aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/aarch64/vm/immediate_aarch64.cpp
blob: c73a293b3c6d625038bc26cd3a597cee3a5557c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/*
 * Copyright (c) 2013, Red Hat Inc.
 * All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 */

#include <stdlib.h>
#include "decode_aarch64.hpp"
#include "immediate_aarch64.hpp"

// there are at most 2^13 possible logical immediate encodings
// however, some combinations of immr and imms are invalid
static const unsigned  LI_TABLE_SIZE = (1 << 13);

static int li_table_entry_count;

// for forward lookup we just use a direct array lookup
// and assume that the cient has supplied a valid encoding
// table[encoding] = immediate
static u_int64_t LITable[LI_TABLE_SIZE];

// for reverse lookup we need a sparse map so we store a table of
// immediate and encoding pairs sorted by immediate value

struct li_pair {
  u_int64_t immediate;
  u_int32_t encoding;
};

static struct li_pair InverseLITable[LI_TABLE_SIZE];

// comparator to sort entries in the inverse table
int compare_immediate_pair(const void *i1, const void *i2)
{
  struct li_pair *li1 = (struct li_pair *)i1;
  struct li_pair *li2 = (struct li_pair *)i2;
  if (li1->immediate < li2->immediate) {
    return -1;
  }
  if (li1->immediate > li2->immediate) {
    return 1;
  }
  return 0;
}

// helper functions used by expandLogicalImmediate

// for i = 1, ... N result<i-1> = 1 other bits are zero
static inline u_int64_t ones(int N)
{
  return (N == 64 ? (u_int64_t)-1UL : ((1UL << N) - 1));
}

// result<0> to val<N>
static inline u_int64_t pickbit(u_int64_t val, int N)
{
  return pickbits64(val, N, N);
}


// SPEC bits(M*N) Replicate(bits(M) x, integer N);
// this is just an educated guess

u_int64_t replicate(u_int64_t bits, int nbits, int count)
{
  u_int64_t result = 0;
  // nbits may be 64 in which case we want mask to be -1
  u_int64_t mask = ones(nbits);
  for (int i = 0; i < count ; i++) {
    result <<= nbits;
    result |= (bits & mask);
  }
  return result;
}

// this function writes the supplied bimm reference and returns a
// boolean to indicate success (1) or fail (0) because an illegal
// encoding must be treated as an UNALLOC instruction

// construct a 32 bit immediate value for a logical immediate operation
int expandLogicalImmediate(u_int32_t immN, u_int32_t immr,
			    u_int32_t imms, u_int64_t &bimm)
{
  int len;		    // ought to be <= 6
  u_int32_t levels;	    // 6 bits
  u_int32_t tmask_and;	    // 6 bits
  u_int32_t wmask_and;	    // 6 bits
  u_int32_t tmask_or;	    // 6 bits
  u_int32_t wmask_or;	    // 6 bits
  u_int64_t imm64;	    // 64 bits
  u_int64_t tmask, wmask;   // 64 bits
  u_int32_t S, R, diff;	    // 6 bits?

  if (immN == 1) {
    len = 6; // looks like 7 given the spec above but this cannot be!
  } else {
    len = 0;
    u_int32_t val = (~imms & 0x3f);
    for (int i = 5; i > 0; i--) {
      if (val & (1 << i)) {
	len = i;
	break;
      }
    }
    if (len < 1) {
      return 0;
    }
    // for valid inputs leading 1s in immr must be less than leading
    // zeros in imms
    int len2 = 0;		    // ought to be < len
    u_int32_t val2 = (~immr & 0x3f);
    for (int i = 5; i > 0; i--) {
      if (!(val2 & (1 << i))) {
	len2 = i;
	break;
      }
    }
    if (len2 >= len) {
      return 0;
    }
  }

  levels = (1 << len) - 1;

  if ((imms & levels) == levels) {
    return 0;
  }

  S = imms & levels;
  R = immr & levels;
  
 // 6 bit arithmetic!
  diff = S - R;
  tmask_and = (diff | ~levels) & 0x3f;
  tmask_or = (diff & levels) & 0x3f;
  tmask = 0xffffffffffffffffULL;

  for (int i = 0; i < 6; i++) {
    int nbits = 1 << i;
    u_int64_t and_bit = pickbit(tmask_and, i);
    u_int64_t or_bit = pickbit(tmask_or, i);
    u_int64_t and_bits_sub = replicate(and_bit, 1, nbits);
    u_int64_t or_bits_sub = replicate(or_bit, 1, nbits);
    u_int64_t and_bits_top = (and_bits_sub << nbits) | ones(nbits);
    u_int64_t or_bits_top = (0 << nbits) | or_bits_sub;

    tmask = ((tmask
	      & (replicate(and_bits_top, 2 * nbits, 32 / nbits)))
	     | replicate(or_bits_top, 2 * nbits, 32 / nbits));
  }

  wmask_and = (immr | ~levels) & 0x3f;
  wmask_or = (immr & levels) & 0x3f;

  wmask = 0;

  for (int i = 0; i < 6; i++) {
    int nbits = 1 << i;
    u_int64_t and_bit = pickbit(wmask_and, i);
    u_int64_t or_bit = pickbit(wmask_or, i);
    u_int64_t and_bits_sub = replicate(and_bit, 1, nbits);
    u_int64_t or_bits_sub = replicate(or_bit, 1, nbits);
    u_int64_t and_bits_top = (ones(nbits) << nbits) | and_bits_sub;
    u_int64_t or_bits_top = (or_bits_sub << nbits) | 0;

    wmask = ((wmask
	      & (replicate(and_bits_top, 2 * nbits, 32 / nbits)))
	     | replicate(or_bits_top, 2 * nbits, 32 / nbits));
  }

  if (diff & (1U << 6)) {
    imm64 = tmask & wmask;
  } else {
    imm64 = tmask | wmask;
  }


  bimm = imm64;
  return 1;
}

// constructor to initialise the lookup tables

static void initLITables() __attribute__ ((constructor));
static void initLITables()
{
  li_table_entry_count = 0;
  for (unsigned index = 0; index < LI_TABLE_SIZE; index++) {
    u_int32_t N = uimm(index, 12, 12);
    u_int32_t immr = uimm(index, 11, 6);
    u_int32_t imms = uimm(index, 5, 0);
    if (expandLogicalImmediate(N, immr, imms, LITable[index])) {
      InverseLITable[li_table_entry_count].immediate = LITable[index];
      InverseLITable[li_table_entry_count].encoding = index;
      li_table_entry_count++;
    }
  }
  // now sort the inverse table
  qsort(InverseLITable, li_table_entry_count,
	sizeof(InverseLITable[0]), compare_immediate_pair);
}

// public APIs provided for logical immediate lookup and reverse lookup

u_int64_t logical_immediate_for_encoding(u_int32_t encoding)
{
  return LITable[encoding];
}

u_int32_t encoding_for_logical_immediate(u_int64_t immediate)
{
  struct li_pair pair;
  struct li_pair *result;

  pair.immediate = immediate;

  result = (struct li_pair *)
    bsearch(&pair, InverseLITable, li_table_entry_count,
	    sizeof(InverseLITable[0]), compare_immediate_pair);

  if (result) {
    return result->encoding;
  }

  return 0xffffffff;
}

// floating point immediates are encoded in 8 bits
// fpimm[7] = sign bit
// fpimm[6:4] = signed exponent
// fpimm[3:0] = fraction (assuming leading 1)
// i.e. F = s * 1.f * 2^(e - b)

u_int64_t fp_immediate_for_encoding(u_int32_t imm8, int is_dp)
{
  union {
    float fpval;
    double dpval;
    u_int64_t val;
  };

  u_int32_t s, e, f;
  s = (imm8 >> 7 ) & 0x1;
  e = (imm8 >> 4) & 0x7;
  f = imm8 & 0xf;
  // the fp value is s * n/16 * 2r where n is 16+e
  fpval = (16.0 + f) / 16.0;
  // n.b. exponent is signed
  if (e < 4) {
    int epos = e;
    for (int i = 0; i <= epos; i++) {
      fpval *= 2.0;
    }
  } else {
    int eneg = 7 - e;
    for (int i = 0; i < eneg; i++) {
      fpval /= 2.0;
    }
  }

  if (s) {
    fpval = -fpval;
  }
  if (is_dp) {
    dpval = (double)fpval;
  }
  return val;
}

u_int32_t encoding_for_fp_immediate(float immediate)
{
  // given a float which is of the form
  //
  //     s * n/16 * 2r
  //
  // where n is 16+f and imm1:s, imm4:f, simm3:r
  // return the imm8 result [s:r:f]
  //

  union {
    float fpval;
    u_int32_t val;
  };
  fpval = immediate;
  u_int32_t s, r, f, res;
  // sign bit is 31
  s = (val >> 31) & 0x1;
  // exponent is bits 30-23 but we only want the bottom 3 bits
  // strictly we ought to check that the bits bits 30-25 are
  // either all 1s or all 0s
  r = (val >> 23) & 0x7;
  // fraction is bits 22-0
  f = (val >> 19) & 0xf;
  res = (s << 7) | (r << 4) | f;
  return res;
}