blob: 49ef4451e893b52b49175dd62687349013d7336a [file] [log] [blame]
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
Christoffer Dall342cd0a2013-01-20 18:28:06 -050018
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
Christoffer Dallad361f02012-11-01 17:14:45 +010022#include <linux/hugetlb.h>
Christoffer Dall45e96ea2013-01-20 18:43:58 -050023#include <trace/events/kvm.h>
Christoffer Dall342cd0a2013-01-20 18:28:06 -050024#include <asm/pgalloc.h>
Christoffer Dall94f8e642013-01-20 18:28:12 -050025#include <asm/cacheflush.h>
Christoffer Dall342cd0a2013-01-20 18:28:06 -050026#include <asm/kvm_arm.h>
27#include <asm/kvm_mmu.h>
Christoffer Dall45e96ea2013-01-20 18:43:58 -050028#include <asm/kvm_mmio.h>
Christoffer Dalld5d81842013-01-20 18:28:07 -050029#include <asm/kvm_asm.h>
Christoffer Dall94f8e642013-01-20 18:28:12 -050030#include <asm/kvm_emulate.h>
Christoffer Dalld5d81842013-01-20 18:28:07 -050031
32#include "trace.h"
Christoffer Dall342cd0a2013-01-20 18:28:06 -050033
34extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
Marc Zyngier5a677ce2013-04-12 19:12:06 +010036static pgd_t *boot_hyp_pgd;
Marc Zyngier2fb41052013-04-12 19:12:03 +010037static pgd_t *hyp_pgd;
Ard Biesheuvele4c5a682015-03-19 16:42:28 +000038static pgd_t *merged_hyp_pgd;
Christoffer Dall342cd0a2013-01-20 18:28:06 -050039static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
40
Marc Zyngier5a677ce2013-04-12 19:12:06 +010041static unsigned long hyp_idmap_start;
42static unsigned long hyp_idmap_end;
43static phys_addr_t hyp_idmap_vector;
44
Christoffer Dall38f791a2014-10-10 12:14:28 +020045#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
Mark Salter5d4e08c2014-03-28 14:25:19 +000046
Christoffer Dall9b5fdb92013-10-02 15:32:01 -070047#define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
Mario Smarduchc6473552015-01-15 15:58:56 -080048#define kvm_pud_huge(_x) pud_huge(_x)
Christoffer Dallad361f02012-11-01 17:14:45 +010049
Mario Smarduch15a49a42015-01-15 15:58:58 -080050#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
51#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
52
53static bool memslot_is_logging(struct kvm_memory_slot *memslot)
54{
Mario Smarduch15a49a42015-01-15 15:58:58 -080055 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
Mario Smarduch72760302015-01-15 15:59:01 -080056}
57
58/**
59 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
60 * @kvm: pointer to kvm structure.
61 *
62 * Interface to HYP function to flush all VM TLB entries
63 */
64void kvm_flush_remote_tlbs(struct kvm *kvm)
65{
66 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
Mario Smarduch15a49a42015-01-15 15:58:58 -080067}
Christoffer Dall342cd0a2013-01-20 18:28:06 -050068
Marc Zyngier48762762013-01-28 15:27:00 +000069static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
Christoffer Dalld5d81842013-01-20 18:28:07 -050070{
Marc Zyngierd4cb9df52013-05-14 12:11:34 +010071 /*
72 * This function also gets called when dealing with HYP page
73 * tables. As HYP doesn't have an associated struct kvm (and
74 * the HYP page tables are fairly static), we don't do
75 * anything there.
76 */
77 if (kvm)
78 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
Christoffer Dalld5d81842013-01-20 18:28:07 -050079}
80
Marc Zyngier363ef892014-12-19 16:48:06 +000081/*
82 * D-Cache management functions. They take the page table entries by
83 * value, as they are flushing the cache using the kernel mapping (or
84 * kmap on 32bit).
85 */
86static void kvm_flush_dcache_pte(pte_t pte)
87{
88 __kvm_flush_dcache_pte(pte);
89}
90
91static void kvm_flush_dcache_pmd(pmd_t pmd)
92{
93 __kvm_flush_dcache_pmd(pmd);
94}
95
96static void kvm_flush_dcache_pud(pud_t pud)
97{
98 __kvm_flush_dcache_pud(pud);
99}
100
Ard Biesheuvel959cad32015-11-10 15:11:20 +0100101static bool kvm_is_device_pfn(unsigned long pfn)
102{
103 return !pfn_valid(pfn);
104}
105
Mario Smarduch15a49a42015-01-15 15:58:58 -0800106/**
107 * stage2_dissolve_pmd() - clear and flush huge PMD entry
108 * @kvm: pointer to kvm structure.
109 * @addr: IPA
110 * @pmd: pmd pointer for IPA
111 *
112 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
113 * pages in the range dirty.
114 */
115static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
116{
117 if (!kvm_pmd_huge(*pmd))
118 return;
119
120 pmd_clear(pmd);
121 kvm_tlb_flush_vmid_ipa(kvm, addr);
122 put_page(virt_to_page(pmd));
123}
124
Christoffer Dalld5d81842013-01-20 18:28:07 -0500125static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
126 int min, int max)
127{
128 void *page;
129
130 BUG_ON(max > KVM_NR_MEM_OBJS);
131 if (cache->nobjs >= min)
132 return 0;
133 while (cache->nobjs < max) {
134 page = (void *)__get_free_page(PGALLOC_GFP);
135 if (!page)
136 return -ENOMEM;
137 cache->objects[cache->nobjs++] = page;
138 }
139 return 0;
140}
141
142static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
143{
144 while (mc->nobjs)
145 free_page((unsigned long)mc->objects[--mc->nobjs]);
146}
147
148static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
149{
150 void *p;
151
152 BUG_ON(!mc || !mc->nobjs);
153 p = mc->objects[--mc->nobjs];
154 return p;
155}
156
Christoffer Dall4f853a72014-05-09 23:31:31 +0200157static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
Marc Zyngier979acd52013-08-06 13:05:48 +0100158{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200159 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
160 pgd_clear(pgd);
161 kvm_tlb_flush_vmid_ipa(kvm, addr);
162 pud_free(NULL, pud_table);
163 put_page(virt_to_page(pgd));
Marc Zyngier979acd52013-08-06 13:05:48 +0100164}
165
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100166static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500167{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200168 pmd_t *pmd_table = pmd_offset(pud, 0);
169 VM_BUG_ON(pud_huge(*pud));
170 pud_clear(pud);
171 kvm_tlb_flush_vmid_ipa(kvm, addr);
172 pmd_free(NULL, pmd_table);
Marc Zyngier4f728272013-04-12 19:12:05 +0100173 put_page(virt_to_page(pud));
174}
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500175
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100176static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
Marc Zyngier4f728272013-04-12 19:12:05 +0100177{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200178 pte_t *pte_table = pte_offset_kernel(pmd, 0);
179 VM_BUG_ON(kvm_pmd_huge(*pmd));
180 pmd_clear(pmd);
181 kvm_tlb_flush_vmid_ipa(kvm, addr);
182 pte_free_kernel(NULL, pte_table);
Marc Zyngier4f728272013-04-12 19:12:05 +0100183 put_page(virt_to_page(pmd));
184}
185
Marc Zyngier363ef892014-12-19 16:48:06 +0000186/*
187 * Unmapping vs dcache management:
188 *
189 * If a guest maps certain memory pages as uncached, all writes will
190 * bypass the data cache and go directly to RAM. However, the CPUs
191 * can still speculate reads (not writes) and fill cache lines with
192 * data.
193 *
194 * Those cache lines will be *clean* cache lines though, so a
195 * clean+invalidate operation is equivalent to an invalidate
196 * operation, because no cache lines are marked dirty.
197 *
198 * Those clean cache lines could be filled prior to an uncached write
199 * by the guest, and the cache coherent IO subsystem would therefore
200 * end up writing old data to disk.
201 *
202 * This is why right after unmapping a page/section and invalidating
203 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
204 * the IO subsystem will never hit in the cache.
205 */
Christoffer Dall4f853a72014-05-09 23:31:31 +0200206static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
207 phys_addr_t addr, phys_addr_t end)
Marc Zyngier4f728272013-04-12 19:12:05 +0100208{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200209 phys_addr_t start_addr = addr;
210 pte_t *pte, *start_pte;
211
212 start_pte = pte = pte_offset_kernel(pmd, addr);
213 do {
214 if (!pte_none(*pte)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000215 pte_t old_pte = *pte;
216
Christoffer Dall4f853a72014-05-09 23:31:31 +0200217 kvm_set_pte(pte, __pte(0));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200218 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000219
220 /* No need to invalidate the cache for device mappings */
Ard Biesheuvel959cad32015-11-10 15:11:20 +0100221 if (!kvm_is_device_pfn(__phys_to_pfn(addr)))
Marc Zyngier363ef892014-12-19 16:48:06 +0000222 kvm_flush_dcache_pte(old_pte);
223
224 put_page(virt_to_page(pte));
Christoffer Dall4f853a72014-05-09 23:31:31 +0200225 }
226 } while (pte++, addr += PAGE_SIZE, addr != end);
227
Christoffer Dall38f791a2014-10-10 12:14:28 +0200228 if (kvm_pte_table_empty(kvm, start_pte))
Christoffer Dall4f853a72014-05-09 23:31:31 +0200229 clear_pmd_entry(kvm, pmd, start_addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500230}
231
Christoffer Dall4f853a72014-05-09 23:31:31 +0200232static void unmap_pmds(struct kvm *kvm, pud_t *pud,
233 phys_addr_t addr, phys_addr_t end)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500234{
Christoffer Dall4f853a72014-05-09 23:31:31 +0200235 phys_addr_t next, start_addr = addr;
236 pmd_t *pmd, *start_pmd;
Marc Zyngier000d3992013-03-05 02:43:17 +0000237
Christoffer Dall4f853a72014-05-09 23:31:31 +0200238 start_pmd = pmd = pmd_offset(pud, addr);
239 do {
240 next = kvm_pmd_addr_end(addr, end);
241 if (!pmd_none(*pmd)) {
242 if (kvm_pmd_huge(*pmd)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000243 pmd_t old_pmd = *pmd;
244
Christoffer Dall4f853a72014-05-09 23:31:31 +0200245 pmd_clear(pmd);
246 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000247
248 kvm_flush_dcache_pmd(old_pmd);
249
Christoffer Dall4f853a72014-05-09 23:31:31 +0200250 put_page(virt_to_page(pmd));
251 } else {
252 unmap_ptes(kvm, pmd, addr, next);
Marc Zyngier4f728272013-04-12 19:12:05 +0100253 }
254 }
Christoffer Dall4f853a72014-05-09 23:31:31 +0200255 } while (pmd++, addr = next, addr != end);
Marc Zyngier4f728272013-04-12 19:12:05 +0100256
Christoffer Dall38f791a2014-10-10 12:14:28 +0200257 if (kvm_pmd_table_empty(kvm, start_pmd))
Christoffer Dall4f853a72014-05-09 23:31:31 +0200258 clear_pud_entry(kvm, pud, start_addr);
259}
260
261static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
262 phys_addr_t addr, phys_addr_t end)
263{
264 phys_addr_t next, start_addr = addr;
265 pud_t *pud, *start_pud;
266
267 start_pud = pud = pud_offset(pgd, addr);
268 do {
269 next = kvm_pud_addr_end(addr, end);
270 if (!pud_none(*pud)) {
271 if (pud_huge(*pud)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000272 pud_t old_pud = *pud;
273
Christoffer Dall4f853a72014-05-09 23:31:31 +0200274 pud_clear(pud);
275 kvm_tlb_flush_vmid_ipa(kvm, addr);
Marc Zyngier363ef892014-12-19 16:48:06 +0000276
277 kvm_flush_dcache_pud(old_pud);
278
Christoffer Dall4f853a72014-05-09 23:31:31 +0200279 put_page(virt_to_page(pud));
280 } else {
281 unmap_pmds(kvm, pud, addr, next);
282 }
283 }
284 } while (pud++, addr = next, addr != end);
285
Christoffer Dall38f791a2014-10-10 12:14:28 +0200286 if (kvm_pud_table_empty(kvm, start_pud))
Christoffer Dall4f853a72014-05-09 23:31:31 +0200287 clear_pgd_entry(kvm, pgd, start_addr);
288}
289
290
291static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
292 phys_addr_t start, u64 size)
293{
294 pgd_t *pgd;
295 phys_addr_t addr = start, end = start + size;
296 phys_addr_t next;
297
Marc Zyngier04b8dc82015-03-10 19:07:00 +0000298 pgd = pgdp + kvm_pgd_index(addr);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200299 do {
300 next = kvm_pgd_addr_end(addr, end);
Mark Rutland7cbb87d2014-10-28 19:36:45 +0000301 if (!pgd_none(*pgd))
302 unmap_puds(kvm, pgd, addr, next);
Christoffer Dall4f853a72014-05-09 23:31:31 +0200303 } while (pgd++, addr = next, addr != end);
Marc Zyngier000d3992013-03-05 02:43:17 +0000304}
305
Marc Zyngier9d218a12014-01-15 12:50:23 +0000306static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
307 phys_addr_t addr, phys_addr_t end)
308{
309 pte_t *pte;
310
311 pte = pte_offset_kernel(pmd, addr);
312 do {
Ard Biesheuvel959cad32015-11-10 15:11:20 +0100313 if (!pte_none(*pte) && !kvm_is_device_pfn(__phys_to_pfn(addr)))
Marc Zyngier363ef892014-12-19 16:48:06 +0000314 kvm_flush_dcache_pte(*pte);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000315 } while (pte++, addr += PAGE_SIZE, addr != end);
316}
317
318static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
319 phys_addr_t addr, phys_addr_t end)
320{
321 pmd_t *pmd;
322 phys_addr_t next;
323
324 pmd = pmd_offset(pud, addr);
325 do {
326 next = kvm_pmd_addr_end(addr, end);
327 if (!pmd_none(*pmd)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000328 if (kvm_pmd_huge(*pmd))
329 kvm_flush_dcache_pmd(*pmd);
330 else
Marc Zyngier9d218a12014-01-15 12:50:23 +0000331 stage2_flush_ptes(kvm, pmd, addr, next);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000332 }
333 } while (pmd++, addr = next, addr != end);
334}
335
336static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
337 phys_addr_t addr, phys_addr_t end)
338{
339 pud_t *pud;
340 phys_addr_t next;
341
342 pud = pud_offset(pgd, addr);
343 do {
344 next = kvm_pud_addr_end(addr, end);
345 if (!pud_none(*pud)) {
Marc Zyngier363ef892014-12-19 16:48:06 +0000346 if (pud_huge(*pud))
347 kvm_flush_dcache_pud(*pud);
348 else
Marc Zyngier9d218a12014-01-15 12:50:23 +0000349 stage2_flush_pmds(kvm, pud, addr, next);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000350 }
351 } while (pud++, addr = next, addr != end);
352}
353
354static void stage2_flush_memslot(struct kvm *kvm,
355 struct kvm_memory_slot *memslot)
356{
357 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
358 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
359 phys_addr_t next;
360 pgd_t *pgd;
361
Marc Zyngier04b8dc82015-03-10 19:07:00 +0000362 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
Marc Zyngier9d218a12014-01-15 12:50:23 +0000363 do {
364 next = kvm_pgd_addr_end(addr, end);
365 stage2_flush_puds(kvm, pgd, addr, next);
366 } while (pgd++, addr = next, addr != end);
367}
368
369/**
370 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
371 * @kvm: The struct kvm pointer
372 *
373 * Go through the stage 2 page tables and invalidate any cache lines
374 * backing memory already mapped to the VM.
375 */
Marc Zyngier3c1e7162014-12-19 16:05:31 +0000376static void stage2_flush_vm(struct kvm *kvm)
Marc Zyngier9d218a12014-01-15 12:50:23 +0000377{
378 struct kvm_memslots *slots;
379 struct kvm_memory_slot *memslot;
380 int idx;
381
382 idx = srcu_read_lock(&kvm->srcu);
383 spin_lock(&kvm->mmu_lock);
384
385 slots = kvm_memslots(kvm);
386 kvm_for_each_memslot(memslot, slots)
387 stage2_flush_memslot(kvm, memslot);
388
389 spin_unlock(&kvm->mmu_lock);
390 srcu_read_unlock(&kvm->srcu, idx);
391}
392
Marc Zyngier000d3992013-03-05 02:43:17 +0000393/**
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100394 * free_boot_hyp_pgd - free HYP boot page tables
395 *
396 * Free the HYP boot page tables. The bounce page is also freed.
397 */
398void free_boot_hyp_pgd(void)
399{
400 mutex_lock(&kvm_hyp_pgd_mutex);
401
402 if (boot_hyp_pgd) {
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100403 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
404 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200405 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100406 boot_hyp_pgd = NULL;
407 }
408
409 if (hyp_pgd)
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100410 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100411
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100412 mutex_unlock(&kvm_hyp_pgd_mutex);
413}
414
415/**
Marc Zyngier4f728272013-04-12 19:12:05 +0100416 * free_hyp_pgds - free Hyp-mode page tables
Marc Zyngier000d3992013-03-05 02:43:17 +0000417 *
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100418 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
419 * therefore contains either mappings in the kernel memory area (above
420 * PAGE_OFFSET), or device mappings in the vmalloc range (from
421 * VMALLOC_START to VMALLOC_END).
422 *
423 * boot_hyp_pgd should only map two pages for the init code.
Marc Zyngier000d3992013-03-05 02:43:17 +0000424 */
Marc Zyngier4f728272013-04-12 19:12:05 +0100425void free_hyp_pgds(void)
Marc Zyngier000d3992013-03-05 02:43:17 +0000426{
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500427 unsigned long addr;
428
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100429 free_boot_hyp_pgd();
Marc Zyngier4f728272013-04-12 19:12:05 +0100430
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100431 mutex_lock(&kvm_hyp_pgd_mutex);
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100432
Marc Zyngier4f728272013-04-12 19:12:05 +0100433 if (hyp_pgd) {
434 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100435 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
Marc Zyngier4f728272013-04-12 19:12:05 +0100436 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100437 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
438
Christoffer Dall38f791a2014-10-10 12:14:28 +0200439 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
Marc Zyngierd157f4a2013-04-12 19:12:07 +0100440 hyp_pgd = NULL;
Marc Zyngier4f728272013-04-12 19:12:05 +0100441 }
Ard Biesheuvele4c5a682015-03-19 16:42:28 +0000442 if (merged_hyp_pgd) {
443 clear_page(merged_hyp_pgd);
444 free_page((unsigned long)merged_hyp_pgd);
445 merged_hyp_pgd = NULL;
446 }
Marc Zyngier4f728272013-04-12 19:12:05 +0100447
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500448 mutex_unlock(&kvm_hyp_pgd_mutex);
449}
450
451static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
Marc Zyngier6060df82013-04-12 19:12:01 +0100452 unsigned long end, unsigned long pfn,
453 pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500454{
455 pte_t *pte;
456 unsigned long addr;
457
Marc Zyngier3562c762013-04-12 19:12:02 +0100458 addr = start;
459 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100460 pte = pte_offset_kernel(pmd, addr);
461 kvm_set_pte(pte, pfn_pte(pfn, prot));
Marc Zyngier4f728272013-04-12 19:12:05 +0100462 get_page(virt_to_page(pte));
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100463 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
Marc Zyngier6060df82013-04-12 19:12:01 +0100464 pfn++;
Marc Zyngier3562c762013-04-12 19:12:02 +0100465 } while (addr += PAGE_SIZE, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500466}
467
468static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
Marc Zyngier6060df82013-04-12 19:12:01 +0100469 unsigned long end, unsigned long pfn,
470 pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500471{
472 pmd_t *pmd;
473 pte_t *pte;
474 unsigned long addr, next;
475
Marc Zyngier3562c762013-04-12 19:12:02 +0100476 addr = start;
477 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100478 pmd = pmd_offset(pud, addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500479
480 BUG_ON(pmd_sect(*pmd));
481
482 if (pmd_none(*pmd)) {
Marc Zyngier6060df82013-04-12 19:12:01 +0100483 pte = pte_alloc_one_kernel(NULL, addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500484 if (!pte) {
485 kvm_err("Cannot allocate Hyp pte\n");
486 return -ENOMEM;
487 }
488 pmd_populate_kernel(NULL, pmd, pte);
Marc Zyngier4f728272013-04-12 19:12:05 +0100489 get_page(virt_to_page(pmd));
Marc Zyngier5a677ce2013-04-12 19:12:06 +0100490 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500491 }
492
493 next = pmd_addr_end(addr, end);
494
Marc Zyngier6060df82013-04-12 19:12:01 +0100495 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
496 pfn += (next - addr) >> PAGE_SHIFT;
Marc Zyngier3562c762013-04-12 19:12:02 +0100497 } while (addr = next, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500498
499 return 0;
500}
501
Christoffer Dall38f791a2014-10-10 12:14:28 +0200502static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
503 unsigned long end, unsigned long pfn,
504 pgprot_t prot)
505{
506 pud_t *pud;
507 pmd_t *pmd;
508 unsigned long addr, next;
509 int ret;
510
511 addr = start;
512 do {
513 pud = pud_offset(pgd, addr);
514
515 if (pud_none_or_clear_bad(pud)) {
516 pmd = pmd_alloc_one(NULL, addr);
517 if (!pmd) {
518 kvm_err("Cannot allocate Hyp pmd\n");
519 return -ENOMEM;
520 }
521 pud_populate(NULL, pud, pmd);
522 get_page(virt_to_page(pud));
523 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
524 }
525
526 next = pud_addr_end(addr, end);
527 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
528 if (ret)
529 return ret;
530 pfn += (next - addr) >> PAGE_SHIFT;
531 } while (addr = next, addr != end);
532
533 return 0;
534}
535
Marc Zyngier6060df82013-04-12 19:12:01 +0100536static int __create_hyp_mappings(pgd_t *pgdp,
537 unsigned long start, unsigned long end,
538 unsigned long pfn, pgprot_t prot)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500539{
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500540 pgd_t *pgd;
541 pud_t *pud;
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500542 unsigned long addr, next;
543 int err = 0;
544
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500545 mutex_lock(&kvm_hyp_pgd_mutex);
Marc Zyngier3562c762013-04-12 19:12:02 +0100546 addr = start & PAGE_MASK;
547 end = PAGE_ALIGN(end);
548 do {
Marc Zyngier6060df82013-04-12 19:12:01 +0100549 pgd = pgdp + pgd_index(addr);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500550
Christoffer Dall38f791a2014-10-10 12:14:28 +0200551 if (pgd_none(*pgd)) {
552 pud = pud_alloc_one(NULL, addr);
553 if (!pud) {
554 kvm_err("Cannot allocate Hyp pud\n");
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500555 err = -ENOMEM;
556 goto out;
557 }
Christoffer Dall38f791a2014-10-10 12:14:28 +0200558 pgd_populate(NULL, pgd, pud);
559 get_page(virt_to_page(pgd));
560 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500561 }
562
563 next = pgd_addr_end(addr, end);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200564 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500565 if (err)
566 goto out;
Marc Zyngier6060df82013-04-12 19:12:01 +0100567 pfn += (next - addr) >> PAGE_SHIFT;
Marc Zyngier3562c762013-04-12 19:12:02 +0100568 } while (addr = next, addr != end);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500569out:
570 mutex_unlock(&kvm_hyp_pgd_mutex);
571 return err;
572}
573
Christoffer Dall40c27292013-11-15 13:14:12 -0800574static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
575{
576 if (!is_vmalloc_addr(kaddr)) {
577 BUG_ON(!virt_addr_valid(kaddr));
578 return __pa(kaddr);
579 } else {
580 return page_to_phys(vmalloc_to_page(kaddr)) +
581 offset_in_page(kaddr);
582 }
583}
584
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500585/**
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100586 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500587 * @from: The virtual kernel start address of the range
588 * @to: The virtual kernel end address of the range (exclusive)
589 *
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100590 * The same virtual address as the kernel virtual address is also used
591 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
592 * physical pages.
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500593 */
594int create_hyp_mappings(void *from, void *to)
595{
Christoffer Dall40c27292013-11-15 13:14:12 -0800596 phys_addr_t phys_addr;
597 unsigned long virt_addr;
Marc Zyngier6060df82013-04-12 19:12:01 +0100598 unsigned long start = KERN_TO_HYP((unsigned long)from);
599 unsigned long end = KERN_TO_HYP((unsigned long)to);
600
Christoffer Dall40c27292013-11-15 13:14:12 -0800601 start = start & PAGE_MASK;
602 end = PAGE_ALIGN(end);
Marc Zyngier6060df82013-04-12 19:12:01 +0100603
Christoffer Dall40c27292013-11-15 13:14:12 -0800604 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
605 int err;
606
607 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
608 err = __create_hyp_mappings(hyp_pgd, virt_addr,
609 virt_addr + PAGE_SIZE,
610 __phys_to_pfn(phys_addr),
611 PAGE_HYP);
612 if (err)
613 return err;
614 }
615
616 return 0;
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500617}
618
619/**
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100620 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
621 * @from: The kernel start VA of the range
622 * @to: The kernel end VA of the range (exclusive)
Marc Zyngier6060df82013-04-12 19:12:01 +0100623 * @phys_addr: The physical start address which gets mapped
Marc Zyngier06e8c3b2012-10-28 01:09:14 +0100624 *
625 * The resulting HYP VA is the same as the kernel VA, modulo
626 * HYP_PAGE_OFFSET.
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500627 */
Marc Zyngier6060df82013-04-12 19:12:01 +0100628int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500629{
Marc Zyngier6060df82013-04-12 19:12:01 +0100630 unsigned long start = KERN_TO_HYP((unsigned long)from);
631 unsigned long end = KERN_TO_HYP((unsigned long)to);
632
633 /* Check for a valid kernel IO mapping */
634 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
635 return -EINVAL;
636
637 return __create_hyp_mappings(hyp_pgd, start, end,
638 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
Christoffer Dall342cd0a2013-01-20 18:28:06 -0500639}
640
Marc Zyngiera9873702015-03-10 19:06:59 +0000641/* Free the HW pgd, one page at a time */
642static void kvm_free_hwpgd(void *hwpgd)
643{
644 free_pages_exact(hwpgd, kvm_get_hwpgd_size());
645}
646
647/* Allocate the HW PGD, making sure that each page gets its own refcount */
648static void *kvm_alloc_hwpgd(void)
649{
650 unsigned int size = kvm_get_hwpgd_size();
651
652 return alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
653}
654
Christoffer Dalld5d81842013-01-20 18:28:07 -0500655/**
656 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
657 * @kvm: The KVM struct pointer for the VM.
658 *
659 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
660 * support either full 40-bit input addresses or limited to 32-bit input
661 * addresses). Clears the allocated pages.
662 *
663 * Note we don't need locking here as this is only called when the VM is
664 * created, which can only be done once.
665 */
666int kvm_alloc_stage2_pgd(struct kvm *kvm)
667{
668 pgd_t *pgd;
Marc Zyngiera9873702015-03-10 19:06:59 +0000669 void *hwpgd;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500670
671 if (kvm->arch.pgd != NULL) {
672 kvm_err("kvm_arch already initialized?\n");
673 return -EINVAL;
674 }
675
Marc Zyngiera9873702015-03-10 19:06:59 +0000676 hwpgd = kvm_alloc_hwpgd();
677 if (!hwpgd)
678 return -ENOMEM;
679
680 /* When the kernel uses more levels of page tables than the
681 * guest, we allocate a fake PGD and pre-populate it to point
682 * to the next-level page table, which will be the real
683 * initial page table pointed to by the VTTBR.
684 *
685 * When KVM_PREALLOC_LEVEL==2, we allocate a single page for
686 * the PMD and the kernel will use folded pud.
687 * When KVM_PREALLOC_LEVEL==1, we allocate 2 consecutive PUD
688 * pages.
689 */
Christoffer Dall38f791a2014-10-10 12:14:28 +0200690 if (KVM_PREALLOC_LEVEL > 0) {
Marc Zyngiera9873702015-03-10 19:06:59 +0000691 int i;
692
Christoffer Dall38f791a2014-10-10 12:14:28 +0200693 /*
694 * Allocate fake pgd for the page table manipulation macros to
695 * work. This is not used by the hardware and we have no
696 * alignment requirement for this allocation.
697 */
698 pgd = (pgd_t *)kmalloc(PTRS_PER_S2_PGD * sizeof(pgd_t),
699 GFP_KERNEL | __GFP_ZERO);
Marc Zyngiera9873702015-03-10 19:06:59 +0000700
701 if (!pgd) {
702 kvm_free_hwpgd(hwpgd);
703 return -ENOMEM;
704 }
705
706 /* Plug the HW PGD into the fake one. */
707 for (i = 0; i < PTRS_PER_S2_PGD; i++) {
708 if (KVM_PREALLOC_LEVEL == 1)
709 pgd_populate(NULL, pgd + i,
710 (pud_t *)hwpgd + i * PTRS_PER_PUD);
711 else if (KVM_PREALLOC_LEVEL == 2)
712 pud_populate(NULL, pud_offset(pgd, 0) + i,
713 (pmd_t *)hwpgd + i * PTRS_PER_PMD);
714 }
Christoffer Dall38f791a2014-10-10 12:14:28 +0200715 } else {
716 /*
717 * Allocate actual first-level Stage-2 page table used by the
718 * hardware for Stage-2 page table walks.
719 */
Marc Zyngiera9873702015-03-10 19:06:59 +0000720 pgd = (pgd_t *)hwpgd;
Christoffer Dall38f791a2014-10-10 12:14:28 +0200721 }
722
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100723 kvm_clean_pgd(pgd);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500724 kvm->arch.pgd = pgd;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500725 return 0;
726}
727
Christoffer Dalld5d81842013-01-20 18:28:07 -0500728/**
729 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
730 * @kvm: The VM pointer
731 * @start: The intermediate physical base address of the range to unmap
732 * @size: The size of the area to unmap
733 *
734 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
735 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
736 * destroying the VM), otherwise another faulting VCPU may come in and mess
737 * with things behind our backs.
738 */
739static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
740{
Marc Zyngierd4cb9df52013-05-14 12:11:34 +0100741 unmap_range(kvm, kvm->arch.pgd, start, size);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500742}
743
Christoffer Dall957db102014-11-27 10:35:03 +0100744static void stage2_unmap_memslot(struct kvm *kvm,
745 struct kvm_memory_slot *memslot)
746{
747 hva_t hva = memslot->userspace_addr;
748 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
749 phys_addr_t size = PAGE_SIZE * memslot->npages;
750 hva_t reg_end = hva + size;
751
752 /*
753 * A memory region could potentially cover multiple VMAs, and any holes
754 * between them, so iterate over all of them to find out if we should
755 * unmap any of them.
756 *
757 * +--------------------------------------------+
758 * +---------------+----------------+ +----------------+
759 * | : VMA 1 | VMA 2 | | VMA 3 : |
760 * +---------------+----------------+ +----------------+
761 * | memory region |
762 * +--------------------------------------------+
763 */
764 do {
765 struct vm_area_struct *vma = find_vma(current->mm, hva);
766 hva_t vm_start, vm_end;
767
768 if (!vma || vma->vm_start >= reg_end)
769 break;
770
771 /*
772 * Take the intersection of this VMA with the memory region
773 */
774 vm_start = max(hva, vma->vm_start);
775 vm_end = min(reg_end, vma->vm_end);
776
777 if (!(vma->vm_flags & VM_PFNMAP)) {
778 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
779 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
780 }
781 hva = vm_end;
782 } while (hva < reg_end);
783}
784
785/**
786 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
787 * @kvm: The struct kvm pointer
788 *
789 * Go through the memregions and unmap any reguler RAM
790 * backing memory already mapped to the VM.
791 */
792void stage2_unmap_vm(struct kvm *kvm)
793{
794 struct kvm_memslots *slots;
795 struct kvm_memory_slot *memslot;
796 int idx;
797
798 idx = srcu_read_lock(&kvm->srcu);
799 spin_lock(&kvm->mmu_lock);
800
801 slots = kvm_memslots(kvm);
802 kvm_for_each_memslot(memslot, slots)
803 stage2_unmap_memslot(kvm, memslot);
804
805 spin_unlock(&kvm->mmu_lock);
806 srcu_read_unlock(&kvm->srcu, idx);
807}
808
Christoffer Dalld5d81842013-01-20 18:28:07 -0500809/**
810 * kvm_free_stage2_pgd - free all stage-2 tables
811 * @kvm: The KVM struct pointer for the VM.
812 *
813 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
814 * underlying level-2 and level-3 tables before freeing the actual level-1 table
815 * and setting the struct pointer to NULL.
816 *
817 * Note we don't need locking here as this is only called when the VM is
818 * destroyed, which can only be done once.
819 */
820void kvm_free_stage2_pgd(struct kvm *kvm)
821{
822 if (kvm->arch.pgd == NULL)
823 return;
824
825 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
Marc Zyngiera9873702015-03-10 19:06:59 +0000826 kvm_free_hwpgd(kvm_get_hwpgd(kvm));
Christoffer Dall38f791a2014-10-10 12:14:28 +0200827 if (KVM_PREALLOC_LEVEL > 0)
828 kfree(kvm->arch.pgd);
Marc Zyngiera9873702015-03-10 19:06:59 +0000829
Christoffer Dalld5d81842013-01-20 18:28:07 -0500830 kvm->arch.pgd = NULL;
831}
832
Christoffer Dall38f791a2014-10-10 12:14:28 +0200833static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
834 phys_addr_t addr)
835{
836 pgd_t *pgd;
837 pud_t *pud;
838
Marc Zyngier04b8dc82015-03-10 19:07:00 +0000839 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
Christoffer Dall38f791a2014-10-10 12:14:28 +0200840 if (WARN_ON(pgd_none(*pgd))) {
841 if (!cache)
842 return NULL;
843 pud = mmu_memory_cache_alloc(cache);
844 pgd_populate(NULL, pgd, pud);
845 get_page(virt_to_page(pgd));
846 }
847
848 return pud_offset(pgd, addr);
849}
850
Christoffer Dallad361f02012-11-01 17:14:45 +0100851static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
852 phys_addr_t addr)
Christoffer Dalld5d81842013-01-20 18:28:07 -0500853{
Christoffer Dalld5d81842013-01-20 18:28:07 -0500854 pud_t *pud;
855 pmd_t *pmd;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500856
Christoffer Dall38f791a2014-10-10 12:14:28 +0200857 pud = stage2_get_pud(kvm, cache, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500858 if (pud_none(*pud)) {
859 if (!cache)
Christoffer Dallad361f02012-11-01 17:14:45 +0100860 return NULL;
Christoffer Dalld5d81842013-01-20 18:28:07 -0500861 pmd = mmu_memory_cache_alloc(cache);
862 pud_populate(NULL, pud, pmd);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500863 get_page(virt_to_page(pud));
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100864 }
865
Christoffer Dallad361f02012-11-01 17:14:45 +0100866 return pmd_offset(pud, addr);
867}
Christoffer Dalld5d81842013-01-20 18:28:07 -0500868
Christoffer Dallad361f02012-11-01 17:14:45 +0100869static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
870 *cache, phys_addr_t addr, const pmd_t *new_pmd)
871{
872 pmd_t *pmd, old_pmd;
873
874 pmd = stage2_get_pmd(kvm, cache, addr);
875 VM_BUG_ON(!pmd);
876
877 /*
878 * Mapping in huge pages should only happen through a fault. If a
879 * page is merged into a transparent huge page, the individual
880 * subpages of that huge page should be unmapped through MMU
881 * notifiers before we get here.
882 *
883 * Merging of CompoundPages is not supported; they should become
884 * splitting first, unmapped, merged, and mapped back in on-demand.
885 */
886 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
887
888 old_pmd = *pmd;
889 kvm_set_pmd(pmd, *new_pmd);
890 if (pmd_present(old_pmd))
891 kvm_tlb_flush_vmid_ipa(kvm, addr);
892 else
893 get_page(virt_to_page(pmd));
894 return 0;
895}
896
897static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
Mario Smarduch15a49a42015-01-15 15:58:58 -0800898 phys_addr_t addr, const pte_t *new_pte,
899 unsigned long flags)
Christoffer Dallad361f02012-11-01 17:14:45 +0100900{
901 pmd_t *pmd;
902 pte_t *pte, old_pte;
Mario Smarduch15a49a42015-01-15 15:58:58 -0800903 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
904 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
905
906 VM_BUG_ON(logging_active && !cache);
Christoffer Dallad361f02012-11-01 17:14:45 +0100907
Christoffer Dall38f791a2014-10-10 12:14:28 +0200908 /* Create stage-2 page table mapping - Levels 0 and 1 */
Christoffer Dallad361f02012-11-01 17:14:45 +0100909 pmd = stage2_get_pmd(kvm, cache, addr);
910 if (!pmd) {
911 /*
912 * Ignore calls from kvm_set_spte_hva for unallocated
913 * address ranges.
914 */
915 return 0;
916 }
917
Mario Smarduch15a49a42015-01-15 15:58:58 -0800918 /*
919 * While dirty page logging - dissolve huge PMD, then continue on to
920 * allocate page.
921 */
922 if (logging_active)
923 stage2_dissolve_pmd(kvm, addr, pmd);
924
Christoffer Dallad361f02012-11-01 17:14:45 +0100925 /* Create stage-2 page mappings - Level 2 */
Christoffer Dalld5d81842013-01-20 18:28:07 -0500926 if (pmd_none(*pmd)) {
927 if (!cache)
928 return 0; /* ignore calls from kvm_set_spte_hva */
929 pte = mmu_memory_cache_alloc(cache);
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100930 kvm_clean_pte(pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500931 pmd_populate_kernel(NULL, pmd, pte);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500932 get_page(virt_to_page(pmd));
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100933 }
934
935 pte = pte_offset_kernel(pmd, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500936
937 if (iomap && pte_present(*pte))
938 return -EFAULT;
939
940 /* Create 2nd stage page table mapping - Level 3 */
941 old_pte = *pte;
942 kvm_set_pte(pte, *new_pte);
943 if (pte_present(old_pte))
Marc Zyngier48762762013-01-28 15:27:00 +0000944 kvm_tlb_flush_vmid_ipa(kvm, addr);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500945 else
946 get_page(virt_to_page(pte));
947
948 return 0;
949}
950
951/**
952 * kvm_phys_addr_ioremap - map a device range to guest IPA
953 *
954 * @kvm: The KVM pointer
955 * @guest_ipa: The IPA at which to insert the mapping
956 * @pa: The physical address of the device
957 * @size: The size of the mapping
958 */
959int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
Ard Biesheuvelc40f2f82014-09-17 14:56:18 -0700960 phys_addr_t pa, unsigned long size, bool writable)
Christoffer Dalld5d81842013-01-20 18:28:07 -0500961{
962 phys_addr_t addr, end;
963 int ret = 0;
964 unsigned long pfn;
965 struct kvm_mmu_memory_cache cache = { 0, };
966
967 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
968 pfn = __phys_to_pfn(pa);
969
970 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
Marc Zyngierc62ee2b2012-10-15 11:27:37 +0100971 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500972
Ard Biesheuvelc40f2f82014-09-17 14:56:18 -0700973 if (writable)
974 kvm_set_s2pte_writable(&pte);
975
Christoffer Dall38f791a2014-10-10 12:14:28 +0200976 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
977 KVM_NR_MEM_OBJS);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500978 if (ret)
979 goto out;
980 spin_lock(&kvm->mmu_lock);
Mario Smarduch15a49a42015-01-15 15:58:58 -0800981 ret = stage2_set_pte(kvm, &cache, addr, &pte,
982 KVM_S2PTE_FLAG_IS_IOMAP);
Christoffer Dalld5d81842013-01-20 18:28:07 -0500983 spin_unlock(&kvm->mmu_lock);
984 if (ret)
985 goto out;
986
987 pfn++;
988 }
989
990out:
991 mmu_free_memory_cache(&cache);
992 return ret;
993}
994
Christoffer Dall9b5fdb92013-10-02 15:32:01 -0700995static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
996{
997 pfn_t pfn = *pfnp;
998 gfn_t gfn = *ipap >> PAGE_SHIFT;
999
1000 if (PageTransCompound(pfn_to_page(pfn))) {
1001 unsigned long mask;
1002 /*
1003 * The address we faulted on is backed by a transparent huge
1004 * page. However, because we map the compound huge page and
1005 * not the individual tail page, we need to transfer the
1006 * refcount to the head page. We have to be careful that the
1007 * THP doesn't start to split while we are adjusting the
1008 * refcounts.
1009 *
1010 * We are sure this doesn't happen, because mmu_notifier_retry
1011 * was successful and we are holding the mmu_lock, so if this
1012 * THP is trying to split, it will be blocked in the mmu
1013 * notifier before touching any of the pages, specifically
1014 * before being able to call __split_huge_page_refcount().
1015 *
1016 * We can therefore safely transfer the refcount from PG_tail
1017 * to PG_head and switch the pfn from a tail page to the head
1018 * page accordingly.
1019 */
1020 mask = PTRS_PER_PMD - 1;
1021 VM_BUG_ON((gfn & mask) != (pfn & mask));
1022 if (pfn & mask) {
1023 *ipap &= PMD_MASK;
1024 kvm_release_pfn_clean(pfn);
1025 pfn &= ~mask;
1026 kvm_get_pfn(pfn);
1027 *pfnp = pfn;
1028 }
1029
1030 return true;
1031 }
1032
1033 return false;
1034}
1035
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001036static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1037{
1038 if (kvm_vcpu_trap_is_iabt(vcpu))
1039 return false;
1040
1041 return kvm_vcpu_dabt_iswrite(vcpu);
1042}
1043
Mario Smarduchc6473552015-01-15 15:58:56 -08001044/**
1045 * stage2_wp_ptes - write protect PMD range
1046 * @pmd: pointer to pmd entry
1047 * @addr: range start address
1048 * @end: range end address
1049 */
1050static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1051{
1052 pte_t *pte;
1053
1054 pte = pte_offset_kernel(pmd, addr);
1055 do {
1056 if (!pte_none(*pte)) {
1057 if (!kvm_s2pte_readonly(pte))
1058 kvm_set_s2pte_readonly(pte);
1059 }
1060 } while (pte++, addr += PAGE_SIZE, addr != end);
1061}
1062
1063/**
1064 * stage2_wp_pmds - write protect PUD range
1065 * @pud: pointer to pud entry
1066 * @addr: range start address
1067 * @end: range end address
1068 */
1069static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1070{
1071 pmd_t *pmd;
1072 phys_addr_t next;
1073
1074 pmd = pmd_offset(pud, addr);
1075
1076 do {
1077 next = kvm_pmd_addr_end(addr, end);
1078 if (!pmd_none(*pmd)) {
1079 if (kvm_pmd_huge(*pmd)) {
1080 if (!kvm_s2pmd_readonly(pmd))
1081 kvm_set_s2pmd_readonly(pmd);
1082 } else {
1083 stage2_wp_ptes(pmd, addr, next);
1084 }
1085 }
1086 } while (pmd++, addr = next, addr != end);
1087}
1088
1089/**
1090 * stage2_wp_puds - write protect PGD range
1091 * @pgd: pointer to pgd entry
1092 * @addr: range start address
1093 * @end: range end address
1094 *
1095 * Process PUD entries, for a huge PUD we cause a panic.
1096 */
1097static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1098{
1099 pud_t *pud;
1100 phys_addr_t next;
1101
1102 pud = pud_offset(pgd, addr);
1103 do {
1104 next = kvm_pud_addr_end(addr, end);
1105 if (!pud_none(*pud)) {
1106 /* TODO:PUD not supported, revisit later if supported */
1107 BUG_ON(kvm_pud_huge(*pud));
1108 stage2_wp_pmds(pud, addr, next);
1109 }
1110 } while (pud++, addr = next, addr != end);
1111}
1112
1113/**
1114 * stage2_wp_range() - write protect stage2 memory region range
1115 * @kvm: The KVM pointer
1116 * @addr: Start address of range
1117 * @end: End address of range
1118 */
1119static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1120{
1121 pgd_t *pgd;
1122 phys_addr_t next;
1123
Marc Zyngier04b8dc82015-03-10 19:07:00 +00001124 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
Mario Smarduchc6473552015-01-15 15:58:56 -08001125 do {
1126 /*
1127 * Release kvm_mmu_lock periodically if the memory region is
1128 * large. Otherwise, we may see kernel panics with
Christoffer Dall227ea8182015-01-23 10:49:31 +01001129 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1130 * CONFIG_LOCKDEP. Additionally, holding the lock too long
Mario Smarduchc6473552015-01-15 15:58:56 -08001131 * will also starve other vCPUs.
1132 */
1133 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1134 cond_resched_lock(&kvm->mmu_lock);
1135
1136 next = kvm_pgd_addr_end(addr, end);
1137 if (pgd_present(*pgd))
1138 stage2_wp_puds(pgd, addr, next);
1139 } while (pgd++, addr = next, addr != end);
1140}
1141
1142/**
1143 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1144 * @kvm: The KVM pointer
1145 * @slot: The memory slot to write protect
1146 *
1147 * Called to start logging dirty pages after memory region
1148 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1149 * all present PMD and PTEs are write protected in the memory region.
1150 * Afterwards read of dirty page log can be called.
1151 *
1152 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1153 * serializing operations for VM memory regions.
1154 */
1155void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1156{
1157 struct kvm_memory_slot *memslot = id_to_memslot(kvm->memslots, slot);
1158 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1159 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1160
1161 spin_lock(&kvm->mmu_lock);
1162 stage2_wp_range(kvm, start, end);
1163 spin_unlock(&kvm->mmu_lock);
1164 kvm_flush_remote_tlbs(kvm);
1165}
Mario Smarduch53c810c2015-01-15 15:58:57 -08001166
1167/**
Kai Huang3b0f1d02015-01-28 10:54:23 +08001168 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
Mario Smarduch53c810c2015-01-15 15:58:57 -08001169 * @kvm: The KVM pointer
1170 * @slot: The memory slot associated with mask
1171 * @gfn_offset: The gfn offset in memory slot
1172 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1173 * slot to be write protected
1174 *
1175 * Walks bits set in mask write protects the associated pte's. Caller must
1176 * acquire kvm_mmu_lock.
1177 */
Kai Huang3b0f1d02015-01-28 10:54:23 +08001178static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
Mario Smarduch53c810c2015-01-15 15:58:57 -08001179 struct kvm_memory_slot *slot,
1180 gfn_t gfn_offset, unsigned long mask)
1181{
1182 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1183 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1184 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1185
1186 stage2_wp_range(kvm, start, end);
1187}
Mario Smarduchc6473552015-01-15 15:58:56 -08001188
Kai Huang3b0f1d02015-01-28 10:54:23 +08001189/*
1190 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1191 * dirty pages.
1192 *
1193 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1194 * enable dirty logging for them.
1195 */
1196void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1197 struct kvm_memory_slot *slot,
1198 gfn_t gfn_offset, unsigned long mask)
1199{
1200 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1201}
1202
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001203static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn,
1204 unsigned long size, bool uncached)
1205{
1206 __coherent_cache_guest_page(vcpu, pfn, size, uncached);
1207}
1208
Christoffer Dall94f8e642013-01-20 18:28:12 -05001209static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
Christoffer Dall98047882014-08-19 12:18:04 +02001210 struct kvm_memory_slot *memslot, unsigned long hva,
Christoffer Dall94f8e642013-01-20 18:28:12 -05001211 unsigned long fault_status)
1212{
Christoffer Dall94f8e642013-01-20 18:28:12 -05001213 int ret;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001214 bool write_fault, writable, hugetlb = false, force_pte = false;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001215 unsigned long mmu_seq;
Christoffer Dallad361f02012-11-01 17:14:45 +01001216 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
Christoffer Dallad361f02012-11-01 17:14:45 +01001217 struct kvm *kvm = vcpu->kvm;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001218 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
Christoffer Dallad361f02012-11-01 17:14:45 +01001219 struct vm_area_struct *vma;
1220 pfn_t pfn;
Kim Phillipsb8865762014-06-26 01:45:51 +01001221 pgprot_t mem_type = PAGE_S2;
Laszlo Ersek840f4bf2014-11-17 14:58:52 +00001222 bool fault_ipa_uncached;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001223 bool logging_active = memslot_is_logging(memslot);
1224 unsigned long flags = 0;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001225
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001226 write_fault = kvm_is_write_fault(vcpu);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001227 if (fault_status == FSC_PERM && !write_fault) {
1228 kvm_err("Unexpected L2 read permission error\n");
1229 return -EFAULT;
1230 }
1231
Christoffer Dallad361f02012-11-01 17:14:45 +01001232 /* Let's check if we will get back a huge page backed by hugetlbfs */
1233 down_read(&current->mm->mmap_sem);
1234 vma = find_vma_intersection(current->mm, hva, hva + 1);
Ard Biesheuvel37b54402014-09-17 14:56:17 -07001235 if (unlikely(!vma)) {
1236 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1237 up_read(&current->mm->mmap_sem);
1238 return -EFAULT;
1239 }
1240
Mario Smarduch15a49a42015-01-15 15:58:58 -08001241 if (is_vm_hugetlb_page(vma) && !logging_active) {
Christoffer Dallad361f02012-11-01 17:14:45 +01001242 hugetlb = true;
1243 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001244 } else {
1245 /*
Marc Zyngier136d7372013-12-13 16:56:06 +00001246 * Pages belonging to memslots that don't have the same
1247 * alignment for userspace and IPA cannot be mapped using
1248 * block descriptors even if the pages belong to a THP for
1249 * the process, because the stage-2 block descriptor will
1250 * cover more than a single THP and we loose atomicity for
1251 * unmapping, updates, and splits of the THP or other pages
1252 * in the stage-2 block range.
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001253 */
Marc Zyngier136d7372013-12-13 16:56:06 +00001254 if ((memslot->userspace_addr & ~PMD_MASK) !=
1255 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001256 force_pte = true;
Christoffer Dallad361f02012-11-01 17:14:45 +01001257 }
1258 up_read(&current->mm->mmap_sem);
1259
Christoffer Dall94f8e642013-01-20 18:28:12 -05001260 /* We need minimum second+third level pages */
Christoffer Dall38f791a2014-10-10 12:14:28 +02001261 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1262 KVM_NR_MEM_OBJS);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001263 if (ret)
1264 return ret;
1265
1266 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1267 /*
1268 * Ensure the read of mmu_notifier_seq happens before we call
1269 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1270 * the page we just got a reference to gets unmapped before we have a
1271 * chance to grab the mmu_lock, which ensure that if the page gets
1272 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1273 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1274 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1275 */
1276 smp_rmb();
1277
Christoffer Dallad361f02012-11-01 17:14:45 +01001278 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001279 if (is_error_pfn(pfn))
1280 return -EFAULT;
1281
Mario Smarduch15a49a42015-01-15 15:58:58 -08001282 if (kvm_is_device_pfn(pfn)) {
Kim Phillipsb8865762014-06-26 01:45:51 +01001283 mem_type = PAGE_S2_DEVICE;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001284 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1285 } else if (logging_active) {
1286 /*
1287 * Faults on pages in a memslot with logging enabled
1288 * should not be mapped with huge pages (it introduces churn
1289 * and performance degradation), so force a pte mapping.
1290 */
1291 force_pte = true;
1292 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1293
1294 /*
1295 * Only actually map the page as writable if this was a write
1296 * fault.
1297 */
1298 if (!write_fault)
1299 writable = false;
1300 }
Kim Phillipsb8865762014-06-26 01:45:51 +01001301
Christoffer Dallad361f02012-11-01 17:14:45 +01001302 spin_lock(&kvm->mmu_lock);
1303 if (mmu_notifier_retry(kvm, mmu_seq))
Christoffer Dall94f8e642013-01-20 18:28:12 -05001304 goto out_unlock;
Mario Smarduch15a49a42015-01-15 15:58:58 -08001305
Christoffer Dall9b5fdb92013-10-02 15:32:01 -07001306 if (!hugetlb && !force_pte)
1307 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
Christoffer Dallad361f02012-11-01 17:14:45 +01001308
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001309 fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
Laszlo Ersek840f4bf2014-11-17 14:58:52 +00001310
Christoffer Dallad361f02012-11-01 17:14:45 +01001311 if (hugetlb) {
Kim Phillipsb8865762014-06-26 01:45:51 +01001312 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
Christoffer Dallad361f02012-11-01 17:14:45 +01001313 new_pmd = pmd_mkhuge(new_pmd);
1314 if (writable) {
1315 kvm_set_s2pmd_writable(&new_pmd);
1316 kvm_set_pfn_dirty(pfn);
1317 }
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001318 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
Christoffer Dallad361f02012-11-01 17:14:45 +01001319 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1320 } else {
Kim Phillipsb8865762014-06-26 01:45:51 +01001321 pte_t new_pte = pfn_pte(pfn, mem_type);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001322
Christoffer Dallad361f02012-11-01 17:14:45 +01001323 if (writable) {
1324 kvm_set_s2pte_writable(&new_pte);
1325 kvm_set_pfn_dirty(pfn);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001326 mark_page_dirty(kvm, gfn);
Christoffer Dallad361f02012-11-01 17:14:45 +01001327 }
Marc Zyngier0d3e4d42015-01-05 21:13:24 +00001328 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
Mario Smarduch15a49a42015-01-15 15:58:58 -08001329 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001330 }
Christoffer Dallad361f02012-11-01 17:14:45 +01001331
Christoffer Dall94f8e642013-01-20 18:28:12 -05001332out_unlock:
Christoffer Dallad361f02012-11-01 17:14:45 +01001333 spin_unlock(&kvm->mmu_lock);
Marc Zyngier35307b92015-03-12 18:16:51 +00001334 kvm_set_pfn_accessed(pfn);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001335 kvm_release_pfn_clean(pfn);
Christoffer Dallad361f02012-11-01 17:14:45 +01001336 return ret;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001337}
1338
Marc Zyngieraeda9132015-03-12 18:16:52 +00001339/*
1340 * Resolve the access fault by making the page young again.
1341 * Note that because the faulting entry is guaranteed not to be
1342 * cached in the TLB, we don't need to invalidate anything.
1343 */
1344static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1345{
1346 pmd_t *pmd;
1347 pte_t *pte;
1348 pfn_t pfn;
1349 bool pfn_valid = false;
1350
1351 trace_kvm_access_fault(fault_ipa);
1352
1353 spin_lock(&vcpu->kvm->mmu_lock);
1354
1355 pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1356 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1357 goto out;
1358
1359 if (kvm_pmd_huge(*pmd)) { /* THP, HugeTLB */
1360 *pmd = pmd_mkyoung(*pmd);
1361 pfn = pmd_pfn(*pmd);
1362 pfn_valid = true;
1363 goto out;
1364 }
1365
1366 pte = pte_offset_kernel(pmd, fault_ipa);
1367 if (pte_none(*pte)) /* Nothing there either */
1368 goto out;
1369
1370 *pte = pte_mkyoung(*pte); /* Just a page... */
1371 pfn = pte_pfn(*pte);
1372 pfn_valid = true;
1373out:
1374 spin_unlock(&vcpu->kvm->mmu_lock);
1375 if (pfn_valid)
1376 kvm_set_pfn_accessed(pfn);
1377}
1378
Christoffer Dall94f8e642013-01-20 18:28:12 -05001379/**
1380 * kvm_handle_guest_abort - handles all 2nd stage aborts
1381 * @vcpu: the VCPU pointer
1382 * @run: the kvm_run structure
1383 *
1384 * Any abort that gets to the host is almost guaranteed to be caused by a
1385 * missing second stage translation table entry, which can mean that either the
1386 * guest simply needs more memory and we must allocate an appropriate page or it
1387 * can mean that the guest tried to access I/O memory, which is emulated by user
1388 * space. The distinction is based on the IPA causing the fault and whether this
1389 * memory region has been registered as standard RAM by user space.
1390 */
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001391int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1392{
Christoffer Dall94f8e642013-01-20 18:28:12 -05001393 unsigned long fault_status;
1394 phys_addr_t fault_ipa;
1395 struct kvm_memory_slot *memslot;
Christoffer Dall98047882014-08-19 12:18:04 +02001396 unsigned long hva;
1397 bool is_iabt, write_fault, writable;
Christoffer Dall94f8e642013-01-20 18:28:12 -05001398 gfn_t gfn;
1399 int ret, idx;
1400
Marc Zyngier52d1dba2012-10-15 10:33:38 +01001401 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
Marc Zyngier7393b592012-09-17 19:27:09 +01001402 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001403
Marc Zyngier7393b592012-09-17 19:27:09 +01001404 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1405 kvm_vcpu_get_hfar(vcpu), fault_ipa);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001406
1407 /* Check the stage-2 fault is trans. fault or write fault */
Christoffer Dall0496daa52014-09-26 12:29:34 +02001408 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
Marc Zyngier35307b92015-03-12 18:16:51 +00001409 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1410 fault_status != FSC_ACCESS) {
Christoffer Dall0496daa52014-09-26 12:29:34 +02001411 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1412 kvm_vcpu_trap_get_class(vcpu),
1413 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1414 (unsigned long)kvm_vcpu_get_hsr(vcpu));
Christoffer Dall94f8e642013-01-20 18:28:12 -05001415 return -EFAULT;
1416 }
1417
1418 idx = srcu_read_lock(&vcpu->kvm->srcu);
1419
1420 gfn = fault_ipa >> PAGE_SHIFT;
Christoffer Dall98047882014-08-19 12:18:04 +02001421 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1422 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
Ard Biesheuvela7d079c2014-09-09 11:27:09 +01001423 write_fault = kvm_is_write_fault(vcpu);
Christoffer Dall98047882014-08-19 12:18:04 +02001424 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
Christoffer Dall94f8e642013-01-20 18:28:12 -05001425 if (is_iabt) {
1426 /* Prefetch Abort on I/O address */
Marc Zyngier7393b592012-09-17 19:27:09 +01001427 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
Christoffer Dall94f8e642013-01-20 18:28:12 -05001428 ret = 1;
1429 goto out_unlock;
1430 }
1431
Marc Zyngiercfe39502012-12-12 14:42:09 +00001432 /*
1433 * The IPA is reported as [MAX:12], so we need to
1434 * complement it with the bottom 12 bits from the
1435 * faulting VA. This is always 12 bits, irrespective
1436 * of the page size.
1437 */
1438 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
Christoffer Dall45e96ea2013-01-20 18:43:58 -05001439 ret = io_mem_abort(vcpu, run, fault_ipa);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001440 goto out_unlock;
1441 }
1442
Christoffer Dallc3058d52014-10-10 12:14:29 +02001443 /* Userspace should not be able to register out-of-bounds IPAs */
1444 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1445
Marc Zyngieraeda9132015-03-12 18:16:52 +00001446 if (fault_status == FSC_ACCESS) {
1447 handle_access_fault(vcpu, fault_ipa);
1448 ret = 1;
1449 goto out_unlock;
1450 }
1451
Christoffer Dall98047882014-08-19 12:18:04 +02001452 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
Christoffer Dall94f8e642013-01-20 18:28:12 -05001453 if (ret == 0)
1454 ret = 1;
1455out_unlock:
1456 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1457 return ret;
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001458}
1459
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001460static int handle_hva_to_gpa(struct kvm *kvm,
1461 unsigned long start,
1462 unsigned long end,
1463 int (*handler)(struct kvm *kvm,
1464 gpa_t gpa, void *data),
1465 void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001466{
1467 struct kvm_memslots *slots;
1468 struct kvm_memory_slot *memslot;
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001469 int ret = 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001470
1471 slots = kvm_memslots(kvm);
1472
1473 /* we only care about the pages that the guest sees */
1474 kvm_for_each_memslot(memslot, slots) {
1475 unsigned long hva_start, hva_end;
1476 gfn_t gfn, gfn_end;
1477
1478 hva_start = max(start, memslot->userspace_addr);
1479 hva_end = min(end, memslot->userspace_addr +
1480 (memslot->npages << PAGE_SHIFT));
1481 if (hva_start >= hva_end)
1482 continue;
1483
1484 /*
1485 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1486 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1487 */
1488 gfn = hva_to_gfn_memslot(hva_start, memslot);
1489 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1490
1491 for (; gfn < gfn_end; ++gfn) {
1492 gpa_t gpa = gfn << PAGE_SHIFT;
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001493 ret |= handler(kvm, gpa, data);
Christoffer Dalld5d81842013-01-20 18:28:07 -05001494 }
1495 }
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001496
1497 return ret;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001498}
1499
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001500static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001501{
1502 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001503 return 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001504}
1505
1506int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1507{
1508 unsigned long end = hva + PAGE_SIZE;
1509
1510 if (!kvm->arch.pgd)
1511 return 0;
1512
1513 trace_kvm_unmap_hva(hva);
1514 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1515 return 0;
1516}
1517
1518int kvm_unmap_hva_range(struct kvm *kvm,
1519 unsigned long start, unsigned long end)
1520{
1521 if (!kvm->arch.pgd)
1522 return 0;
1523
1524 trace_kvm_unmap_hva_range(start, end);
1525 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1526 return 0;
1527}
1528
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001529static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
Christoffer Dalld5d81842013-01-20 18:28:07 -05001530{
1531 pte_t *pte = (pte_t *)data;
1532
Mario Smarduch15a49a42015-01-15 15:58:58 -08001533 /*
1534 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1535 * flag clear because MMU notifiers will have unmapped a huge PMD before
1536 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1537 * therefore stage2_set_pte() never needs to clear out a huge PMD
1538 * through this calling path.
1539 */
1540 stage2_set_pte(kvm, NULL, gpa, pte, 0);
Marc Zyngier1d2ebac2015-03-12 18:16:50 +00001541 return 0;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001542}
1543
1544
1545void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1546{
1547 unsigned long end = hva + PAGE_SIZE;
1548 pte_t stage2_pte;
1549
1550 if (!kvm->arch.pgd)
1551 return;
1552
1553 trace_kvm_set_spte_hva(hva);
1554 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1555 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1556}
1557
Marc Zyngier35307b92015-03-12 18:16:51 +00001558static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1559{
1560 pmd_t *pmd;
1561 pte_t *pte;
1562
1563 pmd = stage2_get_pmd(kvm, NULL, gpa);
1564 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1565 return 0;
1566
1567 if (kvm_pmd_huge(*pmd)) { /* THP, HugeTLB */
1568 if (pmd_young(*pmd)) {
1569 *pmd = pmd_mkold(*pmd);
1570 return 1;
1571 }
1572
1573 return 0;
1574 }
1575
1576 pte = pte_offset_kernel(pmd, gpa);
1577 if (pte_none(*pte))
1578 return 0;
1579
1580 if (pte_young(*pte)) {
1581 *pte = pte_mkold(*pte); /* Just a page... */
1582 return 1;
1583 }
1584
1585 return 0;
1586}
1587
1588static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1589{
1590 pmd_t *pmd;
1591 pte_t *pte;
1592
1593 pmd = stage2_get_pmd(kvm, NULL, gpa);
1594 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1595 return 0;
1596
1597 if (kvm_pmd_huge(*pmd)) /* THP, HugeTLB */
1598 return pmd_young(*pmd);
1599
1600 pte = pte_offset_kernel(pmd, gpa);
1601 if (!pte_none(*pte)) /* Just a page... */
1602 return pte_young(*pte);
1603
1604 return 0;
1605}
1606
1607int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1608{
1609 trace_kvm_age_hva(start, end);
1610 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1611}
1612
1613int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1614{
1615 trace_kvm_test_age_hva(hva);
1616 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1617}
1618
Christoffer Dalld5d81842013-01-20 18:28:07 -05001619void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1620{
1621 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1622}
1623
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001624phys_addr_t kvm_mmu_get_httbr(void)
1625{
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001626 if (__kvm_cpu_uses_extended_idmap())
1627 return virt_to_phys(merged_hyp_pgd);
1628 else
1629 return virt_to_phys(hyp_pgd);
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001630}
1631
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001632phys_addr_t kvm_mmu_get_boot_httbr(void)
1633{
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001634 if (__kvm_cpu_uses_extended_idmap())
1635 return virt_to_phys(merged_hyp_pgd);
1636 else
1637 return virt_to_phys(boot_hyp_pgd);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001638}
1639
1640phys_addr_t kvm_get_idmap_vector(void)
1641{
1642 return hyp_idmap_vector;
1643}
1644
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001645int kvm_mmu_init(void)
1646{
Marc Zyngier2fb41052013-04-12 19:12:03 +01001647 int err;
1648
Santosh Shilimkar4fda3422013-11-19 14:59:12 -05001649 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1650 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1651 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001652
Ard Biesheuvel06f75a12015-03-19 16:42:26 +00001653 /*
1654 * We rely on the linker script to ensure at build time that the HYP
1655 * init code does not cross a page boundary.
1656 */
1657 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001658
Christoffer Dall38f791a2014-10-10 12:14:28 +02001659 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1660 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
Mark Salter5d4e08c2014-03-28 14:25:19 +00001661
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001662 if (!hyp_pgd || !boot_hyp_pgd) {
Christoffer Dalld5d81842013-01-20 18:28:07 -05001663 kvm_err("Hyp mode PGD not allocated\n");
Marc Zyngier2fb41052013-04-12 19:12:03 +01001664 err = -ENOMEM;
1665 goto out;
1666 }
1667
1668 /* Create the idmap in the boot page tables */
1669 err = __create_hyp_mappings(boot_hyp_pgd,
1670 hyp_idmap_start, hyp_idmap_end,
1671 __phys_to_pfn(hyp_idmap_start),
1672 PAGE_HYP);
1673
1674 if (err) {
1675 kvm_err("Failed to idmap %lx-%lx\n",
1676 hyp_idmap_start, hyp_idmap_end);
1677 goto out;
Christoffer Dalld5d81842013-01-20 18:28:07 -05001678 }
1679
Ard Biesheuvele4c5a682015-03-19 16:42:28 +00001680 if (__kvm_cpu_uses_extended_idmap()) {
1681 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1682 if (!merged_hyp_pgd) {
1683 kvm_err("Failed to allocate extra HYP pgd\n");
1684 goto out;
1685 }
1686 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1687 hyp_idmap_start);
1688 return 0;
1689 }
1690
Marc Zyngier5a677ce2013-04-12 19:12:06 +01001691 /* Map the very same page at the trampoline VA */
1692 err = __create_hyp_mappings(boot_hyp_pgd,
1693 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1694 __phys_to_pfn(hyp_idmap_start),
1695 PAGE_HYP);
1696 if (err) {
1697 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1698 TRAMPOLINE_VA);
1699 goto out;
1700 }
1701
1702 /* Map the same page again into the runtime page tables */
1703 err = __create_hyp_mappings(hyp_pgd,
1704 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1705 __phys_to_pfn(hyp_idmap_start),
1706 PAGE_HYP);
1707 if (err) {
1708 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1709 TRAMPOLINE_VA);
1710 goto out;
1711 }
1712
Christoffer Dalld5d81842013-01-20 18:28:07 -05001713 return 0;
Marc Zyngier2fb41052013-04-12 19:12:03 +01001714out:
Marc Zyngier4f728272013-04-12 19:12:05 +01001715 free_hyp_pgds();
Marc Zyngier2fb41052013-04-12 19:12:03 +01001716 return err;
Christoffer Dall342cd0a2013-01-20 18:28:06 -05001717}
Eric Augerdf6ce242014-06-06 11:10:23 +02001718
1719void kvm_arch_commit_memory_region(struct kvm *kvm,
1720 struct kvm_userspace_memory_region *mem,
1721 const struct kvm_memory_slot *old,
1722 enum kvm_mr_change change)
1723{
Mario Smarduchc6473552015-01-15 15:58:56 -08001724 /*
1725 * At this point memslot has been committed and there is an
1726 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1727 * memory slot is write protected.
1728 */
1729 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1730 kvm_mmu_wp_memory_region(kvm, mem->slot);
Eric Augerdf6ce242014-06-06 11:10:23 +02001731}
1732
1733int kvm_arch_prepare_memory_region(struct kvm *kvm,
1734 struct kvm_memory_slot *memslot,
1735 struct kvm_userspace_memory_region *mem,
1736 enum kvm_mr_change change)
1737{
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001738 hva_t hva = mem->userspace_addr;
1739 hva_t reg_end = hva + mem->memory_size;
1740 bool writable = !(mem->flags & KVM_MEM_READONLY);
1741 int ret = 0;
1742
Mario Smarduch15a49a42015-01-15 15:58:58 -08001743 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1744 change != KVM_MR_FLAGS_ONLY)
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001745 return 0;
1746
1747 /*
Christoffer Dallc3058d52014-10-10 12:14:29 +02001748 * Prevent userspace from creating a memory region outside of the IPA
1749 * space addressable by the KVM guest IPA space.
1750 */
1751 if (memslot->base_gfn + memslot->npages >=
1752 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1753 return -EFAULT;
1754
1755 /*
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001756 * A memory region could potentially cover multiple VMAs, and any holes
1757 * between them, so iterate over all of them to find out if we can map
1758 * any of them right now.
1759 *
1760 * +--------------------------------------------+
1761 * +---------------+----------------+ +----------------+
1762 * | : VMA 1 | VMA 2 | | VMA 3 : |
1763 * +---------------+----------------+ +----------------+
1764 * | memory region |
1765 * +--------------------------------------------+
1766 */
1767 do {
1768 struct vm_area_struct *vma = find_vma(current->mm, hva);
1769 hva_t vm_start, vm_end;
1770
1771 if (!vma || vma->vm_start >= reg_end)
1772 break;
1773
1774 /*
1775 * Mapping a read-only VMA is only allowed if the
1776 * memory region is configured as read-only.
1777 */
1778 if (writable && !(vma->vm_flags & VM_WRITE)) {
1779 ret = -EPERM;
1780 break;
1781 }
1782
1783 /*
1784 * Take the intersection of this VMA with the memory region
1785 */
1786 vm_start = max(hva, vma->vm_start);
1787 vm_end = min(reg_end, vma->vm_end);
1788
1789 if (vma->vm_flags & VM_PFNMAP) {
1790 gpa_t gpa = mem->guest_phys_addr +
1791 (vm_start - mem->userspace_addr);
Marek Majtyka10e259a2015-09-16 12:04:55 +02001792 phys_addr_t pa;
1793
1794 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1795 pa += vm_start - vma->vm_start;
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001796
Mario Smarduch15a49a42015-01-15 15:58:58 -08001797 /* IO region dirty page logging not allowed */
1798 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1799 return -EINVAL;
1800
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001801 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1802 vm_end - vm_start,
1803 writable);
1804 if (ret)
1805 break;
1806 }
1807 hva = vm_end;
1808 } while (hva < reg_end);
1809
Mario Smarduch15a49a42015-01-15 15:58:58 -08001810 if (change == KVM_MR_FLAGS_ONLY)
1811 return ret;
1812
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001813 spin_lock(&kvm->mmu_lock);
1814 if (ret)
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001815 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001816 else
1817 stage2_flush_memslot(kvm, memslot);
1818 spin_unlock(&kvm->mmu_lock);
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001819 return ret;
Eric Augerdf6ce242014-06-06 11:10:23 +02001820}
1821
1822void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1823 struct kvm_memory_slot *dont)
1824{
1825}
1826
1827int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1828 unsigned long npages)
1829{
Ard Biesheuvel849260c2014-11-17 14:58:53 +00001830 /*
1831 * Readonly memslots are not incoherent with the caches by definition,
1832 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1833 * that the guest may consider devices and hence map as uncached.
1834 * To prevent incoherency issues in these cases, tag all readonly
1835 * regions as incoherent.
1836 */
1837 if (slot->flags & KVM_MEM_READONLY)
1838 slot->flags |= KVM_MEMSLOT_INCOHERENT;
Eric Augerdf6ce242014-06-06 11:10:23 +02001839 return 0;
1840}
1841
1842void kvm_arch_memslots_updated(struct kvm *kvm)
1843{
1844}
1845
1846void kvm_arch_flush_shadow_all(struct kvm *kvm)
1847{
1848}
1849
1850void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1851 struct kvm_memory_slot *slot)
1852{
Ard Biesheuvel8eef9122014-10-10 17:00:32 +02001853 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1854 phys_addr_t size = slot->npages << PAGE_SHIFT;
1855
1856 spin_lock(&kvm->mmu_lock);
1857 unmap_stage2_range(kvm, gpa, size);
1858 spin_unlock(&kvm->mmu_lock);
Eric Augerdf6ce242014-06-06 11:10:23 +02001859}
Marc Zyngier3c1e7162014-12-19 16:05:31 +00001860
1861/*
1862 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1863 *
1864 * Main problems:
1865 * - S/W ops are local to a CPU (not broadcast)
1866 * - We have line migration behind our back (speculation)
1867 * - System caches don't support S/W at all (damn!)
1868 *
1869 * In the face of the above, the best we can do is to try and convert
1870 * S/W ops to VA ops. Because the guest is not allowed to infer the
1871 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1872 * which is a rather good thing for us.
1873 *
1874 * Also, it is only used when turning caches on/off ("The expected
1875 * usage of the cache maintenance instructions that operate by set/way
1876 * is associated with the cache maintenance instructions associated
1877 * with the powerdown and powerup of caches, if this is required by
1878 * the implementation.").
1879 *
1880 * We use the following policy:
1881 *
1882 * - If we trap a S/W operation, we enable VM trapping to detect
1883 * caches being turned on/off, and do a full clean.
1884 *
1885 * - We flush the caches on both caches being turned on and off.
1886 *
1887 * - Once the caches are enabled, we stop trapping VM ops.
1888 */
1889void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1890{
1891 unsigned long hcr = vcpu_get_hcr(vcpu);
1892
1893 /*
1894 * If this is the first time we do a S/W operation
1895 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1896 * VM trapping.
1897 *
1898 * Otherwise, rely on the VM trapping to wait for the MMU +
1899 * Caches to be turned off. At that point, we'll be able to
1900 * clean the caches again.
1901 */
1902 if (!(hcr & HCR_TVM)) {
1903 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1904 vcpu_has_cache_enabled(vcpu));
1905 stage2_flush_vm(vcpu->kvm);
1906 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1907 }
1908}
1909
1910void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1911{
1912 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1913
1914 /*
1915 * If switching the MMU+caches on, need to invalidate the caches.
1916 * If switching it off, need to clean the caches.
1917 * Clean + invalidate does the trick always.
1918 */
1919 if (now_enabled != was_enabled)
1920 stage2_flush_vm(vcpu->kvm);
1921
1922 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1923 if (now_enabled)
1924 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1925
1926 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1927}