blob: e6de9e74e4ae2d69e7f4b01b104d0f728e29e6a0 [file] [log] [blame]
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -07001#include <linux/kernel.h>
2#include <linux/errno.h>
3#include <linux/err.h>
4#include <linux/spinlock.h>
5
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -07006#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/rmap.h>
9#include <linux/swap.h>
10#include <linux/swapops.h>
11
Steve Capper2667f502014-10-09 15:29:14 -070012#include <linux/sched.h>
13#include <linux/rwsem.h>
Aneesh Kumar K.Vf30c59e2014-11-05 21:57:40 +053014#include <linux/hugetlb.h>
Steve Capper2667f502014-10-09 15:29:14 -070015#include <asm/pgtable.h>
16
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -070017#include "internal.h"
18
Kirill A. Shutemov69e68b42014-06-04 16:08:11 -070019static struct page *no_page_table(struct vm_area_struct *vma,
20 unsigned int flags)
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -070021{
Kirill A. Shutemov69e68b42014-06-04 16:08:11 -070022 /*
23 * When core dumping an enormous anonymous area that nobody
24 * has touched so far, we don't want to allocate unnecessary pages or
25 * page tables. Return error instead of NULL to skip handle_mm_fault,
26 * then get_dump_page() will return NULL to leave a hole in the dump.
27 * But we can only make this optimization where a hole would surely
28 * be zero-filled if handle_mm_fault() actually did handle it.
29 */
30 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
31 return ERR_PTR(-EFAULT);
32 return NULL;
33}
34
Linus Torvaldsc865f982016-10-13 13:07:36 -070035/*
36 * FOLL_FORCE can write to even unwritable pte's, but only
37 * after we've gone through a COW cycle and they are dirty.
38 */
39static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
40{
41 return pte_write(pte) ||
42 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
43}
44
Kirill A. Shutemov69e68b42014-06-04 16:08:11 -070045static struct page *follow_page_pte(struct vm_area_struct *vma,
46 unsigned long address, pmd_t *pmd, unsigned int flags)
47{
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -070048 struct mm_struct *mm = vma->vm_mm;
Kirill A. Shutemov69e68b42014-06-04 16:08:11 -070049 struct page *page;
50 spinlock_t *ptl;
51 pte_t *ptep, pte;
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -070052
Kirill A. Shutemov69e68b42014-06-04 16:08:11 -070053retry:
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -070054 if (unlikely(pmd_bad(*pmd)))
Kirill A. Shutemov69e68b42014-06-04 16:08:11 -070055 return no_page_table(vma, flags);
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -070056
57 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -070058 pte = *ptep;
59 if (!pte_present(pte)) {
60 swp_entry_t entry;
61 /*
62 * KSM's break_ksm() relies upon recognizing a ksm page
63 * even while it is being migrated, so for that case we
64 * need migration_entry_wait().
65 */
66 if (likely(!(flags & FOLL_MIGRATION)))
67 goto no_page;
Kirill A. Shutemov0661a332015-02-10 14:10:04 -080068 if (pte_none(pte))
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -070069 goto no_page;
70 entry = pte_to_swp_entry(pte);
71 if (!is_migration_entry(entry))
72 goto no_page;
73 pte_unmap_unlock(ptep, ptl);
74 migration_entry_wait(mm, pmd, address);
Kirill A. Shutemov69e68b42014-06-04 16:08:11 -070075 goto retry;
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -070076 }
Mel Gorman8a0516e2015-02-12 14:58:22 -080077 if ((flags & FOLL_NUMA) && pte_protnone(pte))
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -070078 goto no_page;
Linus Torvaldsc865f982016-10-13 13:07:36 -070079 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
Kirill A. Shutemov69e68b42014-06-04 16:08:11 -070080 pte_unmap_unlock(ptep, ptl);
81 return NULL;
82 }
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -070083
84 page = vm_normal_page(vma, address, pte);
85 if (unlikely(!page)) {
86 if ((flags & FOLL_DUMP) ||
87 !is_zero_pfn(pte_pfn(pte)))
88 goto bad_page;
89 page = pte_page(pte);
90 }
91
92 if (flags & FOLL_GET)
93 get_page_foll(page);
94 if (flags & FOLL_TOUCH) {
95 if ((flags & FOLL_WRITE) &&
96 !pte_dirty(pte) && !PageDirty(page))
97 set_page_dirty(page);
98 /*
99 * pte_mkyoung() would be more correct here, but atomic care
100 * is needed to avoid losing the dirty bit: it is easier to use
101 * mark_page_accessed().
102 */
103 mark_page_accessed(page);
104 }
Kirill A. Shutemov84d33df2015-04-14 15:44:37 -0700105 if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700106 /*
107 * The preliminary mapping check is mainly to avoid the
108 * pointless overhead of lock_page on the ZERO_PAGE
109 * which might bounce very badly if there is contention.
110 *
111 * If the page is already locked, we don't need to
112 * handle it now - vmscan will handle it later if and
113 * when it attempts to reclaim the page.
114 */
115 if (page->mapping && trylock_page(page)) {
116 lru_add_drain(); /* push cached pages to LRU */
117 /*
118 * Because we lock page here, and migration is
119 * blocked by the pte's page reference, and we
120 * know the page is still mapped, we don't even
121 * need to check for file-cache page truncation.
122 */
123 mlock_vma_page(page);
124 unlock_page(page);
125 }
126 }
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700127 pte_unmap_unlock(ptep, ptl);
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700128 return page;
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700129bad_page:
130 pte_unmap_unlock(ptep, ptl);
131 return ERR_PTR(-EFAULT);
132
133no_page:
134 pte_unmap_unlock(ptep, ptl);
135 if (!pte_none(pte))
Kirill A. Shutemov69e68b42014-06-04 16:08:11 -0700136 return NULL;
137 return no_page_table(vma, flags);
138}
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700139
Kirill A. Shutemov69e68b42014-06-04 16:08:11 -0700140/**
141 * follow_page_mask - look up a page descriptor from a user-virtual address
142 * @vma: vm_area_struct mapping @address
143 * @address: virtual address to look up
144 * @flags: flags modifying lookup behaviour
145 * @page_mask: on output, *page_mask is set according to the size of the page
146 *
147 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
148 *
149 * Returns the mapped (struct page *), %NULL if no mapping exists, or
150 * an error pointer if there is a mapping to something not represented
151 * by a page descriptor (see also vm_normal_page()).
152 */
153struct page *follow_page_mask(struct vm_area_struct *vma,
154 unsigned long address, unsigned int flags,
155 unsigned int *page_mask)
156{
157 pgd_t *pgd;
158 pud_t *pud;
159 pmd_t *pmd;
160 spinlock_t *ptl;
161 struct page *page;
162 struct mm_struct *mm = vma->vm_mm;
163
164 *page_mask = 0;
165
166 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
167 if (!IS_ERR(page)) {
168 BUG_ON(flags & FOLL_GET);
169 return page;
170 }
171
172 pgd = pgd_offset(mm, address);
173 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
174 return no_page_table(vma, flags);
175
176 pud = pud_offset(pgd, address);
177 if (pud_none(*pud))
178 return no_page_table(vma, flags);
179 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
Naoya Horiguchie66f17f2015-02-11 15:25:22 -0800180 page = follow_huge_pud(mm, address, pud, flags);
181 if (page)
182 return page;
183 return no_page_table(vma, flags);
Kirill A. Shutemov69e68b42014-06-04 16:08:11 -0700184 }
185 if (unlikely(pud_bad(*pud)))
186 return no_page_table(vma, flags);
187
188 pmd = pmd_offset(pud, address);
189 if (pmd_none(*pmd))
190 return no_page_table(vma, flags);
191 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
Naoya Horiguchie66f17f2015-02-11 15:25:22 -0800192 page = follow_huge_pmd(mm, address, pmd, flags);
193 if (page)
194 return page;
195 return no_page_table(vma, flags);
Kirill A. Shutemov69e68b42014-06-04 16:08:11 -0700196 }
Mel Gorman8a0516e2015-02-12 14:58:22 -0800197 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
Kirill A. Shutemov69e68b42014-06-04 16:08:11 -0700198 return no_page_table(vma, flags);
199 if (pmd_trans_huge(*pmd)) {
200 if (flags & FOLL_SPLIT) {
201 split_huge_page_pmd(vma, address, pmd);
202 return follow_page_pte(vma, address, pmd, flags);
203 }
204 ptl = pmd_lock(mm, pmd);
205 if (likely(pmd_trans_huge(*pmd))) {
206 if (unlikely(pmd_trans_splitting(*pmd))) {
207 spin_unlock(ptl);
208 wait_split_huge_page(vma->anon_vma, pmd);
209 } else {
210 page = follow_trans_huge_pmd(vma, address,
211 pmd, flags);
212 spin_unlock(ptl);
213 *page_mask = HPAGE_PMD_NR - 1;
214 return page;
215 }
216 } else
217 spin_unlock(ptl);
218 }
219 return follow_page_pte(vma, address, pmd, flags);
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700220}
221
Kirill A. Shutemovf2b495c2014-06-04 16:08:11 -0700222static int get_gate_page(struct mm_struct *mm, unsigned long address,
223 unsigned int gup_flags, struct vm_area_struct **vma,
224 struct page **page)
225{
226 pgd_t *pgd;
227 pud_t *pud;
228 pmd_t *pmd;
229 pte_t *pte;
230 int ret = -EFAULT;
231
232 /* user gate pages are read-only */
233 if (gup_flags & FOLL_WRITE)
234 return -EFAULT;
235 if (address > TASK_SIZE)
236 pgd = pgd_offset_k(address);
237 else
238 pgd = pgd_offset_gate(mm, address);
239 BUG_ON(pgd_none(*pgd));
240 pud = pud_offset(pgd, address);
241 BUG_ON(pud_none(*pud));
242 pmd = pmd_offset(pud, address);
243 if (pmd_none(*pmd))
244 return -EFAULT;
245 VM_BUG_ON(pmd_trans_huge(*pmd));
246 pte = pte_offset_map(pmd, address);
247 if (pte_none(*pte))
248 goto unmap;
249 *vma = get_gate_vma(mm);
250 if (!page)
251 goto out;
252 *page = vm_normal_page(*vma, address, *pte);
253 if (!*page) {
254 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
255 goto unmap;
256 *page = pte_page(*pte);
257 }
258 get_page(*page);
259out:
260 ret = 0;
261unmap:
262 pte_unmap(pte);
263 return ret;
264}
265
Paul Cassella9a95f3c2014-08-06 16:07:24 -0700266/*
267 * mmap_sem must be held on entry. If @nonblocking != NULL and
268 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
269 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
270 */
Kirill A. Shutemov16744482014-06-04 16:08:12 -0700271static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
272 unsigned long address, unsigned int *flags, int *nonblocking)
273{
274 struct mm_struct *mm = vma->vm_mm;
275 unsigned int fault_flags = 0;
276 int ret;
277
Kirill A. Shutemov84d33df2015-04-14 15:44:37 -0700278 /* For mm_populate(), just skip the stack guard page. */
279 if ((*flags & FOLL_POPULATE) &&
Kirill A. Shutemov16744482014-06-04 16:08:12 -0700280 (stack_guard_page_start(vma, address) ||
281 stack_guard_page_end(vma, address + PAGE_SIZE)))
282 return -ENOENT;
283 if (*flags & FOLL_WRITE)
284 fault_flags |= FAULT_FLAG_WRITE;
285 if (nonblocking)
286 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
287 if (*flags & FOLL_NOWAIT)
288 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
Andres Lagar-Cavilla234b2392014-09-17 10:51:48 -0700289 if (*flags & FOLL_TRIED) {
290 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
291 fault_flags |= FAULT_FLAG_TRIED;
292 }
Kirill A. Shutemov16744482014-06-04 16:08:12 -0700293
294 ret = handle_mm_fault(mm, vma, address, fault_flags);
295 if (ret & VM_FAULT_ERROR) {
296 if (ret & VM_FAULT_OOM)
297 return -ENOMEM;
298 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
299 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
Linus Torvalds33692f22015-01-29 10:51:32 -0800300 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
Kirill A. Shutemov16744482014-06-04 16:08:12 -0700301 return -EFAULT;
302 BUG();
303 }
304
305 if (tsk) {
306 if (ret & VM_FAULT_MAJOR)
307 tsk->maj_flt++;
308 else
309 tsk->min_flt++;
310 }
311
312 if (ret & VM_FAULT_RETRY) {
313 if (nonblocking)
314 *nonblocking = 0;
315 return -EBUSY;
316 }
317
318 /*
319 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
320 * necessary, even if maybe_mkwrite decided not to set pte_write. We
321 * can thus safely do subsequent page lookups as if they were reads.
322 * But only do so when looping for pte_write is futile: in some cases
323 * userspace may also be wanting to write to the gotten user page,
324 * which a read fault here might prevent (a readonly page might get
325 * reCOWed by userspace write).
326 */
327 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
Linus Torvaldsc865f982016-10-13 13:07:36 -0700328 *flags |= FOLL_COW;
Kirill A. Shutemov16744482014-06-04 16:08:12 -0700329 return 0;
330}
331
Kirill A. Shutemovfa5bb202014-06-04 16:08:13 -0700332static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
333{
334 vm_flags_t vm_flags = vma->vm_flags;
335
336 if (vm_flags & (VM_IO | VM_PFNMAP))
337 return -EFAULT;
338
339 if (gup_flags & FOLL_WRITE) {
340 if (!(vm_flags & VM_WRITE)) {
341 if (!(gup_flags & FOLL_FORCE))
342 return -EFAULT;
343 /*
344 * We used to let the write,force case do COW in a
345 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
346 * set a breakpoint in a read-only mapping of an
347 * executable, without corrupting the file (yet only
348 * when that file had been opened for writing!).
349 * Anon pages in shared mappings are surprising: now
350 * just reject it.
351 */
352 if (!is_cow_mapping(vm_flags)) {
353 WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
354 return -EFAULT;
355 }
356 }
357 } else if (!(vm_flags & VM_READ)) {
358 if (!(gup_flags & FOLL_FORCE))
359 return -EFAULT;
360 /*
361 * Is there actually any vma we can reach here which does not
362 * have VM_MAYREAD set?
363 */
364 if (!(vm_flags & VM_MAYREAD))
365 return -EFAULT;
366 }
367 return 0;
368}
369
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700370/**
371 * __get_user_pages() - pin user pages in memory
372 * @tsk: task_struct of target task
373 * @mm: mm_struct of target mm
374 * @start: starting user address
375 * @nr_pages: number of pages from start to pin
376 * @gup_flags: flags modifying pin behaviour
377 * @pages: array that receives pointers to the pages pinned.
378 * Should be at least nr_pages long. Or NULL, if caller
379 * only intends to ensure the pages are faulted in.
380 * @vmas: array of pointers to vmas corresponding to each page.
381 * Or NULL if the caller does not require them.
382 * @nonblocking: whether waiting for disk IO or mmap_sem contention
383 *
384 * Returns number of pages pinned. This may be fewer than the number
385 * requested. If nr_pages is 0 or negative, returns 0. If no pages
386 * were pinned, returns -errno. Each page returned must be released
387 * with a put_page() call when it is finished with. vmas will only
388 * remain valid while mmap_sem is held.
389 *
Paul Cassella9a95f3c2014-08-06 16:07:24 -0700390 * Must be called with mmap_sem held. It may be released. See below.
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700391 *
392 * __get_user_pages walks a process's page tables and takes a reference to
393 * each struct page that each user address corresponds to at a given
394 * instant. That is, it takes the page that would be accessed if a user
395 * thread accesses the given user virtual address at that instant.
396 *
397 * This does not guarantee that the page exists in the user mappings when
398 * __get_user_pages returns, and there may even be a completely different
399 * page there in some cases (eg. if mmapped pagecache has been invalidated
400 * and subsequently re faulted). However it does guarantee that the page
401 * won't be freed completely. And mostly callers simply care that the page
402 * contains data that was valid *at some point in time*. Typically, an IO
403 * or similar operation cannot guarantee anything stronger anyway because
404 * locks can't be held over the syscall boundary.
405 *
406 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
407 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
408 * appropriate) must be called after the page is finished with, and
409 * before put_page is called.
410 *
411 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
412 * or mmap_sem contention, and if waiting is needed to pin all pages,
Paul Cassella9a95f3c2014-08-06 16:07:24 -0700413 * *@nonblocking will be set to 0. Further, if @gup_flags does not
414 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
415 * this case.
416 *
417 * A caller using such a combination of @nonblocking and @gup_flags
418 * must therefore hold the mmap_sem for reading only, and recognize
419 * when it's been released. Otherwise, it must be held for either
420 * reading or writing and will not be released.
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700421 *
422 * In most cases, get_user_pages or get_user_pages_fast should be used
423 * instead of __get_user_pages. __get_user_pages should be used only if
424 * you need some special @gup_flags.
425 */
426long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
427 unsigned long start, unsigned long nr_pages,
428 unsigned int gup_flags, struct page **pages,
429 struct vm_area_struct **vmas, int *nonblocking)
430{
Kirill A. Shutemovfa5bb202014-06-04 16:08:13 -0700431 long i = 0;
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700432 unsigned int page_mask;
Kirill A. Shutemovfa5bb202014-06-04 16:08:13 -0700433 struct vm_area_struct *vma = NULL;
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700434
435 if (!nr_pages)
436 return 0;
437
438 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
439
440 /*
441 * If FOLL_FORCE is set then do not force a full fault as the hinting
442 * fault information is unrelated to the reference behaviour of a task
443 * using the address space
444 */
445 if (!(gup_flags & FOLL_FORCE))
446 gup_flags |= FOLL_NUMA;
447
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700448 do {
Kirill A. Shutemovfa5bb202014-06-04 16:08:13 -0700449 struct page *page;
450 unsigned int foll_flags = gup_flags;
451 unsigned int page_increm;
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700452
Kirill A. Shutemovfa5bb202014-06-04 16:08:13 -0700453 /* first iteration or cross vma bound */
454 if (!vma || start >= vma->vm_end) {
455 vma = find_extend_vma(mm, start);
456 if (!vma && in_gate_area(mm, start)) {
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700457 int ret;
Kirill A. Shutemovfa5bb202014-06-04 16:08:13 -0700458 ret = get_gate_page(mm, start & PAGE_MASK,
459 gup_flags, &vma,
460 pages ? &pages[i] : NULL);
461 if (ret)
462 return i ? : ret;
463 page_mask = 0;
464 goto next_page;
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700465 }
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700466
Kirill A. Shutemovfa5bb202014-06-04 16:08:13 -0700467 if (!vma || check_vma_flags(vma, gup_flags))
468 return i ? : -EFAULT;
469 if (is_vm_hugetlb_page(vma)) {
470 i = follow_hugetlb_page(mm, vma, pages, vmas,
471 &start, &nr_pages, i,
472 gup_flags);
473 continue;
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700474 }
Kirill A. Shutemovfa5bb202014-06-04 16:08:13 -0700475 }
476retry:
477 /*
478 * If we have a pending SIGKILL, don't keep faulting pages and
479 * potentially allocating memory.
480 */
481 if (unlikely(fatal_signal_pending(current)))
482 return i ? i : -ERESTARTSYS;
483 cond_resched();
484 page = follow_page_mask(vma, start, foll_flags, &page_mask);
485 if (!page) {
486 int ret;
487 ret = faultin_page(tsk, vma, start, &foll_flags,
488 nonblocking);
489 switch (ret) {
490 case 0:
491 goto retry;
492 case -EFAULT:
493 case -ENOMEM:
494 case -EHWPOISON:
495 return i ? i : ret;
496 case -EBUSY:
497 return i;
498 case -ENOENT:
499 goto next_page;
500 }
501 BUG();
502 }
503 if (IS_ERR(page))
504 return i ? i : PTR_ERR(page);
505 if (pages) {
506 pages[i] = page;
507 flush_anon_page(vma, page, start);
508 flush_dcache_page(page);
509 page_mask = 0;
510 }
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700511next_page:
Kirill A. Shutemovfa5bb202014-06-04 16:08:13 -0700512 if (vmas) {
513 vmas[i] = vma;
514 page_mask = 0;
515 }
516 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
517 if (page_increm > nr_pages)
518 page_increm = nr_pages;
519 i += page_increm;
520 start += page_increm * PAGE_SIZE;
521 nr_pages -= page_increm;
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700522 } while (nr_pages);
523 return i;
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700524}
525EXPORT_SYMBOL(__get_user_pages);
526
527/*
528 * fixup_user_fault() - manually resolve a user page fault
529 * @tsk: the task_struct to use for page fault accounting, or
530 * NULL if faults are not to be recorded.
531 * @mm: mm_struct of target mm
532 * @address: user address
533 * @fault_flags:flags to pass down to handle_mm_fault()
534 *
535 * This is meant to be called in the specific scenario where for locking reasons
536 * we try to access user memory in atomic context (within a pagefault_disable()
537 * section), this returns -EFAULT, and we want to resolve the user fault before
538 * trying again.
539 *
540 * Typically this is meant to be used by the futex code.
541 *
542 * The main difference with get_user_pages() is that this function will
543 * unconditionally call handle_mm_fault() which will in turn perform all the
544 * necessary SW fixup of the dirty and young bits in the PTE, while
545 * handle_mm_fault() only guarantees to update these in the struct page.
546 *
547 * This is important for some architectures where those bits also gate the
548 * access permission to the page because they are maintained in software. On
549 * such architectures, gup() will not be enough to make a subsequent access
550 * succeed.
551 *
Paul Cassella9a95f3c2014-08-06 16:07:24 -0700552 * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault().
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700553 */
554int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
555 unsigned long address, unsigned int fault_flags)
556{
557 struct vm_area_struct *vma;
558 vm_flags_t vm_flags;
559 int ret;
560
561 vma = find_extend_vma(mm, address);
562 if (!vma || address < vma->vm_start)
563 return -EFAULT;
564
565 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
566 if (!(vm_flags & vma->vm_flags))
567 return -EFAULT;
568
569 ret = handle_mm_fault(mm, vma, address, fault_flags);
570 if (ret & VM_FAULT_ERROR) {
571 if (ret & VM_FAULT_OOM)
572 return -ENOMEM;
573 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
574 return -EHWPOISON;
Linus Torvalds33692f22015-01-29 10:51:32 -0800575 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700576 return -EFAULT;
577 BUG();
578 }
579 if (tsk) {
580 if (ret & VM_FAULT_MAJOR)
581 tsk->maj_flt++;
582 else
583 tsk->min_flt++;
584 }
585 return 0;
586}
587
Andrea Arcangelif0818f42015-02-11 15:27:17 -0800588static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
589 struct mm_struct *mm,
590 unsigned long start,
591 unsigned long nr_pages,
592 int write, int force,
593 struct page **pages,
594 struct vm_area_struct **vmas,
Andrea Arcangeli0fd71a52015-02-11 15:27:20 -0800595 int *locked, bool notify_drop,
596 unsigned int flags)
Andrea Arcangelif0818f42015-02-11 15:27:17 -0800597{
Andrea Arcangelif0818f42015-02-11 15:27:17 -0800598 long ret, pages_done;
599 bool lock_dropped;
600
601 if (locked) {
602 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
603 BUG_ON(vmas);
604 /* check caller initialized locked */
605 BUG_ON(*locked != 1);
606 }
607
608 if (pages)
609 flags |= FOLL_GET;
610 if (write)
611 flags |= FOLL_WRITE;
612 if (force)
613 flags |= FOLL_FORCE;
614
615 pages_done = 0;
616 lock_dropped = false;
617 for (;;) {
618 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
619 vmas, locked);
620 if (!locked)
621 /* VM_FAULT_RETRY couldn't trigger, bypass */
622 return ret;
623
624 /* VM_FAULT_RETRY cannot return errors */
625 if (!*locked) {
626 BUG_ON(ret < 0);
627 BUG_ON(ret >= nr_pages);
628 }
629
630 if (!pages)
631 /* If it's a prefault don't insist harder */
632 return ret;
633
634 if (ret > 0) {
635 nr_pages -= ret;
636 pages_done += ret;
637 if (!nr_pages)
638 break;
639 }
640 if (*locked) {
641 /* VM_FAULT_RETRY didn't trigger */
642 if (!pages_done)
643 pages_done = ret;
644 break;
645 }
646 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
647 pages += ret;
648 start += ret << PAGE_SHIFT;
649
650 /*
651 * Repeat on the address that fired VM_FAULT_RETRY
652 * without FAULT_FLAG_ALLOW_RETRY but with
653 * FAULT_FLAG_TRIED.
654 */
655 *locked = 1;
656 lock_dropped = true;
657 down_read(&mm->mmap_sem);
658 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
659 pages, NULL, NULL);
660 if (ret != 1) {
661 BUG_ON(ret > 1);
662 if (!pages_done)
663 pages_done = ret;
664 break;
665 }
666 nr_pages--;
667 pages_done++;
668 if (!nr_pages)
669 break;
670 pages++;
671 start += PAGE_SIZE;
672 }
673 if (notify_drop && lock_dropped && *locked) {
674 /*
675 * We must let the caller know we temporarily dropped the lock
676 * and so the critical section protected by it was lost.
677 */
678 up_read(&mm->mmap_sem);
679 *locked = 0;
680 }
681 return pages_done;
682}
683
684/*
685 * We can leverage the VM_FAULT_RETRY functionality in the page fault
686 * paths better by using either get_user_pages_locked() or
687 * get_user_pages_unlocked().
688 *
689 * get_user_pages_locked() is suitable to replace the form:
690 *
691 * down_read(&mm->mmap_sem);
692 * do_something()
693 * get_user_pages(tsk, mm, ..., pages, NULL);
694 * up_read(&mm->mmap_sem);
695 *
696 * to:
697 *
698 * int locked = 1;
699 * down_read(&mm->mmap_sem);
700 * do_something()
701 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
702 * if (locked)
703 * up_read(&mm->mmap_sem);
704 */
705long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
706 unsigned long start, unsigned long nr_pages,
707 int write, int force, struct page **pages,
708 int *locked)
709{
710 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
Andrea Arcangeli0fd71a52015-02-11 15:27:20 -0800711 pages, NULL, locked, true, FOLL_TOUCH);
Andrea Arcangelif0818f42015-02-11 15:27:17 -0800712}
713EXPORT_SYMBOL(get_user_pages_locked);
714
715/*
Andrea Arcangeli0fd71a52015-02-11 15:27:20 -0800716 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
717 * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
718 *
719 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
720 * caller if required (just like with __get_user_pages). "FOLL_GET",
721 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
722 * according to the parameters "pages", "write", "force"
723 * respectively.
724 */
725__always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
726 unsigned long start, unsigned long nr_pages,
727 int write, int force, struct page **pages,
728 unsigned int gup_flags)
729{
730 long ret;
731 int locked = 1;
732 down_read(&mm->mmap_sem);
733 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
734 pages, NULL, &locked, false, gup_flags);
735 if (locked)
736 up_read(&mm->mmap_sem);
737 return ret;
738}
739EXPORT_SYMBOL(__get_user_pages_unlocked);
740
741/*
Andrea Arcangelif0818f42015-02-11 15:27:17 -0800742 * get_user_pages_unlocked() is suitable to replace the form:
743 *
744 * down_read(&mm->mmap_sem);
745 * get_user_pages(tsk, mm, ..., pages, NULL);
746 * up_read(&mm->mmap_sem);
747 *
748 * with:
749 *
750 * get_user_pages_unlocked(tsk, mm, ..., pages);
751 *
752 * It is functionally equivalent to get_user_pages_fast so
753 * get_user_pages_fast should be used instead, if the two parameters
754 * "tsk" and "mm" are respectively equal to current and current->mm,
755 * or if "force" shall be set to 1 (get_user_pages_fast misses the
756 * "force" parameter).
757 */
758long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
759 unsigned long start, unsigned long nr_pages,
760 int write, int force, struct page **pages)
761{
Andrea Arcangeli0fd71a52015-02-11 15:27:20 -0800762 return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
763 force, pages, FOLL_TOUCH);
Andrea Arcangelif0818f42015-02-11 15:27:17 -0800764}
765EXPORT_SYMBOL(get_user_pages_unlocked);
766
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700767/*
768 * get_user_pages() - pin user pages in memory
769 * @tsk: the task_struct to use for page fault accounting, or
770 * NULL if faults are not to be recorded.
771 * @mm: mm_struct of target mm
772 * @start: starting user address
773 * @nr_pages: number of pages from start to pin
774 * @write: whether pages will be written to by the caller
775 * @force: whether to force access even when user mapping is currently
776 * protected (but never forces write access to shared mapping).
777 * @pages: array that receives pointers to the pages pinned.
778 * Should be at least nr_pages long. Or NULL, if caller
779 * only intends to ensure the pages are faulted in.
780 * @vmas: array of pointers to vmas corresponding to each page.
781 * Or NULL if the caller does not require them.
782 *
783 * Returns number of pages pinned. This may be fewer than the number
784 * requested. If nr_pages is 0 or negative, returns 0. If no pages
785 * were pinned, returns -errno. Each page returned must be released
786 * with a put_page() call when it is finished with. vmas will only
787 * remain valid while mmap_sem is held.
788 *
789 * Must be called with mmap_sem held for read or write.
790 *
791 * get_user_pages walks a process's page tables and takes a reference to
792 * each struct page that each user address corresponds to at a given
793 * instant. That is, it takes the page that would be accessed if a user
794 * thread accesses the given user virtual address at that instant.
795 *
796 * This does not guarantee that the page exists in the user mappings when
797 * get_user_pages returns, and there may even be a completely different
798 * page there in some cases (eg. if mmapped pagecache has been invalidated
799 * and subsequently re faulted). However it does guarantee that the page
800 * won't be freed completely. And mostly callers simply care that the page
801 * contains data that was valid *at some point in time*. Typically, an IO
802 * or similar operation cannot guarantee anything stronger anyway because
803 * locks can't be held over the syscall boundary.
804 *
805 * If write=0, the page must not be written to. If the page is written to,
806 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
807 * after the page is finished with, and before put_page is called.
808 *
809 * get_user_pages is typically used for fewer-copy IO operations, to get a
810 * handle on the memory by some means other than accesses via the user virtual
811 * addresses. The pages may be submitted for DMA to devices or accessed via
812 * their kernel linear mapping (via the kmap APIs). Care should be taken to
813 * use the correct cache flushing APIs.
814 *
815 * See also get_user_pages_fast, for performance critical applications.
Andrea Arcangelif0818f42015-02-11 15:27:17 -0800816 *
817 * get_user_pages should be phased out in favor of
818 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
819 * should use get_user_pages because it cannot pass
820 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700821 */
822long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
823 unsigned long start, unsigned long nr_pages, int write,
824 int force, struct page **pages, struct vm_area_struct **vmas)
825{
Andrea Arcangelif0818f42015-02-11 15:27:17 -0800826 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
Andrea Arcangeli0fd71a52015-02-11 15:27:20 -0800827 pages, vmas, NULL, false, FOLL_TOUCH);
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700828}
829EXPORT_SYMBOL(get_user_pages);
830
831/**
Kirill A. Shutemovacc3c8d2015-04-14 15:44:45 -0700832 * populate_vma_page_range() - populate a range of pages in the vma.
833 * @vma: target vma
834 * @start: start address
835 * @end: end address
836 * @nonblocking:
837 *
838 * This takes care of mlocking the pages too if VM_LOCKED is set.
839 *
840 * return 0 on success, negative error code on error.
841 *
842 * vma->vm_mm->mmap_sem must be held.
843 *
844 * If @nonblocking is NULL, it may be held for read or write and will
845 * be unperturbed.
846 *
847 * If @nonblocking is non-NULL, it must held for read only and may be
848 * released. If it's released, *@nonblocking will be set to 0.
849 */
850long populate_vma_page_range(struct vm_area_struct *vma,
851 unsigned long start, unsigned long end, int *nonblocking)
852{
853 struct mm_struct *mm = vma->vm_mm;
854 unsigned long nr_pages = (end - start) / PAGE_SIZE;
855 int gup_flags;
856
857 VM_BUG_ON(start & ~PAGE_MASK);
858 VM_BUG_ON(end & ~PAGE_MASK);
859 VM_BUG_ON_VMA(start < vma->vm_start, vma);
860 VM_BUG_ON_VMA(end > vma->vm_end, vma);
861 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
862
863 gup_flags = FOLL_TOUCH | FOLL_POPULATE;
864 /*
865 * We want to touch writable mappings with a write fault in order
866 * to break COW, except for shared mappings because these don't COW
867 * and we would not want to dirty them for nothing.
868 */
869 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
870 gup_flags |= FOLL_WRITE;
871
872 /*
873 * We want mlock to succeed for regions that have any permissions
874 * other than PROT_NONE.
875 */
876 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
877 gup_flags |= FOLL_FORCE;
878
879 /*
880 * We made sure addr is within a VMA, so the following will
881 * not result in a stack expansion that recurses back here.
882 */
883 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
884 NULL, NULL, nonblocking);
885}
886
887/*
888 * __mm_populate - populate and/or mlock pages within a range of address space.
889 *
890 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
891 * flags. VMAs must be already marked with the desired vm_flags, and
892 * mmap_sem must not be held.
893 */
894int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
895{
896 struct mm_struct *mm = current->mm;
897 unsigned long end, nstart, nend;
898 struct vm_area_struct *vma = NULL;
899 int locked = 0;
900 long ret = 0;
901
902 VM_BUG_ON(start & ~PAGE_MASK);
903 VM_BUG_ON(len != PAGE_ALIGN(len));
904 end = start + len;
905
906 for (nstart = start; nstart < end; nstart = nend) {
907 /*
908 * We want to fault in pages for [nstart; end) address range.
909 * Find first corresponding VMA.
910 */
911 if (!locked) {
912 locked = 1;
913 down_read(&mm->mmap_sem);
914 vma = find_vma(mm, nstart);
915 } else if (nstart >= vma->vm_end)
916 vma = vma->vm_next;
917 if (!vma || vma->vm_start >= end)
918 break;
919 /*
920 * Set [nstart; nend) to intersection of desired address
921 * range with the first VMA. Also, skip undesirable VMA types.
922 */
923 nend = min(end, vma->vm_end);
924 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
925 continue;
926 if (nstart < vma->vm_start)
927 nstart = vma->vm_start;
928 /*
929 * Now fault in a range of pages. populate_vma_page_range()
930 * double checks the vma flags, so that it won't mlock pages
931 * if the vma was already munlocked.
932 */
933 ret = populate_vma_page_range(vma, nstart, nend, &locked);
934 if (ret < 0) {
935 if (ignore_errors) {
936 ret = 0;
937 continue; /* continue at next VMA */
938 }
939 break;
940 }
941 nend = nstart + ret * PAGE_SIZE;
942 ret = 0;
943 }
944 if (locked)
945 up_read(&mm->mmap_sem);
946 return ret; /* 0 or negative error code */
947}
948
949/**
Kirill A. Shutemov4bbd4c72014-06-04 16:08:10 -0700950 * get_dump_page() - pin user page in memory while writing it to core dump
951 * @addr: user address
952 *
953 * Returns struct page pointer of user page pinned for dump,
954 * to be freed afterwards by page_cache_release() or put_page().
955 *
956 * Returns NULL on any kind of failure - a hole must then be inserted into
957 * the corefile, to preserve alignment with its headers; and also returns
958 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
959 * allowing a hole to be left in the corefile to save diskspace.
960 *
961 * Called without mmap_sem, but after all other threads have been killed.
962 */
963#ifdef CONFIG_ELF_CORE
964struct page *get_dump_page(unsigned long addr)
965{
966 struct vm_area_struct *vma;
967 struct page *page;
968
969 if (__get_user_pages(current, current->mm, addr, 1,
970 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
971 NULL) < 1)
972 return NULL;
973 flush_cache_page(vma, addr, page_to_pfn(page));
974 return page;
975}
976#endif /* CONFIG_ELF_CORE */
Steve Capper2667f502014-10-09 15:29:14 -0700977
978/*
979 * Generic RCU Fast GUP
980 *
981 * get_user_pages_fast attempts to pin user pages by walking the page
982 * tables directly and avoids taking locks. Thus the walker needs to be
983 * protected from page table pages being freed from under it, and should
984 * block any THP splits.
985 *
986 * One way to achieve this is to have the walker disable interrupts, and
987 * rely on IPIs from the TLB flushing code blocking before the page table
988 * pages are freed. This is unsuitable for architectures that do not need
989 * to broadcast an IPI when invalidating TLBs.
990 *
991 * Another way to achieve this is to batch up page table containing pages
992 * belonging to more than one mm_user, then rcu_sched a callback to free those
993 * pages. Disabling interrupts will allow the fast_gup walker to both block
994 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
995 * (which is a relatively rare event). The code below adopts this strategy.
996 *
997 * Before activating this code, please be aware that the following assumptions
998 * are currently made:
999 *
1000 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1001 * pages containing page tables.
1002 *
1003 * *) THP splits will broadcast an IPI, this can be achieved by overriding
1004 * pmdp_splitting_flush.
1005 *
1006 * *) ptes can be read atomically by the architecture.
1007 *
1008 * *) access_ok is sufficient to validate userspace address ranges.
1009 *
1010 * The last two assumptions can be relaxed by the addition of helper functions.
1011 *
1012 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1013 */
1014#ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1015
1016#ifdef __HAVE_ARCH_PTE_SPECIAL
1017static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1018 int write, struct page **pages, int *nr)
1019{
1020 pte_t *ptep, *ptem;
1021 int ret = 0;
1022
1023 ptem = ptep = pte_offset_map(&pmd, addr);
1024 do {
1025 /*
1026 * In the line below we are assuming that the pte can be read
1027 * atomically. If this is not the case for your architecture,
1028 * please wrap this in a helper function!
1029 *
1030 * for an example see gup_get_pte in arch/x86/mm/gup.c
1031 */
Jason Low9d8c47e2015-04-15 16:14:05 -07001032 pte_t pte = READ_ONCE(*ptep);
Steve Capper2667f502014-10-09 15:29:14 -07001033 struct page *page;
1034
1035 /*
1036 * Similar to the PMD case below, NUMA hinting must take slow
Mel Gorman8a0516e2015-02-12 14:58:22 -08001037 * path using the pte_protnone check.
Steve Capper2667f502014-10-09 15:29:14 -07001038 */
1039 if (!pte_present(pte) || pte_special(pte) ||
Mel Gorman8a0516e2015-02-12 14:58:22 -08001040 pte_protnone(pte) || (write && !pte_write(pte)))
Steve Capper2667f502014-10-09 15:29:14 -07001041 goto pte_unmap;
1042
1043 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1044 page = pte_page(pte);
1045
1046 if (!page_cache_get_speculative(page))
1047 goto pte_unmap;
1048
1049 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1050 put_page(page);
1051 goto pte_unmap;
1052 }
1053
1054 pages[*nr] = page;
1055 (*nr)++;
1056
1057 } while (ptep++, addr += PAGE_SIZE, addr != end);
1058
1059 ret = 1;
1060
1061pte_unmap:
1062 pte_unmap(ptem);
1063 return ret;
1064}
1065#else
1066
1067/*
1068 * If we can't determine whether or not a pte is special, then fail immediately
1069 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1070 * to be special.
1071 *
1072 * For a futex to be placed on a THP tail page, get_futex_key requires a
1073 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1074 * useful to have gup_huge_pmd even if we can't operate on ptes.
1075 */
1076static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1077 int write, struct page **pages, int *nr)
1078{
1079 return 0;
1080}
1081#endif /* __HAVE_ARCH_PTE_SPECIAL */
1082
1083static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1084 unsigned long end, int write, struct page **pages, int *nr)
1085{
1086 struct page *head, *page, *tail;
1087 int refs;
1088
1089 if (write && !pmd_write(orig))
1090 return 0;
1091
1092 refs = 0;
1093 head = pmd_page(orig);
1094 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1095 tail = page;
1096 do {
1097 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1098 pages[*nr] = page;
1099 (*nr)++;
1100 page++;
1101 refs++;
1102 } while (addr += PAGE_SIZE, addr != end);
1103
1104 if (!page_cache_add_speculative(head, refs)) {
1105 *nr -= refs;
1106 return 0;
1107 }
1108
1109 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1110 *nr -= refs;
1111 while (refs--)
1112 put_page(head);
1113 return 0;
1114 }
1115
1116 /*
1117 * Any tail pages need their mapcount reference taken before we
1118 * return. (This allows the THP code to bump their ref count when
1119 * they are split into base pages).
1120 */
1121 while (refs--) {
1122 if (PageTail(tail))
1123 get_huge_page_tail(tail);
1124 tail++;
1125 }
1126
1127 return 1;
1128}
1129
1130static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1131 unsigned long end, int write, struct page **pages, int *nr)
1132{
1133 struct page *head, *page, *tail;
1134 int refs;
1135
1136 if (write && !pud_write(orig))
1137 return 0;
1138
1139 refs = 0;
1140 head = pud_page(orig);
1141 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1142 tail = page;
1143 do {
1144 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1145 pages[*nr] = page;
1146 (*nr)++;
1147 page++;
1148 refs++;
1149 } while (addr += PAGE_SIZE, addr != end);
1150
1151 if (!page_cache_add_speculative(head, refs)) {
1152 *nr -= refs;
1153 return 0;
1154 }
1155
1156 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1157 *nr -= refs;
1158 while (refs--)
1159 put_page(head);
1160 return 0;
1161 }
1162
1163 while (refs--) {
1164 if (PageTail(tail))
1165 get_huge_page_tail(tail);
1166 tail++;
1167 }
1168
1169 return 1;
1170}
1171
Aneesh Kumar K.Vf30c59e2014-11-05 21:57:40 +05301172static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1173 unsigned long end, int write,
1174 struct page **pages, int *nr)
1175{
1176 int refs;
1177 struct page *head, *page, *tail;
1178
1179 if (write && !pgd_write(orig))
1180 return 0;
1181
1182 refs = 0;
1183 head = pgd_page(orig);
1184 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1185 tail = page;
1186 do {
1187 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1188 pages[*nr] = page;
1189 (*nr)++;
1190 page++;
1191 refs++;
1192 } while (addr += PAGE_SIZE, addr != end);
1193
1194 if (!page_cache_add_speculative(head, refs)) {
1195 *nr -= refs;
1196 return 0;
1197 }
1198
1199 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1200 *nr -= refs;
1201 while (refs--)
1202 put_page(head);
1203 return 0;
1204 }
1205
1206 while (refs--) {
1207 if (PageTail(tail))
1208 get_huge_page_tail(tail);
1209 tail++;
1210 }
1211
1212 return 1;
1213}
1214
Steve Capper2667f502014-10-09 15:29:14 -07001215static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1216 int write, struct page **pages, int *nr)
1217{
1218 unsigned long next;
1219 pmd_t *pmdp;
1220
1221 pmdp = pmd_offset(&pud, addr);
1222 do {
Christian Borntraeger38c5ce92015-01-06 22:54:46 +01001223 pmd_t pmd = READ_ONCE(*pmdp);
Steve Capper2667f502014-10-09 15:29:14 -07001224
1225 next = pmd_addr_end(addr, end);
1226 if (pmd_none(pmd) || pmd_trans_splitting(pmd))
1227 return 0;
1228
1229 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1230 /*
1231 * NUMA hinting faults need to be handled in the GUP
1232 * slowpath for accounting purposes and so that they
1233 * can be serialised against THP migration.
1234 */
Mel Gorman8a0516e2015-02-12 14:58:22 -08001235 if (pmd_protnone(pmd))
Steve Capper2667f502014-10-09 15:29:14 -07001236 return 0;
1237
1238 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1239 pages, nr))
1240 return 0;
1241
Aneesh Kumar K.Vf30c59e2014-11-05 21:57:40 +05301242 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1243 /*
1244 * architecture have different format for hugetlbfs
1245 * pmd format and THP pmd format
1246 */
1247 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1248 PMD_SHIFT, next, write, pages, nr))
1249 return 0;
Steve Capper2667f502014-10-09 15:29:14 -07001250 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1251 return 0;
1252 } while (pmdp++, addr = next, addr != end);
1253
1254 return 1;
1255}
1256
Aneesh Kumar K.Vf30c59e2014-11-05 21:57:40 +05301257static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1258 int write, struct page **pages, int *nr)
Steve Capper2667f502014-10-09 15:29:14 -07001259{
1260 unsigned long next;
1261 pud_t *pudp;
1262
Aneesh Kumar K.Vf30c59e2014-11-05 21:57:40 +05301263 pudp = pud_offset(&pgd, addr);
Steve Capper2667f502014-10-09 15:29:14 -07001264 do {
Christian Borntraegere37c6982014-12-07 21:41:33 +01001265 pud_t pud = READ_ONCE(*pudp);
Steve Capper2667f502014-10-09 15:29:14 -07001266
1267 next = pud_addr_end(addr, end);
1268 if (pud_none(pud))
1269 return 0;
Aneesh Kumar K.Vf30c59e2014-11-05 21:57:40 +05301270 if (unlikely(pud_huge(pud))) {
Steve Capper2667f502014-10-09 15:29:14 -07001271 if (!gup_huge_pud(pud, pudp, addr, next, write,
Aneesh Kumar K.Vf30c59e2014-11-05 21:57:40 +05301272 pages, nr))
1273 return 0;
1274 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1275 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1276 PUD_SHIFT, next, write, pages, nr))
Steve Capper2667f502014-10-09 15:29:14 -07001277 return 0;
1278 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1279 return 0;
1280 } while (pudp++, addr = next, addr != end);
1281
1282 return 1;
1283}
1284
1285/*
1286 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1287 * the regular GUP. It will only return non-negative values.
1288 */
1289int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1290 struct page **pages)
1291{
1292 struct mm_struct *mm = current->mm;
1293 unsigned long addr, len, end;
1294 unsigned long next, flags;
1295 pgd_t *pgdp;
1296 int nr = 0;
1297
1298 start &= PAGE_MASK;
1299 addr = start;
1300 len = (unsigned long) nr_pages << PAGE_SHIFT;
1301 end = start + len;
1302
1303 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1304 start, len)))
1305 return 0;
1306
1307 /*
1308 * Disable interrupts. We use the nested form as we can already have
1309 * interrupts disabled by get_futex_key.
1310 *
1311 * With interrupts disabled, we block page table pages from being
1312 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1313 * for more details.
1314 *
1315 * We do not adopt an rcu_read_lock(.) here as we also want to
1316 * block IPIs that come from THPs splitting.
1317 */
1318
1319 local_irq_save(flags);
1320 pgdp = pgd_offset(mm, addr);
1321 do {
Jason Low9d8c47e2015-04-15 16:14:05 -07001322 pgd_t pgd = READ_ONCE(*pgdp);
Aneesh Kumar K.Vf30c59e2014-11-05 21:57:40 +05301323
Steve Capper2667f502014-10-09 15:29:14 -07001324 next = pgd_addr_end(addr, end);
Aneesh Kumar K.Vf30c59e2014-11-05 21:57:40 +05301325 if (pgd_none(pgd))
Steve Capper2667f502014-10-09 15:29:14 -07001326 break;
Aneesh Kumar K.Vf30c59e2014-11-05 21:57:40 +05301327 if (unlikely(pgd_huge(pgd))) {
1328 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1329 pages, &nr))
1330 break;
1331 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1332 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1333 PGDIR_SHIFT, next, write, pages, &nr))
1334 break;
1335 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
Steve Capper2667f502014-10-09 15:29:14 -07001336 break;
1337 } while (pgdp++, addr = next, addr != end);
1338 local_irq_restore(flags);
1339
1340 return nr;
1341}
1342
1343/**
1344 * get_user_pages_fast() - pin user pages in memory
1345 * @start: starting user address
1346 * @nr_pages: number of pages from start to pin
1347 * @write: whether pages will be written to
1348 * @pages: array that receives pointers to the pages pinned.
1349 * Should be at least nr_pages long.
1350 *
1351 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1352 * If not successful, it will fall back to taking the lock and
1353 * calling get_user_pages().
1354 *
1355 * Returns number of pages pinned. This may be fewer than the number
1356 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1357 * were pinned, returns -errno.
1358 */
1359int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1360 struct page **pages)
1361{
1362 struct mm_struct *mm = current->mm;
1363 int nr, ret;
1364
1365 start &= PAGE_MASK;
1366 nr = __get_user_pages_fast(start, nr_pages, write, pages);
1367 ret = nr;
1368
1369 if (nr < nr_pages) {
1370 /* Try to get the remaining pages with get_user_pages */
1371 start += nr << PAGE_SHIFT;
1372 pages += nr;
1373
Andrea Arcangelia7b78072015-02-11 15:27:23 -08001374 ret = get_user_pages_unlocked(current, mm, start,
1375 nr_pages - nr, write, 0, pages);
Steve Capper2667f502014-10-09 15:29:14 -07001376
1377 /* Have to be a bit careful with return values */
1378 if (nr > 0) {
1379 if (ret < 0)
1380 ret = nr;
1381 else
1382 ret += nr;
1383 }
1384 }
1385
1386 return ret;
1387}
1388
1389#endif /* CONFIG_HAVE_GENERIC_RCU_GUP */