aboutsummaryrefslogtreecommitdiff
path: root/drivers/staging/iio/accel/sca3000_ring.c
blob: 40cbab2a659223e4ea0ba50b7b01950e055e93e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
/*
 * sca3000_ring.c -- support VTI sca3000 series accelerometers via SPI
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * Copyright (c) 2009 Jonathan Cameron <jic23@cam.ac.uk>
 *
 */

#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/fs.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/spi/spi.h>
#include <linux/sysfs.h>

#include "../iio.h"
#include "../sysfs.h"
#include "../ring_generic.h"
#include "../ring_hw.h"
#include "accel.h"
#include "sca3000.h"

/* RFC / future work
 *
 * The internal ring buffer doesn't actually change what it holds depending
 * on which signals are enabled etc, merely whether you can read them.
 * As such the scan mode selection is somewhat different than for a software
 * ring buffer and changing it actually covers any data already in the buffer.
 * Currently scan elements aren't configured so it doesn't matter.
 */

/**
 * sca3000_rip_hw_rb() - main ring access function, pulls data from ring
 * @r:			the ring
 * @count:		number of samples to try and pull
 * @data:		output the actual samples pulled from the hw ring
 * @dead_offset:	cheating a bit here: Set to 1 so as to allow for the
 *			leading byte used in bus comms.
 *
 * Currently does not provide timestamps.  As the hardware doesn't add them they
 * can only be inferred aproximately from ring buffer events such as 50% full
 * and knowledge of when buffer was last emptied.  This is left to userspace.
 **/
static int sca3000_rip_hw_rb(struct iio_ring_buffer *r,
			     size_t count, u8 **data, int *dead_offset)
{
	struct iio_hw_ring_buffer *hw_ring = iio_to_hw_ring_buf(r);
	struct iio_dev *indio_dev = hw_ring->private;
	struct sca3000_state *st = indio_dev->dev_data;
	u8 *rx;
	int ret, num_available, num_read = 0;
	int bytes_per_sample = 1;

	if (st->bpse == 11)
		bytes_per_sample = 2;

	mutex_lock(&st->lock);
	/* Check how much data is available:
	 * RFC: Implement an ioctl to not bother checking whether there
	 * is enough data in the ring?  Afterall, if we are responding
	 * to an interrupt we have a minimum content guaranteed so it
	 * seems slight silly to waste time checking it is there.
	 */
	ret = sca3000_read_data(st,
				SCA3000_REG_ADDR_BUF_COUNT,
				&rx, 1);
	if (ret)
		goto error_ret;
	else
		num_available = rx[1];
	/* num_available is the total number of samples available
	 * i.e. number of time points * number of channels.
	 */
	kfree(rx);
	if (count > num_available * bytes_per_sample)
		num_read = num_available*bytes_per_sample;
	else
		num_read = count - (count % (bytes_per_sample));

	/* Avoid the read request byte */
	*dead_offset = 1;
	ret = sca3000_read_data(st,
				SCA3000_REG_ADDR_RING_OUT,
				data, num_read);
error_ret:
	mutex_unlock(&st->lock);

	return ret ? ret : num_read;
}

/* This is only valid with all 3 elements enabled */
static int sca3000_ring_get_length(struct iio_ring_buffer *r)
{
	return 64;
}

/* only valid if resolution is kept at 11bits */
static int sca3000_ring_get_bpd(struct iio_ring_buffer *r)
{
	return 6;
}
static void sca3000_ring_release(struct device *dev)
{
	struct iio_ring_buffer *r = to_iio_ring_buffer(dev);
	kfree(iio_to_hw_ring_buf(r));
}

static IIO_RING_ENABLE_ATTR;
static IIO_RING_BPS_ATTR;
static IIO_RING_LENGTH_ATTR;

/**
 * sca3000_show_ring_bpse() -sysfs function to query bits per sample from ring
 * @dev: ring buffer device
 * @attr: this device attribute
 * @buf: buffer to write to
 **/
static ssize_t sca3000_show_ring_bpse(struct device *dev,
				      struct device_attribute *attr,
				      char *buf)
{
	int len = 0, ret;
	u8 *rx;
	struct iio_ring_buffer *r = dev_get_drvdata(dev);
	struct sca3000_state *st = r->indio_dev->dev_data;

	mutex_lock(&st->lock);
	ret = sca3000_read_data(st, SCA3000_REG_ADDR_MODE, &rx, 1);
	if (ret)
		goto error_ret;
	len = sprintf(buf, "%d\n", (rx[1] & SCA3000_RING_BUF_8BIT) ? 8 : 11);
	kfree(rx);
error_ret:
	mutex_unlock(&st->lock);

	return ret ? ret : len;
}

/**
 * sca3000_store_ring_bpse() - bits per scan element
 * @dev: ring buffer device
 * @attr: attribute called from
 * @buf: input from userspace
 * @len: length of input
 **/
static ssize_t sca3000_store_ring_bpse(struct device *dev,
				      struct device_attribute *attr,
				      const char *buf,
				      size_t len)
{
	struct iio_ring_buffer *r = dev_get_drvdata(dev);
	struct sca3000_state *st = r->indio_dev->dev_data;
	int ret;
	u8 *rx;
	long val;
	ret = strict_strtol(buf, 10, &val);
	if (ret)
		return ret;

	mutex_lock(&st->lock);

	ret = sca3000_read_data(st, SCA3000_REG_ADDR_MODE, &rx, 1);
	if (!ret)
		switch (val) {
		case 8:
			ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
						rx[1] | SCA3000_RING_BUF_8BIT);
			st->bpse = 8;
			break;
		case 11:
			ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
						rx[1] & ~SCA3000_RING_BUF_8BIT);
			st->bpse = 11;
			break;
		default:
			ret = -EINVAL;
			break;
		}
	mutex_unlock(&st->lock);

	return ret ? ret : len;
}

static IIO_CONST_ATTR(bpse_available, "8 11");

static IIO_DEV_ATTR_BPSE(S_IRUGO | S_IWUSR,
			      sca3000_show_ring_bpse,
			      sca3000_store_ring_bpse);

/*
 * Ring buffer attributes
 * This device is a bit unusual in that the sampling frequency and bpse
 * only apply to the ring buffer.  At all times full rate and accuracy
 * is available via direct reading from registers.
 */
static struct attribute *iio_ring_attributes[] = {
	&dev_attr_length.attr,
	&dev_attr_bps.attr,
	&dev_attr_ring_enable.attr,
	&iio_dev_attr_bpse.dev_attr.attr,
	&iio_const_attr_bpse_available.dev_attr.attr,
	NULL,
};

static struct attribute_group sca3000_ring_attr = {
	.attrs = iio_ring_attributes,
};

static const struct attribute_group *sca3000_ring_attr_groups[] = {
	&sca3000_ring_attr,
	NULL
};

static struct device_type sca3000_ring_type = {
	.release = sca3000_ring_release,
	.groups = sca3000_ring_attr_groups,
};

static struct iio_ring_buffer *sca3000_rb_allocate(struct iio_dev *indio_dev)
{
	struct iio_ring_buffer *buf;
	struct iio_hw_ring_buffer *ring;

	ring = kzalloc(sizeof *ring, GFP_KERNEL);
	if (!ring)
		return 0;
	ring->private = indio_dev;
	buf = &ring->buf;
	iio_ring_buffer_init(buf, indio_dev);
	buf->dev.type = &sca3000_ring_type;
	device_initialize(&buf->dev);
	buf->dev.parent = &indio_dev->dev;
	dev_set_drvdata(&buf->dev, (void *)buf);

	return buf;
}

static inline void sca3000_rb_free(struct iio_ring_buffer *r)
{
	if (r)
		iio_put_ring_buffer(r);
}

int sca3000_configure_ring(struct iio_dev *indio_dev)
{
	indio_dev->ring = sca3000_rb_allocate(indio_dev);
	if (indio_dev->ring == NULL)
		return -ENOMEM;
	indio_dev->modes |= INDIO_RING_HARDWARE_BUFFER;

	indio_dev->ring->access.rip_lots = &sca3000_rip_hw_rb;
	indio_dev->ring->access.get_length = &sca3000_ring_get_length;
	indio_dev->ring->access.get_bpd = &sca3000_ring_get_bpd;

	return 0;
}

void sca3000_unconfigure_ring(struct iio_dev *indio_dev)
{
	sca3000_rb_free(indio_dev->ring);
}

static inline
int __sca3000_hw_ring_state_set(struct iio_dev *indio_dev, bool state)
{
	struct sca3000_state *st = indio_dev->dev_data;
	int ret;
	u8 *rx;

	mutex_lock(&st->lock);
	ret = sca3000_read_data(st, SCA3000_REG_ADDR_MODE, &rx, 1);
	if (ret)
		goto error_ret;
	if (state) {
		printk(KERN_INFO "supposedly enabling ring buffer\n");
		ret = sca3000_write_reg(st,
					SCA3000_REG_ADDR_MODE,
					(rx[1] | SCA3000_RING_BUF_ENABLE));
	} else
		ret = sca3000_write_reg(st,
					SCA3000_REG_ADDR_MODE,
					(rx[1] & ~SCA3000_RING_BUF_ENABLE));
	kfree(rx);
error_ret:
	mutex_unlock(&st->lock);

	return ret;
}
/**
 * sca3000_hw_ring_preenable() hw ring buffer preenable function
 *
 * Very simple enable function as the chip will allows normal reads
 * during ring buffer operation so as long as it is indeed running
 * before we notify the core, the precise ordering does not matter.
 **/
static int sca3000_hw_ring_preenable(struct iio_dev *indio_dev)
{
	return __sca3000_hw_ring_state_set(indio_dev, 1);
}

static int sca3000_hw_ring_postdisable(struct iio_dev *indio_dev)
{
	return __sca3000_hw_ring_state_set(indio_dev, 0);
}

void sca3000_register_ring_funcs(struct iio_dev *indio_dev)
{
	indio_dev->ring->preenable = &sca3000_hw_ring_preenable;
	indio_dev->ring->postdisable = &sca3000_hw_ring_postdisable;
}

/**
 * sca3000_ring_int_process() ring specific interrupt handling.
 *
 * This is only split from the main interrupt handler so as to
 * reduce the amount of code if the ring buffer is not enabled.
 **/
void sca3000_ring_int_process(u8 val, struct iio_ring_buffer *ring)
{
	if (val & SCA3000_INT_STATUS_THREE_QUARTERS)
		iio_push_or_escallate_ring_event(ring,
						 IIO_EVENT_CODE_RING_75_FULL,
						 0);
	else if (val & SCA3000_INT_STATUS_HALF)
		iio_push_ring_event(ring,
				    IIO_EVENT_CODE_RING_50_FULL, 0);
}