stub(result_handler_addr);

  // We have created a new BytecodeInterpreter object, now we must destroy it.
  //
  // Restore previous R14_state and caller's SP.  R15_prev_state may
  // be 0 here, because our caller may be the call_stub or compiled
  // code.
  __ pop_interpreter_state(/*prev_state_may_be_0=*/true);
  __ pop_interpreter_frame(R11_scratch1, R12_scratch2, R21_tmp1 /* set to return pc */, R22_tmp2);
  // Resize frame to get rid of a potential extension.
  __ resize_frame_to_initial_caller(R11_scratch1, R12_scratch2);

  // Must use the return pc which was loaded from the caller's frame
  // as the VM uses return-pc-patching for deoptimization.
  __ mtlr(R21_tmp1);
  __ blr();



  //=============================================================================
  // We encountered an exception while computing the interpreter
  // state, so R14_state isn't valid. Act as if we just returned from
  // the callee method with a pending exception.
  __ BIND(stack_overflow_return);

  //
  // Register state:
  //   R14_state         invalid; trashed by compute_interpreter_state
  //   R15_prev_state    valid, but may be 0
  //
  //   R1_SP             valid, points to caller's SP; wasn't yet updated by
  //                     compute_interpreter_state
  //

  // Create exception oop and make it pending.

  // Throw the exception via RuntimeStub "throw_StackOverflowError_entry".
  //
  // Previously, we called C-Code directly. As a consequence, a
  // possible GC tried to process the argument oops of the top frame
  // (see RegisterMap::clear, which sets the corresponding flag to
  // true). This lead to crashes because:
  //   1. The top register map did not contain locations for the argument registers
  //   2. The arguments are dead anyway, could be already overwritten in the worst case
  // Solution: Call via special runtime stub that pushes it's own
  // frame. This runtime stub has the flag "CodeBlob::caller_must_gc_arguments()"
  // set to "false", what prevents the dead arguments getting GC'd.
  //
  // 2 cases exist:
  // 1. We were called by the c2i adapter / call stub
  // 2. We were called by the frame manager
  //
  // Both cases are handled by this code:
  // 1. - initial_caller_sp was saved in both cases on entry, so it's safe to load it back even if it was not changed.
  //    - control flow will be:
  //      throw_stackoverflow_stub->VM->throw_stackoverflow_stub->forward_excep->excp_blob of caller method
  // 2. - control flow will be:
  //      throw_stackoverflow_stub->VM->throw_stackoverflow_stub->forward_excep->rethrow_excp_entry of frame manager->resume_method
  //      Since we restored the caller SP above, the rethrow_excp_entry can restore the original interpreter state
  //      registers using the stack and resume the calling method with a pending excp.

  // Pop any c2i extension from the stack, restore LR just to be sure
  __ ld(R0, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
  __ mtlr(R0);
  // Resize frame to get rid of a potential extension.
  __ resize_frame_to_initial_caller(R11_scratch1, R12_scratch2);

  assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "generated in wrong order");
  // Load target address of the runtime stub.
  __ load_const(R12_scratch2, (StubRoutines::throw_StackOverflowError_entry()));
  __ mtctr(R12_scratch2);
  __ bctr();


  //=============================================================================
  // Counter overflow.

  if (inc_counter) {
    // Handle invocation counter overflow
    __ bind(invocation_counter_overflow);

    generate_counter_overflow(continue_after_compile);
  }

  native_entry = entry;
  return entry;
}

bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  // No special entry points that preclude compilation.
  return true;
}

// Unlock the current method.
//
void CppInterpreterGenerator::unlock_method(void) {
  // Find preallocated monitor and unlock method. Method monitor is
  // the first one.

  // Registers alive
  //   R14_state
  //
  // Registers updated
  //   volatiles
  //
  const Register monitor = R4_ARG2;

  // Pass address of initial monitor we allocated.
  //
  // First monitor.
  __ addi(monitor, R14_state, -frame::interpreter_frame_monitor_size_in_bytes());

  // Unlock method
  __ unlock_object(monitor);
}

// Lock the current method.
//
void CppInterpreterGenerator::lock_method(void) {
  // Find preallocated monitor and lock method. Method monitor is the
  // first one.

  //
  // Registers alive
  //   R14_state
  //
  // Registers updated
  //   volatiles
  //

  const Register monitor = R4_ARG2;
  const Register object  = R5_ARG3;

  // Pass address of initial monitor we allocated.
  __ addi(monitor, R14_state, -frame::interpreter_frame_monitor_size_in_bytes());

  // Pass object address.
  __ ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor);

  // Lock method.
  __ lock_object(monitor, object);
}

// Generate code for handling resuming a deopted method.
void CppInterpreterGenerator::generate_deopt_handling(Register result_index) {

  //=============================================================================
  // Returning from a compiled method into a deopted method. The
  // bytecode at the bcp has completed. The result of the bytecode is
  // in the native abi (the tosca for the template based
  // interpreter). Any stack space that was used by the bytecode that
  // has completed has been removed (e.g. parameters for an invoke) so
  // all that we have to do is place any pending result on the
  // expression stack and resume execution on the next bytecode.

  Label return_from_deopt_common;

  // R3_RET and F1_RET are live here! Load the array index of the
  // required result stub address and continue at return_from_deopt_common.

  // Deopt needs to jump to here to enter the interpreter (return a result).
  deopt_frame_manager_return_atos = __ pc();
  __ li(result_index, AbstractInterpreter::BasicType_as_index(T_OBJECT));
  __ b(return_from_deopt_common);

  deopt_frame_manager_return_btos = __ pc();
  __ li(result_index, AbstractInterpreter::BasicType_as_index(T_BOOLEAN));
  __ b(return_from_deopt_common);

  deopt_frame_manager_return_itos = __ pc();
  __ li(result_index, AbstractInterpreter::BasicType_as_index(T_INT));
  __ b(return_from_deopt_common);

  deopt_frame_manager_return_ltos = __ pc();
  __ li(result_index, AbstractInterpreter::BasicType_as_index(T_LONG));
  __ b(return_from_deopt_common);

  deopt_frame_manager_return_ftos = __ pc();
  __ li(result_index, AbstractInterpreter::BasicType_as_index(T_FLOAT));
  __ b(return_from_deopt_common);

  deopt_frame_manager_return_dtos = __ pc();
  __ li(result_index, AbstractInterpreter::BasicType_as_index(T_DOUBLE));
  __ b(return_from_deopt_common);

  deopt_frame_manager_return_vtos = __ pc();
  __ li(result_index, AbstractInterpreter::BasicType_as_index(T_VOID));
  // Last one, fall-through to return_from_deopt_common.

  // Deopt return common. An index is present that lets us move any
  // possible result being return to the interpreter's stack.
  //
  __ BIND(return_from_deopt_common);

}

// Generate the code to handle a more_monitors message from the c++ interpreter.
void CppInterpreterGenerator::generate_more_monitors() {

  //
  // Registers alive
  //   R16_thread      - JavaThread*
  //   R15_prev_state  - previous BytecodeInterpreter or 0
  //   R14_state       - BytecodeInterpreter* address of receiver's interpreter state
  //   R1_SP           - old stack pointer
  //
  // Registers updated
  //   R1_SP          - new stack pointer
  //

  // Very-local scratch registers.
  const Register old_tos         = R21_tmp1;
  const Register new_tos         = R22_tmp2;
  const Register stack_base      = R23_tmp3;
  const Register stack_limit     = R24_tmp4;
  const Register slot            = R25_tmp5;
  const Register n_slots         = R25_tmp5;

  // Interpreter state fields.
  const Register msg             = R24_tmp4;

  // Load up relevant interpreter state.

  __ ld(stack_base, state_(_stack_base));                // Old stack_base
  __ ld(old_tos, state_(_stack));                        // Old tos
  __ ld(stack_limit, state_(_stack_limit));              // Old stack_limit

  // extracted monitor_size
  int monitor_size = frame::interpreter_frame_monitor_size_in_bytes();
  assert(Assembler::is_aligned((unsigned int)monitor_size,
                               (unsigned int)frame::alignment_in_bytes),
         "size of a monitor must respect alignment of SP");

  // Save and restore top LR
  __ ld(R12_scratch2, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
  __ resize_frame(-monitor_size, R11_scratch1);// Allocate space for new monitor
  __ std(R12_scratch2, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
    // Initial_caller_sp is used as unextended_sp for non initial callers.
  __ std(R1_SP, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
  __ addi(stack_base, stack_base, -monitor_size);        // New stack_base
  __ addi(new_tos, old_tos, -monitor_size);              // New tos
  __ addi(stack_limit, stack_limit, -monitor_size);      // New stack_limit

  __ std(R1_SP, state_(_last_Java_sp));                  // Update frame_bottom

  __ std(stack_base, state_(_stack_base));               // Update stack_base
  __ std(new_tos, state_(_stack));                       // Update tos
  __ std(stack_limit, state_(_stack_limit));             // Update stack_limit

  __ li(msg, BytecodeInterpreter::got_monitors);         // Tell interpreter we allocated the lock
  __ stw(msg, state_(_msg));

  // Shuffle expression stack down. Recall that stack_base points
  // just above the new expression stack bottom. Old_tos and new_tos
  // are used to scan thru the old and new expression stacks.

  Label copy_slot, copy_slot_finished;
  __ sub(n_slots, stack_base, new_tos);
  __ srdi_(n_slots, n_slots, LogBytesPerWord);           // compute number of slots to copy
  assert(LogBytesPerWord == 3, "conflicts assembler instructions");
  __ beq(CCR0, copy_slot_finished);                       // nothing to copy

  __ mtctr(n_slots);

  // loop
  __ bind(copy_slot);
  __ ldu(slot, BytesPerWord, old_tos);                   // slot = *++old_tos;
  __ stdu(slot, BytesPerWord, new_tos);                  // *++new_tos = slot;
  __ bdnz(copy_slot);

  __ bind(copy_slot_finished);

  // Restart interpreter
  __ li(R0, 0);
  __ std(R0, BasicObjectLock::obj_offset_in_bytes(), stack_base);  // Mark lock as unused
}

address CppInterpreterGenerator::generate_normal_entry(void) {
  if (interpreter_frame_manager != NULL) return interpreter_frame_manager;

  address entry = __ pc();

  address return_from_native_pc = (address) NULL;

  // Initial entry to frame manager (from call_stub or c2i_adapter)

  //
  // Registers alive
  //   R16_thread               - JavaThread*
  //   R19_method               - callee's Method (method to be invoked)
  //   R17_tos                  - address of sender tos (prepushed)
  //   R1_SP                    - SP prepared by call stub such that caller's outgoing args are near top
  //   LR                       - return address to caller (call_stub or c2i_adapter)
  //   R21_sender_SP            - initial caller sp
  //
  // Registers updated
  //   R15_prev_state           - 0
  //
  // Stack layout at this point:
  //
  //   0       [TOP_IJAVA_FRAME_ABI]         <-- R1_SP
  //           alignment (optional)
  //           [outgoing Java arguments]     <-- R17_tos
  //           ...
  //   PARENT  [PARENT_IJAVA_FRAME_ABI]
  //           ...
  //

  // Save initial_caller_sp to caller's abi.
  // The caller frame must be resized before returning to get rid of
  // the c2i part on top of the calling compiled frame (if any).
  // R21_tmp1 must match sender_sp in gen_c2i_adapter.
  // Now override the saved SP with the senderSP so we can pop c2i
  // arguments (if any) off when we return.
  __ std(R21_sender_SP, _top_ijava_frame_abi(initial_caller_sp), R1_SP);

  // Save LR to caller's frame. We don't use _abi(lr) here,
  // because it is not safe.
  __ mflr(R0);
  __ std(R0, _top_ijava_frame_abi(frame_manager_lr), R1_SP);

  // If we come here, it is the first invocation of the frame manager.
  // So there is no previous interpreter state.
  __ li(R15_prev_state, 0);


  // Fall through to where "recursive" invocations go.

  //=============================================================================
  // Dispatch an instance of the interpreter. Recursive activations
  // come here.

  Label re_dispatch;
  __ BIND(re_dispatch);

  //
  // Registers alive
  //    R16_thread        - JavaThread*
  //    R19_method        - callee's Method
  //    R17_tos           - address of caller's tos (prepushed)
  //    R15_prev_state    - address of caller's BytecodeInterpreter or 0
  //    R1_SP             - caller's SP trimmed such that caller's outgoing args are near top.
  //
  // Stack layout at this point:
  //
  //   0       [TOP_IJAVA_FRAME_ABI]
  //           alignment (optional)
  //           [outgoing Java arguments]
  //           ...
  //   PARENT  [PARENT_IJAVA_FRAME_ABI]
  //           ...

  // fall through to interpreted execution

  //=============================================================================
  // Allocate a new Java frame and initialize the new interpreter state.

  Label stack_overflow_return;

  // Create a suitable new Java frame plus a new BytecodeInterpreter instance
  // in the current (frame manager's) C frame.
  generate_compute_interpreter_state(stack_overflow_return);

  // fall through

  //=============================================================================
  // Interpreter dispatch.

  Label call_interpreter;
  __ BIND(call_interpreter);

  //
  // Registers alive
  //   R16_thread       - JavaThread*
  //   R15_prev_state   - previous BytecodeInterpreter or 0
  //   R14_state        - address of receiver's BytecodeInterpreter
  //   R1_SP            - receiver's stack pointer
  //

  // Thread fields.
  const Register pending_exception = R21_tmp1;

  // Interpreter state fields.
  const Register msg               = R24_tmp4;

  // MethodOop fields.
  const Register parameter_count   = R25_tmp5;
  const Register result_index      = R26_tmp6;

  const Register dummy             = R28_tmp8;

  // Address of various interpreter stubs.
  // R29_tmp9 is reserved.
  const Register stub_addr         = R27_tmp7;

  // Uncommon trap needs to jump to here to enter the interpreter
  // (re-execute current bytecode).
  unctrap_frame_manager_entry  = __ pc();

  // If we are profiling, store our fp (BSP) in the thread so we can
  // find it during a tick.
  if (Arguments::has_profile()) {
    // On PPC64 we store the pointer to the current BytecodeInterpreter,
    // instead of the bsp of ia64. This should suffice to be able to
    // find all interesting information.
    __ std(R14_state, thread_(last_interpreter_fp));
  }

  // R16_thread, R14_state and R15_prev_state are nonvolatile
  // registers. There is no need to save these. If we needed to save
  // some state in the current Java frame, this could be a place to do
  // so.

  // Call Java bytecode dispatcher passing "BytecodeInterpreter* istate".
  __ call_VM_leaf(CAST_FROM_FN_PTR(address,
                                   JvmtiExport::can_post_interpreter_events()
                                   ? BytecodeInterpreter::runWithChecks
                                   : BytecodeInterpreter::run),
                  R14_state);

  interpreter_return_address  = __ last_calls_return_pc();

  // R16_thread, R14_state and R15_prev_state have their values preserved.

  // If we are profiling, clear the fp in the thread to tell
  // the profiler that we are no longer in the interpreter.
  if (Arguments::has_profile()) {
    __ li(R11_scratch1, 0);
    __ std(R11_scratch1, thread_(last_interpreter_fp));
  }

  // Load message from bytecode dispatcher.
  // TODO: PPC port: guarantee(4 == BytecodeInterpreter::sz_msg(), "unexpected field size");
  __ lwz(msg, state_(_msg));


  Label more_monitors;
  Label return_from_native;
  Label return_from_native_common;
  Label return_from_native_no_exception;
  Label return_from_interpreted_method;
  Label return_from_recursive_activation;
  Label unwind_recursive_activation;
  Label resume_interpreter;
  Label return_to_initial_caller;
  Label unwind_initial_activation;
  Label unwind_initial_activation_pending_exception;
  Label call_method;
  Label call_special;
  Label retry_method;
  Label retry_method_osr;
  Label popping_frame;
  Label throwing_exception;

  // Branch according to the received message

  __ cmpwi(CCR1, msg, BytecodeInterpreter::call_method);
  __ cmpwi(CCR2, msg, BytecodeInterpreter::return_from_method);

  __ beq(CCR1, call_method);
  __ beq(CCR2, return_from_interpreted_method);

  __ cmpwi(CCR3, msg, BytecodeInterpreter::more_monitors);
  __ cmpwi(CCR4, msg, BytecodeInterpreter::throwing_exception);

  __ beq(CCR3, more_monitors);
  __ beq(CCR4, throwing_exception);

  __ cmpwi(CCR5, msg, BytecodeInterpreter::popping_frame);
  __ cmpwi(CCR6, msg, BytecodeInterpreter::do_osr);

  __ beq(CCR5, popping_frame);
  __ beq(CCR6, retry_method_osr);

  __ stop("bad message from interpreter");


  //=============================================================================
  // Add a monitor just below the existing one(s). State->_stack_base
  // points to the lowest existing one, so we insert the new one just
  // below it and shuffle the expression stack down. Ref. the above
  // stack layout picture, we must update _stack_base, _stack, _stack_limit
  // and _last_Java_sp in the interpreter state.

  __ BIND(more_monitors);

  generate_more_monitors();
  __ b(call_interpreter);

  generate_deopt_handling(result_index);

  // Restoring the R14_state is already done by the deopt_blob.

  // Current tos includes no parameter slots.
  __ ld(R17_tos, state_(_stack));
  __ li(msg, BytecodeInterpreter::deopt_resume);
  __ b(return_from_native_common);

  // We are sent here when we are unwinding from a native method or
  // adapter with an exception pending. We need to notify the interpreter
  // that there is an exception to process.
  // We arrive here also if the frame manager called an (interpreted) target
  // which returns with a StackOverflow exception.
  // The control flow is in this case is:
  // frame_manager->throw_excp_stub->forward_excp->rethrow_excp_entry

  AbstractInterpreter::_rethrow_exception_entry = __ pc();

  // Restore R14_state.
  __ ld(R14_state, 0, R1_SP);
  __ addi(R14_state, R14_state,
              -frame::interpreter_frame_cinterpreterstate_size_in_bytes());

  // Store exception oop into thread object.
  __ std(R3_RET, thread_(pending_exception));
  __ li(msg, BytecodeInterpreter::method_resume /*rethrow_exception*/);
  //
  // NOTE: the interpreter frame as setup be deopt does NOT include
  // any parameter slots (good thing since we have no callee here
  // and couldn't remove them) so we don't have to do any calculations
  // here to figure it out.
  //
  __ ld(R17_tos, state_(_stack));
  __ b(return_from_native_common);


  //=============================================================================
  // Returning from a native method.  Result is in the native abi
  // location so we must move it to the java expression stack.

  __ BIND(return_from_native);
  guarantee(return_from_native_pc == (address) NULL, "precondition");
  return_from_native_pc = __ pc();

  // Restore R14_state.
  __ ld(R14_state, 0, R1_SP);
  __ addi(R14_state, R14_state, -frame::interpreter_frame_cinterpreterstate_size_in_bytes());

  //
  // Registers alive
  //   R16_thread
  //   R14_state    - address of caller's BytecodeInterpreter.
  //   R3_RET       - integer result, if any.
  //   F1_RET       - float result, if any.
  //
  // Registers updated
  //   R19_method   - callee's Method
  //   R17_tos      - caller's tos, with outgoing args popped
  //   result_index - index of result handler.
  //   msg          - message for resuming interpreter.
  //

  // Very-local scratch registers.

  const ConditionRegister have_pending_exception = CCR0;

  // Load callee Method, gc may have moved it.
  __ ld(R19_method, state_(_result._to_call._callee));

  // Load address of caller's tos. includes parameter slots.
  __ ld(R17_tos, state_(_stack));

  // Pop callee's parameters.

  __ ld(parameter_count, in_bytes(Method::const_offset()), R19_method);
  __ lhz(parameter_count, in_bytes(ConstMethod::size_of_parameters_offset()), parameter_count);
  __ sldi(parameter_count, parameter_count, Interpreter::logStackElementSize);
  __ add(R17_tos, R17_tos, parameter_count);

  // Result stub address array index
  // TODO: PPC port: assert(4 == methodOopDesc::sz_result_index(), "unexpected field size");
  __ lwa(result_index, method_(result_index));

  __ li(msg, BytecodeInterpreter::method_resume);

  //
  // Registers alive
  //   R16_thread
  //   R14_state    - address of caller's BytecodeInterpreter.
  //   R17_tos      - address of caller's tos with outgoing args already popped
  //   R3_RET       - integer return value, if any.
  //   F1_RET       - float return value, if any.
  //   result_index - index of result handler.
  //   msg          - message for resuming interpreter.
  //
  // Registers updated
  //   R3_RET       - new address of caller's tos, including result, if any
  //

  __ BIND(return_from_native_common);

  // Check for pending exception
  __ ld(pending_exception, thread_(pending_exception));
  __ cmpdi(CCR0, pending_exception, 0);
  __ beq(CCR0, return_from_native_no_exception);

  // If there's a pending exception, we really have no result, so
  // R3_RET is dead. Resume_interpreter assumes the new tos is in
  // R3_RET.
  __ mr(R3_RET, R17_tos);
  // `resume_interpreter' expects R15_prev_state to be alive.
  __ ld(R15_prev_state, state_(_prev_link));
  __ b(resume_interpreter);

  __ BIND(return_from_native_no_exception);

  // No pending exception, copy method result from native ABI register
  // to tos.

  // Address of stub descriptor address array.
  __ load_const(stub_addr, CppInterpreter::tosca_result_to_stack());

  // Pass address of tos to stub.
  __ mr(R4_ARG2, R17_tos);

  // Address of stub descriptor address.
  __ sldi(result_index, result_index, LogBytesPerWord);
  __ add(stub_addr, stub_addr, result_index);

  // Stub descriptor address.
  __ ld(stub_addr, 0, stub_addr);

  // TODO: don't do this via a call, do it in place!
  //
  // call stub via descriptor
  // in R3_ARG1/F1_ARG1: result value (R3_RET or F1_RET)
  __ call_stub(stub_addr);

  // new tos = result of call in R3_RET

  // `resume_interpreter' expects R15_prev_state to be alive.
  __ ld(R15_prev_state, state_(_prev_link));
  __ b(resume_interpreter);

  //=============================================================================
  // We encountered an exception while computing the interpreter
  // state, so R14_state isn't valid. Act as if we just returned from
  // the callee method with a pending exception.
  __ BIND(stack_overflow_return);

  //
  // Registers alive
  //   R16_thread        - JavaThread*
  //   R1_SP             - old stack pointer
  //   R19_method        - callee's Method
  //   R17_tos           - address of caller's tos (prepushed)
  //   R15_prev_state    - address of caller's BytecodeInterpreter or 0
  //   R18_locals        - address of callee's locals array
  //
  // Registers updated
  //   R3_RET           - address of resuming tos, if recursive unwind

  Label Lskip_unextend_SP;

  {
  const ConditionRegister is_initial_call = CCR0;
  const Register tos_save = R21_tmp1;
  const Register tmp = R22_tmp2;

  assert(tos_save->is_nonvolatile(), "need a nonvolatile");

  // Is the exception thrown in the initial Java frame of this frame
  // manager frame?
  __ cmpdi(is_initial_call, R15_prev_state, 0);
  __ bne(is_initial_call, Lskip_unextend_SP);

  // Pop any c2i extension from the stack. This is necessary in the
  // non-recursive case (that is we were called by the c2i adapter,
  // meaning we have to prev state). In this case we entered the frame
  // manager through a special entry which pushes the orignal
  // unextended SP to the stack. Here we load it back.
  __ ld(R0, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
  __ mtlr(R0);
  // Resize frame to get rid of a potential extension.
  __ resize_frame_to_initial_caller(R11_scratch1, R12_scratch2);

  // Fall through

  __ bind(Lskip_unextend_SP);

  // Throw the exception via RuntimeStub "throw_StackOverflowError_entry".
  //
  // Previously, we called C-Code directly. As a consequence, a
  // possible GC tried to process the argument oops of the top frame
  // (see RegisterMap::clear, which sets the corresponding flag to
  // true). This lead to crashes because:
  // 1. The top register map did not contain locations for the argument registers
  // 2. The arguments are dead anyway, could be already overwritten in the worst case
  // Solution: Call via special runtime stub that pushes it's own frame. This runtime stub has the flag
  // "CodeBlob::caller_must_gc_arguments()" set to "false", what prevents the dead arguments getting GC'd.
  //
  // 2 cases exist:
  // 1. We were called by the c2i adapter / call stub
  // 2. We were called by the frame manager
  //
  // Both cases are handled by this code:
  // 1. - initial_caller_sp was saved on stack => Load it back and we're ok
  //    - control flow will be:
  //      throw_stackoverflow_stub->VM->throw_stackoverflow_stub->forward_excep->excp_blob of calling method
  // 2. - control flow will be:
  //      throw_stackoverflow_stub->VM->throw_stackoverflow_stub->forward_excep->
  //        ->rethrow_excp_entry of frame manager->resume_method
  //      Since we restored the caller SP above, the rethrow_excp_entry can restore the original interpreter state
  //      registers using the stack and resume the calling method with a pending excp.

  assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "generated in wrong order");
  __ load_const(R3_ARG1, (StubRoutines::throw_StackOverflowError_entry()));
  __ mtctr(R3_ARG1);
  __ bctr();
  }
  //=============================================================================
  // We have popped a frame from an interpreted call. We are assured
  // of returning to an interpreted call by the popframe abi. We have
  // no return value all we have to do is pop the current frame and
  // then make sure that the top of stack (of the caller) gets set to
  // where it was when we entered the callee (i.e. the args are still
  // in place).  Or we are returning to the interpreter. In the first
  // case we must extract result (if any) from the java expression
  // stack and store it in the location the native abi would expect
  // for a call returning this type. In the second case we must simply
  // do a stack to stack move as we unwind.

  __ BIND(popping_frame);

  // Registers alive
  //   R14_state
  //   R15_prev_state
  //   R17_tos
  //
  // Registers updated
  //   R19_method
  //   R3_RET
  //   msg
  {
    Label L;

    // Reload callee method, gc may have moved it.
    __ ld(R19_method, state_(_method));

    // We may be returning to a deoptimized frame in which case the
    // usual assumption of a recursive return is not true.

    // not equal = is recursive call
    __ cmpdi(CCR0, R15_prev_state, 0);

    __ bne(CCR0, L);

    // Pop_frame capability.
    // The pop_frame api says that the underlying frame is a Java frame, in this case
    // (prev_state==null) it must be a compiled frame:
    //
    // Stack at this point: I, C2I + C, ...
    //
    // The outgoing arguments of the call have just been copied (popframe_preserve_args).
    // By the pop_frame api, we must end up in an interpreted frame. So the compiled frame
    // will be deoptimized. Deoptimization will restore the outgoing arguments from
    // popframe_preserve_args, adjust the tos such that it includes the popframe_preserve_args,
    // and adjust the bci such that the call will be executed again.
    // We have no results, just pop the interpreter frame, resize the compiled frame to get rid
    // of the c2i extension and return to the deopt_handler.
    __ b(unwind_initial_activation);

    // is recursive call
    __ bind(L);

    // Resume_interpreter expects the original tos in R3_RET.
    __ ld(R3_RET, prev_state_(_stack));

    // We're done.
    __ li(msg, BytecodeInterpreter::popping_frame);

    __ b(unwind_recursive_activation);
  }


  //=============================================================================

  // We have finished an interpreted call. We are either returning to
  // native (call_stub/c2) or we are returning to the interpreter.
  // When returning to native, we must extract the result (if any)
  // from the java expression stack and store it in the location the
  // native abi expects. When returning to the interpreter we must
  // simply do a stack to stack move as we unwind.

  __ BIND(return_from_interpreted_method);

  //
  // Registers alive
  //   R16_thread     - JavaThread*
  //   R15_prev_state - address of caller's BytecodeInterpreter or 0
  //   R14_state      - address of callee's interpreter state
  //   R1_SP          - callee's stack pointer
  //
  // Registers updated
  //   R19_method     - callee's method
  //   R3_RET         - address of result (new caller's tos),
  //
  // if returning to interpreted
  //   msg  - message for interpreter,
  // if returning to interpreted
  //

  // Check if this is the initial invocation of the frame manager.
  // If so, R15_prev_state will be null.
  __ cmpdi(CCR0, R15_prev_state, 0);

  // Reload callee method, gc may have moved it.
  __ ld(R19_method, state_(_method));

  // Load the method's result type.
  __ lwz(result_index, method_(result_index));

  // Go to return_to_initial_caller if R15_prev_state is null.
  __ beq(CCR0, return_to_initial_caller);

  // Copy callee's result to caller's expression stack via inline stack-to-stack
  // converters.
  {
    Register new_tos   = R3_RET;
    Register from_temp = R4_ARG2;
    Register from      = R5_ARG3;
    Register tos       = R6_ARG4;
    Register tmp1      = R7_ARG5;
    Register tmp2      = R8_ARG6;

    ConditionRegister result_type_is_void   = CCR1;
    ConditionRegister result_type_is_long   = CCR2;
    ConditionRegister result_type_is_double = CCR3;

    Label stack_to_stack_void;
    Label stack_to_stack_double_slot; // T_LONG, T_DOUBLE
    Label stack_to_stack_single_slot; // T_BOOLEAN, T_BYTE, T_CHAR, T_SHORT, T_INT, T_FLOAT, T_OBJECT
    Label stack_to_stack_done;

    // Pass callee's address of tos + BytesPerWord
    __ ld(from_temp, state_(_stack));

    // result type: void
    __ cmpwi(result_type_is_void, result_index, AbstractInterpreter::BasicType_as_index(T_VOID));

    // Pass caller's tos == callee's locals address
    __ ld(tos, state_(_locals));

    // result type: long
    __ cmpwi(result_type_is_long, result_index, AbstractInterpreter::BasicType_as_index(T_LONG));

    __ addi(from, from_temp, Interpreter::stackElementSize);

    // !! don't branch above this line !!

    // handle void
    __ beq(result_type_is_void,   stack_to_stack_void);

    // result type: double
    __ cmpwi(result_type_is_double, result_index, AbstractInterpreter::BasicType_as_index(T_DOUBLE));

    // handle long or double
    __ beq(result_type_is_long, stack_to_stack_double_slot);
    __ beq(result_type_is_double, stack_to_stack_double_slot);

    // fall through to single slot types (incl. object)

    {
      __ BIND(stack_to_stack_single_slot);
      // T_BOOLEAN, T_BYTE, T_CHAR, T_SHORT, T_INT, T_FLOAT, T_OBJECT

      __ ld(tmp1, 0, from);
      __ std(tmp1, 0, tos);
      // New expression stack top
      __ addi(new_tos, tos, - BytesPerWord);

      __ b(stack_to_stack_done);
    }

    {
      __ BIND(stack_to_stack_double_slot);
      // T_LONG, T_DOUBLE

      // Move both entries for debug purposes even though only one is live
      __ ld(tmp1, BytesPerWord, from);
      __ ld(tmp2, 0, from);
      __ std(tmp1, 0, tos);
      __ std(tmp2, -BytesPerWord, tos);

      // new expression stack top
      __ addi(new_tos, tos, - 2 * BytesPerWord); // two slots
      __ b(stack_to_stack_done);
    }

    {
      __ BIND(stack_to_stack_void);
      // T_VOID

      // new expression stack top
      __ mr(new_tos, tos);
      // fall through to stack_to_stack_done
    }

    __ BIND(stack_to_stack_done);
  }

  // new tos = R3_RET

  // Get the message for the interpreter
  __ li(msg, BytecodeInterpreter::method_resume);

  // And fall thru


  //=============================================================================
  // Restore caller's interpreter state and pass pointer to caller's
  // new tos to caller.

  __ BIND(unwind_recursive_activation);

  //
  // Registers alive
  //   R15_prev_state   - address of caller's BytecodeInterpreter
  //   R3_RET           - address of caller's tos
  //   msg              - message for caller's BytecodeInterpreter
  //   R1_SP            - callee's stack pointer
  //
  // Registers updated
  //   R14_state        - address of caller's BytecodeInterpreter
  //   R15_prev_state   - address of its parent or 0
  //

  // Pop callee's interpreter and set R14_state to caller's interpreter.
  __ pop_interpreter_state(/*prev_state_may_be_0=*/false);

  // And fall thru


  //=============================================================================
  // Resume the (calling) interpreter after a call.

  __ BIND(resume_interpreter);

  //
  // Registers alive
  //   R14_state        - address of resuming BytecodeInterpreter
  //   R15_prev_state   - address of its parent or 0
  //   R3_RET           - address of resuming tos
  //   msg              - message for resuming interpreter
  //   R1_SP            - callee's stack pointer
  //
  // Registers updated
  //   R1_SP            - caller's stack pointer
  //

  // Restore C stack pointer of caller (resuming interpreter),
  // R14_state already points to the resuming BytecodeInterpreter.
  __ pop_interpreter_frame_to_state(R14_state, R21_tmp1, R11_scratch1, R12_scratch2);

  // Store new address of tos (holding return value) in interpreter state.
  __ std(R3_RET, state_(_stack));

  // Store message for interpreter.
  __ stw(msg, state_(_msg));

  __ b(call_interpreter);

  //=============================================================================
  // Interpreter returning to native code (call_stub/c1/c2) from
  // initial activation. Convert stack result and unwind activation.

  __ BIND(return_to_initial_caller);

  //
  // Registers alive
  //   R19_method       - callee's Method
  //   R14_state        - address of callee's interpreter state
  //   R16_thread       - JavaThread
  //   R1_SP            - callee's stack pointer
  //
  // Registers updated
  //   R3_RET/F1_RET - result in expected output register
  //

  // If we have an exception pending we have no result and we
  // must figure out where to really return to.
  //
  __ ld(pending_exception, thread_(pending_exception));
  __ cmpdi(CCR0, pending_exception, 0);
  __ bne(CCR0, unwind_initial_activation_pending_exception);

  __ lwa(result_index, method_(result_index));

  // Address of stub descriptor address array.
  __ load_const(stub_addr, CppInterpreter::stack_result_to_native());

  // Pass address of callee's tos + BytesPerWord.
  // Will then point directly to result.
  __ ld(R3_ARG1, state_(_stack));
  __ addi(R3_ARG1, R3_ARG1, Interpreter::stackElementSize);

  // Address of stub descriptor address
  __ sldi(result_index, result_index, LogBytesPerWord);
  __ add(stub_addr, stub_addr, result_index);

  // Stub descriptor address
  __ ld(stub_addr, 0, stub_addr);

  // TODO: don't do this via a call, do it in place!
  //
  // call stub via descriptor
  __ call_stub(stub_addr);

  __ BIND(unwind_initial_activation);

  // Unwind from initial activation. No exception is pending.

  //
  // Stack layout at this point:
  //
  //    0       [TOP_IJAVA_FRAME_ABI]         <-- R1_SP
  //            ...
  //    CALLER  [PARENT_IJAVA_FRAME_ABI]
  //            ...
  //    CALLER  [unextended ABI]
  //            ...
  //
  //  The CALLER frame has a C2I adapter or is an entry-frame.
  //

  // An interpreter frame exists, we may pop the TOP_IJAVA_FRAME and
  // turn the caller's PARENT_IJAVA_FRAME back into a TOP_IJAVA_FRAME.
  // But, we simply restore the return pc from the caller's frame and
  // use the caller's initial_caller_sp as the new SP which pops the
  // interpreter frame and "resizes" the caller's frame to its "unextended"
  // size.

  // get rid of top frame
  __ pop_frame();

  // Load return PC from parent frame.
  __ ld(R21_tmp1, _parent_ijava_frame_abi(lr), R1_SP);

  // Resize frame to get rid of a potential extension.
  __ resize_frame_to_initial_caller(R11_scratch1, R12_scratch2);

  // update LR
  __ mtlr(R21_tmp1);

  // return
  __ blr();

  //=============================================================================
  // Unwind from initial activation. An exception is pending

  __ BIND(unwind_initial_activation_pending_exception);

  //
  // Stack layout at this point:
  //
  //   0       [TOP_IJAVA_FRAME_ABI]         <-- R1_SP
  //           ...
  //   CALLER  [PARENT_IJAVA_FRAME_ABI]
  //           ...
  //   CALLER  [unextended ABI]
  //           ...
  //
  // The CALLER frame has a C2I adapter or is an entry-frame.
  //

  // An interpreter frame exists, we may pop the TOP_IJAVA_FRAME and
  // turn the caller's PARENT_IJAVA_FRAME back into a TOP_IJAVA_FRAME.
  // But, we just pop the current TOP_IJAVA_FRAME and fall through

  __ pop_frame();
  __ ld(R3_ARG1, _top_ijava_frame_abi(lr), R1_SP);

  //
  // Stack layout at this point:
  //
  //   CALLER  [PARENT_IJAVA_FRAME_ABI]      <-- R1_SP
  //           ...
  //   CALLER  [unextended ABI]
  //           ...
  //
  // The CALLER frame has a C2I adapter or is an entry-frame.
  //
  // Registers alive
  //   R16_thread
  //   R3_ARG1 - return address to caller
  //
  // Registers updated
  //   R3_ARG1 - address of pending exception
  //   R4_ARG2 - issuing pc = return address to caller
  //   LR      - address of exception handler stub
  //

  // Resize frame to get rid of a potential extension.
  __ resize_frame_to_initial_caller(R11_scratch1, R12_scratch2);

  __ mr(R14, R3_ARG1);   // R14 := ARG1
  __ mr(R4_ARG2, R3_ARG1);  // ARG2 := ARG1

  // Find the address of the "catch_exception" stub.
  __ push_frame_reg_args(0, R11_scratch1);
  __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
                  R16_thread,
                  R4_ARG2);
  __ pop_frame();

  // Load continuation address into LR.
  __ mtlr(R3_RET);

  // Load address of pending exception and clear it in thread object.
  __ ld(R3_ARG1/*R3_RET*/, thread_(pending_exception));
  __ li(R4_ARG2, 0);
  __ std(R4_ARG2, thread_(pending_exception));

  // re-load issuing pc
  __ mr(R4_ARG2, R14);

  // Branch to found exception handler.
  __ blr();

  //=============================================================================
  // Call a new method. Compute new args and trim the expression stack
  // to only what we are currently using and then recurse.

  __ BIND(call_method);

  //
  //  Registers alive
  //    R16_thread
  //    R14_state      - address of caller's BytecodeInterpreter
  //    R1_SP          - caller's stack pointer
  //
  //  Registers updated
  //    R15_prev_state - address of caller's BytecodeInterpreter
  //    R17_tos        - address of caller's tos
  //    R19_method     - callee's Method
  //    R1_SP          - trimmed back
  //

  // Very-local scratch registers.

  const Register offset = R21_tmp1;
  const Register tmp    = R22_tmp2;
  const Register self_entry  = R23_tmp3;
  const Register stub_entry  = R24_tmp4;

  const ConditionRegister cr = CCR0;

  // Load the address of the frame manager.
  __ load_const(self_entry, &interpreter_frame_manager);
  __ ld(self_entry, 0, self_entry);

  // Load BytecodeInterpreter._result._to_call._callee (callee's Method).
  __ ld(R19_method, state_(_result._to_call._callee));
  // Load BytecodeInterpreter._stack (outgoing tos).
  __ ld(R17_tos, state_(_stack));

  // Save address of caller's BytecodeInterpreter.
  __ mr(R15_prev_state, R14_state);

  // Load the callee's entry point.
  // Load BytecodeInterpreter._result._to_call._callee_entry_point.
  __ ld(stub_entry, state_(_result._to_call._callee_entry_point));

  // Check whether stub_entry is equal to self_entry.
  __ cmpd(cr, self_entry, stub_entry);
  // if (self_entry == stub_entry)
  //   do a re-dispatch
  __ beq(cr, re_dispatch);
  // else
  //   call the specialized entry (adapter for jni or compiled code)
  __ BIND(call_special);

  //
  // Call the entry generated by `InterpreterGenerator::generate_native_entry'.
  //
  // Registers alive
  //   R16_thread
  //   R15_prev_state    - address of caller's BytecodeInterpreter
  //   R19_method        - callee's Method
  //   R17_tos           - address of caller's tos
  //   R1_SP             - caller's stack pointer
  //

  // Mark return from specialized entry for generate_native_entry.
  guarantee(return_from_native_pc != (address) NULL, "precondition");
  frame_manager_specialized_return = return_from_native_pc;

  // Set sender_SP in case we call interpreter native wrapper which
  // will expect it. Compiled code should not care.
  __ mr(R21_sender_SP, R1_SP);

  // Do a tail call here, and let the link register point to
  // frame_manager_specialized_return which is return_from_native_pc.
  __ load_const(tmp, frame_manager_specialized_return);
  __ call_stub_and_return_to(stub_entry,  tmp /* return_pc=tmp */);


  //=============================================================================
  //
  // InterpretMethod triggered OSR compilation of some Java method M
  // and now asks to run the compiled code.  We call this code the
  // `callee'.
  //
  // This is our current idea on how OSR should look like on PPC64:
  //
  // While interpreting a Java method M the stack is:
  //
  //  (InterpretMethod (M), IJAVA_FRAME (M), ANY_FRAME, ...).
  //
  // After having OSR compiled M, `InterpretMethod' returns to the
  // frame manager, sending the message `retry_method_osr'.  The stack
  // is:
  //
  //  (IJAVA_FRAME (M), ANY_FRAME, ...).
  //
  // The compiler will have generated an `nmethod' suitable for
  // continuing execution of M at the bytecode index at which OSR took
  // place.  So now the frame manager calls the OSR entry.  The OSR
  // entry sets up a JIT_FRAME for M and continues execution of M with
  // initial state determined by the IJAVA_FRAME.
  //
  //  (JIT_FRAME (M), IJAVA_FRAME (M), ANY_FRAME, ...).
  //

  __ BIND(retry_method_osr);
  {
  //
  // Registers alive
  //   R16_thread
  //   R15_prev_state     - address of caller's BytecodeInterpreter
  //   R14_state          - address of callee's BytecodeInterpreter
  //   R1_SP              - callee's SP before call to InterpretMethod
  //
  // Registers updated
  //   R17                - pointer to callee's locals array
  //                       (declared via `interpreter_arg_ptr_reg' in the AD file)
  //   R19_method         - callee's Method
  //   R1_SP              - callee's SP (will become SP of OSR adapter frame)
  //

  // Provide a debugger breakpoint in the frame manager if breakpoints
  // in osr'd methods are requested.
#ifdef COMPILER2
  NOT_PRODUCT( if (OptoBreakpointOSR) { __ illtrap(); } )
#endif

  // Load callee's pointer to locals array from callee's state.
  //  __ ld(R17, state_(_locals));

  // Load osr entry.
  __ ld(R12_scratch2, state_(_result._osr._osr_entry));

  // Load address of temporary osr buffer to arg1.
  __ ld(R3_ARG1, state_(_result._osr._osr_buf));
  __ mtctr(R12_scratch2);

  // Load method oop, gc may move it during execution of osr'd method.
  __ ld(R22_tmp2, state_(_method));
  // Load message 'call_method'.
  __ li(R23_tmp3, BytecodeInterpreter::call_method);

  {
    // Pop the IJAVA frame of the method which we are going to call osr'd.
    Label no_state, skip_no_state;
    __ pop_interpreter_state(/*prev_state_may_be_0=*/true);
    __ cmpdi(CCR0, R14_state,0);
    __ beq(CCR0, no_state);
    // return to interpreter
    __ pop_interpreter_frame_to_state(R14_state, R11_scratch1, R12_scratch2, R21_tmp1);

    // Init _result._to_call._callee and tell gc that it contains a valid oop
    // by setting _msg to 'call_method'.
    __ std(R22_tmp2, state_(_result._to_call._callee));
    // TODO: PPC port: assert(4 == BytecodeInterpreter::sz_msg(), "unexpected field size");
    __ stw(R23_tmp3, state_(_msg));

    __ load_const(R21_tmp1, frame_manager_specialized_return);
    __ b(skip_no_state);
    __ bind(no_state);

    // Return to initial caller.

    // Get rid of top frame.
    __ pop_frame();

    // Load return PC from parent frame.
    __ ld(R21_tmp1, _parent_ijava_frame_abi(lr), R1_SP);

    // Resize frame to get rid of a potential extension.
    __ resize_frame_to_initial_caller(R11_scratch1, R12_scratch2);

    __ bind(skip_no_state);

    // Update LR with return pc.
    __ mtlr(R21_tmp1);
  }
  // Jump to the osr entry point.
  __ bctr();

  }

  //=============================================================================
  // Interpreted method "returned" with an exception, pass it on.
  // Pass no result, unwind activation and continue/return to
  // interpreter/call_stub/c2.

  __ BIND(throwing_exception);

  // Check if this is the initial invocation of the frame manager.  If
  // so, previous interpreter state in R15_prev_state will be null.

  // New tos of caller is callee's first parameter address, that is
  // callee's incoming arguments are popped.
  __ ld(R3_RET, state_(_locals));

  // Check whether this is an initial call.
  __ cmpdi(CCR0, R15_prev_state, 0);
  // Yes, called from the call stub or from generated code via a c2i frame.
  __ beq(CCR0, unwind_initial_activation_pending_exception);

  // Send resume message, interpreter will see the exception first.

  __ li(msg, BytecodeInterpreter::method_resume);
  __ b(unwind_recursive_activation);


  //=============================================================================
  // Push the last instruction out to the code buffer.

  {
    __ unimplemented("end of InterpreterGenerator::generate_normal_entry", 128);
  }

  interpreter_frame_manager = entry;
  return interpreter_frame_manager;
}

// Generate code for various sorts of method entries
//
address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
  address entry_point = NULL;

  switch (kind) {
    case Interpreter::zerolocals                 :                                                                              break;
    case Interpreter::zerolocals_synchronized    :                                                                              break;
    case Interpreter::native                     : // Fall thru
    case Interpreter::native_synchronized        : entry_point = ((CppInterpreterGenerator*)this)->generate_native_entry();     break;
    case Interpreter::empty                      :                                                                              break;
    case Interpreter::accessor                   : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();      break;
    case Interpreter::abstract                   : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();      break;
    // These are special interpreter intrinsics which we don't support so far.
    case Interpreter::java_lang_math_sin         :                                                                              break;
    case Interpreter::java_lang_math_cos         :                                                                              break;
    case Interpreter::java_lang_math_tan         :                                                                              break;
    case Interpreter::java_lang_math_abs         :                                                                              break;
    case Interpreter::java_lang_math_log         :                                                                              break;
    case Interpreter::java_lang_math_log10       :                                                                              break;
    case Interpreter::java_lang_math_sqrt        :                                                                              break;
    case Interpreter::java_lang_math_pow         :                                                                              break;
    case Interpreter::java_lang_math_exp         :                                                                              break;
    case Interpreter::java_lang_ref_reference_get: entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
    default                                      : ShouldNotReachHere();                                                        break;
  }

  if (entry_point) {
    return entry_point;
  }
  return ((InterpreterGenerator*)this)->generate_normal_entry();
}

InterpreterGenerator::InterpreterGenerator(StubQueue* code)
 : CppInterpreterGenerator(code) {
   generate_all(); // down here so it can be "virtual"
}

// How much stack a topmost interpreter method activation needs in words.
int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  // Computation is in bytes not words to match layout_activation_impl
  // below, but the return is in words.

  //
  //  0       [TOP_IJAVA_FRAME_ABI]                                                    \
  //          alignment (optional)                                             \       |
  //          [operand stack / Java parameters] > stack                        |       |
  //          [monitors] (optional)             > monitors                     |       |
  //          [PARENT_IJAVA_FRAME_ABI]                                \        |       |
  //          [BytecodeInterpreter object]      > interpreter \       |        |       |
  //          alignment (optional)                            | round | parent | round | top
  //          [Java result] (2 slots)           > result      |       |        |       |
  //          [Java non-arg locals]             \ locals      |       |        |       |
  //          [arg locals]                      /             /       /        /       /
  //

  int locals = method->max_locals() * BytesPerWord;
  int interpreter = frame::interpreter_frame_cinterpreterstate_size_in_bytes();
  int result = 2 * BytesPerWord;

  int parent = round_to(interpreter + result + locals, 16) + frame::parent_ijava_frame_abi_size;

  int stack = method->max_stack() * BytesPerWord;
  int monitors = method->is_synchronized() ? frame::interpreter_frame_monitor_size_in_bytes() : 0;
  int top = round_to(parent + monitors + stack, 16) + frame::top_ijava_frame_abi_size;

  return (top / BytesPerWord);
}

void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
                                                  frame* caller,
                                                  frame* current,
                                                  Method* method,
                                                  intptr_t* locals,
                                                  intptr_t* stack,
                                                  intptr_t* stack_base,
                                                  intptr_t* monitor_base,
                                                  intptr_t* frame_sp,
                                                  bool is_top_frame) {
  // What about any vtable?
  //
  to_fill->_thread = JavaThread::current();
  // This gets filled in later but make it something recognizable for now.
  to_fill->_bcp = method->code_base();
  to_fill->_locals = locals;
  to_fill->_constants = method->constants()->cache();
  to_fill->_method = method;
  to_fill->_mdx = NULL;
  to_fill->_stack = stack;

  if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution()) {
    to_fill->_msg = deopt_resume2;
  } else {
    to_fill->_msg = method_resume;
  }
  to_fill->_result._to_call._bcp_advance = 0;
  to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
  to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
  to_fill->_prev_link = NULL;

  if (caller->is_interpreted_frame()) {
    interpreterState prev  = caller->get_interpreterState();

    // Support MH calls. Make sure the interpreter will return the right address:
    // 1. Caller did ordinary interpreted->compiled call call: Set a prev_state
    //    which makes the CPP interpreter return to frame manager "return_from_interpreted_method"
    //    entry after finishing execution.
    // 2. Caller did a MH call: If the caller has a MethodHandleInvoke in it's
    //    state (invariant: must be the caller of the bottom vframe) we used the
    //    "call_special" entry to do the call, meaning the arguments have not been
    //    popped from the stack. Therefore, don't enter a prev state in this case
    //    in order to return to "return_from_native" frame manager entry which takes
    //    care of popping arguments. Also, don't overwrite the MH.invoke Method in
    //    the prev_state in order to be able to figure out the number of arguments to
    //     pop.
    // The parameter method can represent MethodHandle.invokeExact(...).
    // The MethodHandleCompiler generates these synthetic Methods,
    // including bytecodes, if an invokedynamic call gets inlined. In
    // this case we want to return like from any other interpreted
    // Java call, so we set _prev_link.
    to_fill->_prev_link = prev;

    if (*prev->_bcp == Bytecodes::_invokeinterface || *prev->_bcp == Bytecodes::_invokedynamic) {
      prev->_result._to_call._bcp_advance = 5;
    } else {
      prev->_result._to_call._bcp_advance = 3;
    }
  }
  to_fill->_oop_temp = NULL;
  to_fill->_stack_base = stack_base;
  // Need +1 here because stack_base points to the word just above the
  // first expr stack entry and stack_limit is supposed to point to
  // the word just below the last expr stack entry. See
  // generate_compute_interpreter_state.
  to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
  to_fill->_monitor_base = (BasicObjectLock*) monitor_base;

  to_fill->_frame_bottom = frame_sp;

  // PPC64 specific
  to_fill->_last_Java_pc = NULL;
  to_fill->_last_Java_fp = NULL;
  to_fill->_last_Java_sp = frame_sp;
#ifdef ASSERT
  to_fill->_self_link = to_fill;
  to_fill->_native_fresult = 123456.789;
  to_fill->_native_lresult = CONST64(0xdeafcafedeadc0de);
#endif
}

void BytecodeInterpreter::pd_layout_interpreterState(interpreterState istate,
                                                     address last_Java_pc,
                                                     intptr_t* last_Java_fp) {
  istate->_last_Java_pc = last_Java_pc;
  istate->_last_Java_fp = last_Java_fp;
}

int AbstractInterpreter::layout_activation(Method* method,
                                           int temps,        // Number of slots on java expression stack in use.
                                           int popframe_args,
                                           int monitors,     // Number of active monitors.
                                           int caller_actual_parameters,
                                           int callee_params,// Number of slots for callee parameters.
                                           int callee_locals,// Number of slots for locals.
                                           frame* caller,
                                           frame* interpreter_frame,
                                           bool is_top_frame,
                                           bool is_bottom_frame) {

  // NOTE this code must exactly mimic what
  // InterpreterGenerator::generate_compute_interpreter_state() does
  // as far as allocating an interpreter frame. However there is an
  // exception. With the C++ based interpreter only the top most frame
  // has a full sized expression stack.  The 16 byte slop factor is
  // both the abi scratch area and a place to hold a result from a
  // callee on its way to the callers stack.

  int monitor_size = frame::interpreter_frame_monitor_size_in_bytes() * monitors;
  int frame_size;
  int top_frame_size = round_to(frame::interpreter_frame_cinterpreterstate_size_in_bytes()
                                + monitor_size
                                + (method->max_stack() *Interpreter::stackElementWords * BytesPerWord)
                                + 2*BytesPerWord,
                                frame::alignment_in_bytes)
                      + frame::top_ijava_frame_abi_size;
  if (is_top_frame) {
    frame_size = top_frame_size;
  } else {
    frame_size = round_to(frame::interpreter_frame_cinterpreterstate_size_in_bytes()
                          + monitor_size
                          + ((temps - callee_params + callee_locals) *
                             Interpreter::stackElementWords * BytesPerWord)
                          + 2*BytesPerWord,
                          frame::alignment_in_bytes)
                 + frame::parent_ijava_frame_abi_size;
    assert(popframe_args==0, "non-zero for top_frame only");
  }

  // If we actually have a frame to layout we must now fill in all the pieces.
  if (interpreter_frame != NULL) {

    intptr_t sp = (intptr_t)interpreter_frame->sp();
    intptr_t fp = *(intptr_t *)sp;
    assert(fp == (intptr_t)caller->sp(), "fp must match");
    interpreterState cur_state =
      (interpreterState)(fp - frame::interpreter_frame_cinterpreterstate_size_in_bytes());

    // Now fill in the interpreterState object.

    intptr_t* locals;
    if (caller->is_interpreted_frame()) {
      // Locals must agree with the caller because it will be used to set the
      // caller's tos when we return.
      interpreterState prev  = caller->get_interpreterState();
      // Calculate start of "locals" for MH calls.  For MH calls, the
      // current method() (= MH target) and prev->callee() (=
      // MH.invoke*()) are different and especially have different
      // signatures. To pop the argumentsof the caller, we must use
      // the prev->callee()->size_of_arguments() because that's what
      // the caller actually pushed.  Currently, for synthetic MH
      // calls (deoptimized from inlined MH calls), detected by
      // is_method_handle_invoke(), we use the callee's arguments
      // because here, the caller's and callee's signature match.
      if (true /*!caller->is_at_mh_callsite()*/) {
        locals = prev->stack() + method->size_of_parameters();
      } else {
        // Normal MH call.
        locals = prev->stack() + prev->callee()->size_of_parameters();
      }
    } else {
      bool is_deopted;
      locals = (intptr_t*) (fp + ((method->max_locals() - 1) * BytesPerWord) +
                            frame::parent_ijava_frame_abi_size);
    }

    intptr_t* monitor_base = (intptr_t*) cur_state;
    intptr_t* stack_base   = (intptr_t*) ((intptr_t) monitor_base - monitor_size);

    // Provide pop_frame capability on PPC64, add popframe_args.
    // +1 because stack is always prepushed.
    intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (temps + popframe_args + 1) * BytesPerWord);

    BytecodeInterpreter::layout_interpreterState(cur_state,
                                                 caller,
                                                 interpreter_frame,
                                                 method,
                                                 locals,
                                                 stack,
                                                 stack_base,
                                                 monitor_base,
                                                 (intptr_t*)(((intptr_t)fp)-top_frame_size),
                                                 is_top_frame);

    BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address,
                                                    interpreter_frame->fp());
  }
  return frame_size/BytesPerWord;
}

#endif // CC_INTERP