blob: 014f4f52809cddf6fe6b1119ccb72e1a7d20345a [file] [log] [blame]
Mark Fashehccd979b2005-12-15 14:31:24 -08001/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
Mark Fasheh9517bac2007-02-09 20:24:12 -080027#include <linux/swap.h>
Mark Fasheh6af67d82007-03-06 17:24:46 -080028#include <linux/pipe_fs_i.h>
Mark Fashehccd979b2005-12-15 14:31:24 -080029
30#define MLOG_MASK_PREFIX ML_FILE_IO
31#include <cluster/masklog.h>
32
33#include "ocfs2.h"
34
35#include "alloc.h"
36#include "aops.h"
37#include "dlmglue.h"
38#include "extent_map.h"
39#include "file.h"
40#include "inode.h"
41#include "journal.h"
Mark Fasheh9517bac2007-02-09 20:24:12 -080042#include "suballoc.h"
Mark Fashehccd979b2005-12-15 14:31:24 -080043#include "super.h"
44#include "symlink.h"
45
46#include "buffer_head_io.h"
47
48static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49 struct buffer_head *bh_result, int create)
50{
51 int err = -EIO;
52 int status;
53 struct ocfs2_dinode *fe = NULL;
54 struct buffer_head *bh = NULL;
55 struct buffer_head *buffer_cache_bh = NULL;
56 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
57 void *kaddr;
58
59 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60 (unsigned long long)iblock, bh_result, create);
61
62 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
63
64 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66 (unsigned long long)iblock);
67 goto bail;
68 }
69
70 status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71 OCFS2_I(inode)->ip_blkno,
72 &bh, OCFS2_BH_CACHED, inode);
73 if (status < 0) {
74 mlog_errno(status);
75 goto bail;
76 }
77 fe = (struct ocfs2_dinode *) bh->b_data;
78
79 if (!OCFS2_IS_VALID_DINODE(fe)) {
Mark Fashehb06970532006-03-03 10:24:33 -080080 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81 (unsigned long long)fe->i_blkno, 7, fe->i_signature);
Mark Fashehccd979b2005-12-15 14:31:24 -080082 goto bail;
83 }
84
85 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
86 le32_to_cpu(fe->i_clusters))) {
87 mlog(ML_ERROR, "block offset is outside the allocated size: "
88 "%llu\n", (unsigned long long)iblock);
89 goto bail;
90 }
91
92 /* We don't use the page cache to create symlink data, so if
93 * need be, copy it over from the buffer cache. */
94 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
95 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
96 iblock;
97 buffer_cache_bh = sb_getblk(osb->sb, blkno);
98 if (!buffer_cache_bh) {
99 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
100 goto bail;
101 }
102
103 /* we haven't locked out transactions, so a commit
104 * could've happened. Since we've got a reference on
105 * the bh, even if it commits while we're doing the
106 * copy, the data is still good. */
107 if (buffer_jbd(buffer_cache_bh)
108 && ocfs2_inode_is_new(inode)) {
109 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
110 if (!kaddr) {
111 mlog(ML_ERROR, "couldn't kmap!\n");
112 goto bail;
113 }
114 memcpy(kaddr + (bh_result->b_size * iblock),
115 buffer_cache_bh->b_data,
116 bh_result->b_size);
117 kunmap_atomic(kaddr, KM_USER0);
118 set_buffer_uptodate(bh_result);
119 }
120 brelse(buffer_cache_bh);
121 }
122
123 map_bh(bh_result, inode->i_sb,
124 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
125
126 err = 0;
127
128bail:
129 if (bh)
130 brelse(bh);
131
132 mlog_exit(err);
133 return err;
134}
135
136static int ocfs2_get_block(struct inode *inode, sector_t iblock,
137 struct buffer_head *bh_result, int create)
138{
139 int err = 0;
140 u64 p_blkno, past_eof;
Mark Fasheh25baf2d2007-02-14 15:30:30 -0800141 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
Mark Fashehccd979b2005-12-15 14:31:24 -0800142
143 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
144 (unsigned long long)iblock, bh_result, create);
145
146 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148 inode, inode->i_ino);
149
150 if (S_ISLNK(inode->i_mode)) {
151 /* this always does I/O for some reason. */
152 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153 goto bail;
154 }
155
Mark Fasheh363041a2007-01-17 12:31:35 -0800156 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL);
Mark Fashehccd979b2005-12-15 14:31:24 -0800157 if (err) {
158 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
Mark Fashehb06970532006-03-03 10:24:33 -0800159 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
160 (unsigned long long)p_blkno);
Mark Fashehccd979b2005-12-15 14:31:24 -0800161 goto bail;
162 }
163
Mark Fasheh25baf2d2007-02-14 15:30:30 -0800164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
168 * allows block_prepare_write() to zero.
169 */
170 mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
171 "ino %lu, iblock %llu\n", inode->i_ino,
172 (unsigned long long)iblock);
Mark Fashehccd979b2005-12-15 14:31:24 -0800173
Mark Fasheh25baf2d2007-02-14 15:30:30 -0800174 if (p_blkno)
175 map_bh(bh_result, inode->i_sb, p_blkno);
176
177 if (!ocfs2_sparse_alloc(osb)) {
178 if (p_blkno == 0) {
179 err = -EIO;
180 mlog(ML_ERROR,
181 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
182 (unsigned long long)iblock,
183 (unsigned long long)p_blkno,
184 (unsigned long long)OCFS2_I(inode)->ip_blkno);
185 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
186 dump_stack();
187 }
188
189 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
190 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
191 (unsigned long long)past_eof);
192
193 if (create && (iblock >= past_eof))
194 set_buffer_new(bh_result);
Mark Fashehccd979b2005-12-15 14:31:24 -0800195 }
196
Mark Fashehccd979b2005-12-15 14:31:24 -0800197bail:
198 if (err < 0)
199 err = -EIO;
200
201 mlog_exit(err);
202 return err;
203}
204
205static int ocfs2_readpage(struct file *file, struct page *page)
206{
207 struct inode *inode = page->mapping->host;
208 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
209 int ret, unlock = 1;
210
211 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
212
Mark Fasheh4bcec182006-10-09 16:02:40 -0700213 ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
Mark Fashehccd979b2005-12-15 14:31:24 -0800214 if (ret != 0) {
215 if (ret == AOP_TRUNCATED_PAGE)
216 unlock = 0;
217 mlog_errno(ret);
218 goto out;
219 }
220
221 down_read(&OCFS2_I(inode)->ip_alloc_sem);
222
223 /*
224 * i_size might have just been updated as we grabed the meta lock. We
225 * might now be discovering a truncate that hit on another node.
226 * block_read_full_page->get_block freaks out if it is asked to read
227 * beyond the end of a file, so we check here. Callers
228 * (generic_file_read, fault->nopage) are clever enough to check i_size
229 * and notice that the page they just read isn't needed.
230 *
231 * XXX sys_readahead() seems to get that wrong?
232 */
233 if (start >= i_size_read(inode)) {
234 char *addr = kmap(page);
235 memset(addr, 0, PAGE_SIZE);
236 flush_dcache_page(page);
237 kunmap(page);
238 SetPageUptodate(page);
239 ret = 0;
240 goto out_alloc;
241 }
242
243 ret = ocfs2_data_lock_with_page(inode, 0, page);
244 if (ret != 0) {
245 if (ret == AOP_TRUNCATED_PAGE)
246 unlock = 0;
247 mlog_errno(ret);
248 goto out_alloc;
249 }
250
251 ret = block_read_full_page(page, ocfs2_get_block);
252 unlock = 0;
253
254 ocfs2_data_unlock(inode, 0);
255out_alloc:
256 up_read(&OCFS2_I(inode)->ip_alloc_sem);
257 ocfs2_meta_unlock(inode, 0);
258out:
259 if (unlock)
260 unlock_page(page);
261 mlog_exit(ret);
262 return ret;
263}
264
265/* Note: Because we don't support holes, our allocation has
266 * already happened (allocation writes zeros to the file data)
267 * so we don't have to worry about ordered writes in
268 * ocfs2_writepage.
269 *
270 * ->writepage is called during the process of invalidating the page cache
271 * during blocked lock processing. It can't block on any cluster locks
272 * to during block mapping. It's relying on the fact that the block
273 * mapping can't have disappeared under the dirty pages that it is
274 * being asked to write back.
275 */
276static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
277{
278 int ret;
279
280 mlog_entry("(0x%p)\n", page);
281
282 ret = block_write_full_page(page, ocfs2_get_block, wbc);
283
284 mlog_exit(ret);
285
286 return ret;
287}
288
Mark Fasheh50691202007-02-09 20:52:53 -0800289/*
290 * This is called from ocfs2_write_zero_page() which has handled it's
291 * own cluster locking and has ensured allocation exists for those
292 * blocks to be written.
293 */
Mark Fasheh53013cb2006-05-05 19:04:03 -0700294int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
295 unsigned from, unsigned to)
296{
297 int ret;
298
299 down_read(&OCFS2_I(inode)->ip_alloc_sem);
300
301 ret = block_prepare_write(page, from, to, ocfs2_get_block);
302
303 up_read(&OCFS2_I(inode)->ip_alloc_sem);
304
305 return ret;
306}
307
Mark Fashehccd979b2005-12-15 14:31:24 -0800308/* Taken from ext3. We don't necessarily need the full blown
309 * functionality yet, but IMHO it's better to cut and paste the whole
310 * thing so we can avoid introducing our own bugs (and easily pick up
311 * their fixes when they happen) --Mark */
Mark Fasheh60b11392007-02-16 11:46:50 -0800312int walk_page_buffers( handle_t *handle,
313 struct buffer_head *head,
314 unsigned from,
315 unsigned to,
316 int *partial,
317 int (*fn)( handle_t *handle,
318 struct buffer_head *bh))
Mark Fashehccd979b2005-12-15 14:31:24 -0800319{
320 struct buffer_head *bh;
321 unsigned block_start, block_end;
322 unsigned blocksize = head->b_size;
323 int err, ret = 0;
324 struct buffer_head *next;
325
326 for ( bh = head, block_start = 0;
327 ret == 0 && (bh != head || !block_start);
328 block_start = block_end, bh = next)
329 {
330 next = bh->b_this_page;
331 block_end = block_start + blocksize;
332 if (block_end <= from || block_start >= to) {
333 if (partial && !buffer_uptodate(bh))
334 *partial = 1;
335 continue;
336 }
337 err = (*fn)(handle, bh);
338 if (!ret)
339 ret = err;
340 }
341 return ret;
342}
343
Mark Fasheh1fabe142006-10-09 18:11:45 -0700344handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
Mark Fashehccd979b2005-12-15 14:31:24 -0800345 struct page *page,
346 unsigned from,
347 unsigned to)
348{
349 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
Mark Fasheh1fabe142006-10-09 18:11:45 -0700350 handle_t *handle = NULL;
Mark Fashehccd979b2005-12-15 14:31:24 -0800351 int ret = 0;
352
Mark Fasheh65eff9c2006-10-09 17:26:22 -0700353 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
Mark Fashehccd979b2005-12-15 14:31:24 -0800354 if (!handle) {
355 ret = -ENOMEM;
356 mlog_errno(ret);
357 goto out;
358 }
359
360 if (ocfs2_should_order_data(inode)) {
Mark Fasheh1fabe142006-10-09 18:11:45 -0700361 ret = walk_page_buffers(handle,
Mark Fashehccd979b2005-12-15 14:31:24 -0800362 page_buffers(page),
363 from, to, NULL,
364 ocfs2_journal_dirty_data);
365 if (ret < 0)
366 mlog_errno(ret);
367 }
368out:
369 if (ret) {
370 if (handle)
Mark Fasheh02dc1af2006-10-09 16:48:10 -0700371 ocfs2_commit_trans(osb, handle);
Mark Fashehccd979b2005-12-15 14:31:24 -0800372 handle = ERR_PTR(ret);
373 }
374 return handle;
375}
376
Mark Fashehccd979b2005-12-15 14:31:24 -0800377static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
378{
379 sector_t status;
380 u64 p_blkno = 0;
381 int err = 0;
382 struct inode *inode = mapping->host;
383
384 mlog_entry("(block = %llu)\n", (unsigned long long)block);
385
386 /* We don't need to lock journal system files, since they aren't
387 * accessed concurrently from multiple nodes.
388 */
389 if (!INODE_JOURNAL(inode)) {
Mark Fasheh4bcec182006-10-09 16:02:40 -0700390 err = ocfs2_meta_lock(inode, NULL, 0);
Mark Fashehccd979b2005-12-15 14:31:24 -0800391 if (err) {
392 if (err != -ENOENT)
393 mlog_errno(err);
394 goto bail;
395 }
396 down_read(&OCFS2_I(inode)->ip_alloc_sem);
397 }
398
Mark Fasheh363041a2007-01-17 12:31:35 -0800399 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL);
Mark Fashehccd979b2005-12-15 14:31:24 -0800400
401 if (!INODE_JOURNAL(inode)) {
402 up_read(&OCFS2_I(inode)->ip_alloc_sem);
403 ocfs2_meta_unlock(inode, 0);
404 }
405
406 if (err) {
407 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
408 (unsigned long long)block);
409 mlog_errno(err);
410 goto bail;
411 }
412
413
414bail:
415 status = err ? 0 : p_blkno;
416
417 mlog_exit((int)status);
418
419 return status;
420}
421
422/*
423 * TODO: Make this into a generic get_blocks function.
424 *
425 * From do_direct_io in direct-io.c:
426 * "So what we do is to permit the ->get_blocks function to populate
427 * bh.b_size with the size of IO which is permitted at this offset and
428 * this i_blkbits."
429 *
430 * This function is called directly from get_more_blocks in direct-io.c.
431 *
432 * called like this: dio->get_blocks(dio->inode, fs_startblk,
433 * fs_count, map_bh, dio->rw == WRITE);
434 */
435static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
Mark Fashehccd979b2005-12-15 14:31:24 -0800436 struct buffer_head *bh_result, int create)
437{
438 int ret;
Mark Fasheh564f8a32006-12-14 13:01:05 -0800439 u64 p_blkno, inode_blocks;
Mark Fashehccd979b2005-12-15 14:31:24 -0800440 int contig_blocks;
Florin Malita184d7d22006-06-03 19:30:10 -0400441 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
Badari Pulavarty1d8fa7a2006-03-26 01:38:02 -0800442 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
Mark Fashehccd979b2005-12-15 14:31:24 -0800443
Mark Fashehccd979b2005-12-15 14:31:24 -0800444 /* This function won't even be called if the request isn't all
445 * nicely aligned and of the right size, so there's no need
446 * for us to check any of that. */
447
Mark Fasheh25baf2d2007-02-14 15:30:30 -0800448 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
Mark Fasheh564f8a32006-12-14 13:01:05 -0800449
450 /*
451 * Any write past EOF is not allowed because we'd be extending.
452 */
453 if (create && (iblock + max_blocks) > inode_blocks) {
Mark Fashehccd979b2005-12-15 14:31:24 -0800454 ret = -EIO;
455 goto bail;
456 }
Mark Fashehccd979b2005-12-15 14:31:24 -0800457
458 /* This figures out the size of the next contiguous block, and
459 * our logical offset */
Mark Fasheh363041a2007-01-17 12:31:35 -0800460 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
Mark Fashehccd979b2005-12-15 14:31:24 -0800461 &contig_blocks);
462 if (ret) {
463 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
464 (unsigned long long)iblock);
465 ret = -EIO;
466 goto bail;
467 }
468
Mark Fasheh25baf2d2007-02-14 15:30:30 -0800469 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
470 ocfs2_error(inode->i_sb,
471 "Inode %llu has a hole at block %llu\n",
472 (unsigned long long)OCFS2_I(inode)->ip_blkno,
473 (unsigned long long)iblock);
474 ret = -EROFS;
475 goto bail;
476 }
477
478 /*
479 * get_more_blocks() expects us to describe a hole by clearing
480 * the mapped bit on bh_result().
481 */
482 if (p_blkno)
483 map_bh(bh_result, inode->i_sb, p_blkno);
484 else {
485 /*
486 * ocfs2_prepare_inode_for_write() should have caught
487 * the case where we'd be filling a hole and triggered
488 * a buffered write instead.
489 */
490 if (create) {
491 ret = -EIO;
492 mlog_errno(ret);
493 goto bail;
494 }
495
496 clear_buffer_mapped(bh_result);
497 }
Mark Fashehccd979b2005-12-15 14:31:24 -0800498
499 /* make sure we don't map more than max_blocks blocks here as
500 that's all the kernel will handle at this point. */
501 if (max_blocks < contig_blocks)
502 contig_blocks = max_blocks;
503 bh_result->b_size = contig_blocks << blocksize_bits;
504bail:
505 return ret;
506}
507
508/*
509 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
510 * particularly interested in the aio/dio case. Like the core uses
511 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
512 * truncation on another.
513 */
514static void ocfs2_dio_end_io(struct kiocb *iocb,
515 loff_t offset,
516 ssize_t bytes,
517 void *private)
518{
Josef Sipekd28c9172006-12-08 02:37:25 -0800519 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
Mark Fashehccd979b2005-12-15 14:31:24 -0800520
521 /* this io's submitter should not have unlocked this before we could */
522 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
523 ocfs2_iocb_clear_rw_locked(iocb);
524 up_read(&inode->i_alloc_sem);
525 ocfs2_rw_unlock(inode, 0);
526}
527
Joel Becker03f981c2007-01-04 14:54:41 -0800528/*
529 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
530 * from ext3. PageChecked() bits have been removed as OCFS2 does not
531 * do journalled data.
532 */
533static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
534{
535 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
536
537 journal_invalidatepage(journal, page, offset);
538}
539
540static int ocfs2_releasepage(struct page *page, gfp_t wait)
541{
542 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
543
544 if (!page_has_buffers(page))
545 return 0;
546 return journal_try_to_free_buffers(journal, page, wait);
547}
548
Mark Fashehccd979b2005-12-15 14:31:24 -0800549static ssize_t ocfs2_direct_IO(int rw,
550 struct kiocb *iocb,
551 const struct iovec *iov,
552 loff_t offset,
553 unsigned long nr_segs)
554{
555 struct file *file = iocb->ki_filp;
Josef Sipekd28c9172006-12-08 02:37:25 -0800556 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
Mark Fashehccd979b2005-12-15 14:31:24 -0800557 int ret;
558
559 mlog_entry_void();
Mark Fasheh53013cb2006-05-05 19:04:03 -0700560
Mark Fasheh9517bac2007-02-09 20:24:12 -0800561 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
562 /*
563 * We get PR data locks even for O_DIRECT. This
564 * allows concurrent O_DIRECT I/O but doesn't let
565 * O_DIRECT with extending and buffered zeroing writes
566 * race. If they did race then the buffered zeroing
567 * could be written back after the O_DIRECT I/O. It's
568 * one thing to tell people not to mix buffered and
569 * O_DIRECT writes, but expecting them to understand
570 * that file extension is also an implicit buffered
571 * write is too much. By getting the PR we force
572 * writeback of the buffered zeroing before
573 * proceeding.
574 */
575 ret = ocfs2_data_lock(inode, 0);
576 if (ret < 0) {
577 mlog_errno(ret);
578 goto out;
579 }
580 ocfs2_data_unlock(inode, 0);
Mark Fasheh53013cb2006-05-05 19:04:03 -0700581 }
Mark Fasheh53013cb2006-05-05 19:04:03 -0700582
Mark Fashehccd979b2005-12-15 14:31:24 -0800583 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
584 inode->i_sb->s_bdev, iov, offset,
585 nr_segs,
586 ocfs2_direct_IO_get_blocks,
587 ocfs2_dio_end_io);
Mark Fasheh53013cb2006-05-05 19:04:03 -0700588out:
Mark Fashehccd979b2005-12-15 14:31:24 -0800589 mlog_exit(ret);
590 return ret;
591}
592
Mark Fasheh9517bac2007-02-09 20:24:12 -0800593static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
594 u32 cpos,
595 unsigned int *start,
596 unsigned int *end)
597{
598 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
599
600 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
601 unsigned int cpp;
602
603 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
604
605 cluster_start = cpos % cpp;
606 cluster_start = cluster_start << osb->s_clustersize_bits;
607
608 cluster_end = cluster_start + osb->s_clustersize;
609 }
610
611 BUG_ON(cluster_start > PAGE_SIZE);
612 BUG_ON(cluster_end > PAGE_SIZE);
613
614 if (start)
615 *start = cluster_start;
616 if (end)
617 *end = cluster_end;
618}
619
620/*
621 * 'from' and 'to' are the region in the page to avoid zeroing.
622 *
623 * If pagesize > clustersize, this function will avoid zeroing outside
624 * of the cluster boundary.
625 *
626 * from == to == 0 is code for "zero the entire cluster region"
627 */
628static void ocfs2_clear_page_regions(struct page *page,
629 struct ocfs2_super *osb, u32 cpos,
630 unsigned from, unsigned to)
631{
632 void *kaddr;
633 unsigned int cluster_start, cluster_end;
634
635 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
636
637 kaddr = kmap_atomic(page, KM_USER0);
638
639 if (from || to) {
640 if (from > cluster_start)
641 memset(kaddr + cluster_start, 0, from - cluster_start);
642 if (to < cluster_end)
643 memset(kaddr + to, 0, cluster_end - to);
644 } else {
645 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
646 }
647
648 kunmap_atomic(kaddr, KM_USER0);
649}
650
651/*
652 * Some of this taken from block_prepare_write(). We already have our
653 * mapping by now though, and the entire write will be allocating or
654 * it won't, so not much need to use BH_New.
655 *
656 * This will also skip zeroing, which is handled externally.
657 */
Mark Fasheh60b11392007-02-16 11:46:50 -0800658int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
659 struct inode *inode, unsigned int from,
660 unsigned int to, int new)
Mark Fasheh9517bac2007-02-09 20:24:12 -0800661{
662 int ret = 0;
663 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
664 unsigned int block_end, block_start;
665 unsigned int bsize = 1 << inode->i_blkbits;
666
667 if (!page_has_buffers(page))
668 create_empty_buffers(page, bsize, 0);
669
670 head = page_buffers(page);
671 for (bh = head, block_start = 0; bh != head || !block_start;
672 bh = bh->b_this_page, block_start += bsize) {
673 block_end = block_start + bsize;
674
675 /*
676 * Ignore blocks outside of our i/o range -
677 * they may belong to unallocated clusters.
678 */
Mark Fasheh60b11392007-02-16 11:46:50 -0800679 if (block_start >= to || block_end <= from) {
Mark Fasheh9517bac2007-02-09 20:24:12 -0800680 if (PageUptodate(page))
681 set_buffer_uptodate(bh);
682 continue;
683 }
684
685 /*
686 * For an allocating write with cluster size >= page
687 * size, we always write the entire page.
688 */
689
690 if (buffer_new(bh))
691 clear_buffer_new(bh);
692
693 if (!buffer_mapped(bh)) {
694 map_bh(bh, inode->i_sb, *p_blkno);
695 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
696 }
697
698 if (PageUptodate(page)) {
699 if (!buffer_uptodate(bh))
700 set_buffer_uptodate(bh);
701 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
702 (block_start < from || block_end > to)) {
703 ll_rw_block(READ, 1, &bh);
704 *wait_bh++=bh;
705 }
706
707 *p_blkno = *p_blkno + 1;
708 }
709
710 /*
711 * If we issued read requests - let them complete.
712 */
713 while(wait_bh > wait) {
714 wait_on_buffer(*--wait_bh);
715 if (!buffer_uptodate(*wait_bh))
716 ret = -EIO;
717 }
718
719 if (ret == 0 || !new)
720 return ret;
721
722 /*
723 * If we get -EIO above, zero out any newly allocated blocks
724 * to avoid exposing stale data.
725 */
726 bh = head;
727 block_start = 0;
728 do {
729 void *kaddr;
730
731 block_end = block_start + bsize;
732 if (block_end <= from)
733 goto next_bh;
734 if (block_start >= to)
735 break;
736
737 kaddr = kmap_atomic(page, KM_USER0);
738 memset(kaddr+block_start, 0, bh->b_size);
739 flush_dcache_page(page);
740 kunmap_atomic(kaddr, KM_USER0);
741 set_buffer_uptodate(bh);
742 mark_buffer_dirty(bh);
743
744next_bh:
745 block_start = block_end;
746 bh = bh->b_this_page;
747 } while (bh != head);
748
749 return ret;
750}
751
752/*
Mark Fasheh6af67d82007-03-06 17:24:46 -0800753 * This will copy user data from the buffer page in the splice
754 * context.
755 *
756 * For now, we ignore SPLICE_F_MOVE as that would require some extra
757 * communication out all the way to ocfs2_write().
758 */
759int ocfs2_map_and_write_splice_data(struct inode *inode,
760 struct ocfs2_write_ctxt *wc, u64 *p_blkno,
761 unsigned int *ret_from, unsigned int *ret_to)
762{
763 int ret;
764 unsigned int to, from, cluster_start, cluster_end;
765 char *src, *dst;
766 struct ocfs2_splice_write_priv *sp = wc->w_private;
767 struct pipe_buffer *buf = sp->s_buf;
768 unsigned long bytes, src_from;
769 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
770
771 ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
772 &cluster_end);
773
774 from = sp->s_offset;
775 src_from = sp->s_buf_offset;
776 bytes = wc->w_count;
777
778 if (wc->w_large_pages) {
779 /*
780 * For cluster size < page size, we have to
781 * calculate pos within the cluster and obey
782 * the rightmost boundary.
783 */
784 bytes = min(bytes, (unsigned long)(osb->s_clustersize
785 - (wc->w_pos & (osb->s_clustersize - 1))));
786 }
787 to = from + bytes;
788
789 if (wc->w_this_page_new)
790 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
791 cluster_start, cluster_end, 1);
792 else
793 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
794 from, to, 0);
795 if (ret) {
796 mlog_errno(ret);
797 goto out;
798 }
799
800 BUG_ON(from > PAGE_CACHE_SIZE);
801 BUG_ON(to > PAGE_CACHE_SIZE);
802 BUG_ON(from > osb->s_clustersize);
803 BUG_ON(to > osb->s_clustersize);
804
805 src = buf->ops->map(sp->s_pipe, buf, 1);
806 dst = kmap_atomic(wc->w_this_page, KM_USER1);
807 memcpy(dst + from, src + src_from, bytes);
808 kunmap_atomic(wc->w_this_page, KM_USER1);
809 buf->ops->unmap(sp->s_pipe, buf, src);
810
811 wc->w_finished_copy = 1;
812
813 *ret_from = from;
814 *ret_to = to;
815out:
816
817 return bytes ? (unsigned int)bytes : ret;
818}
819
820/*
Mark Fasheh9517bac2007-02-09 20:24:12 -0800821 * This will copy user data from the iovec in the buffered write
822 * context.
823 */
824int ocfs2_map_and_write_user_data(struct inode *inode,
825 struct ocfs2_write_ctxt *wc, u64 *p_blkno,
826 unsigned int *ret_from, unsigned int *ret_to)
827{
828 int ret;
829 unsigned int to, from, cluster_start, cluster_end;
830 unsigned long bytes, src_from;
831 char *dst;
832 struct ocfs2_buffered_write_priv *bp = wc->w_private;
833 const struct iovec *cur_iov = bp->b_cur_iov;
834 char __user *buf;
835 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
836
837 ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
838 &cluster_end);
839
840 buf = cur_iov->iov_base + bp->b_cur_off;
841 src_from = (unsigned long)buf & ~PAGE_CACHE_MASK;
842
843 from = wc->w_pos & (PAGE_CACHE_SIZE - 1);
844
845 /*
846 * This is a lot of comparisons, but it reads quite
847 * easily, which is important here.
848 */
849 /* Stay within the src page */
850 bytes = PAGE_SIZE - src_from;
851 /* Stay within the vector */
852 bytes = min(bytes,
853 (unsigned long)(cur_iov->iov_len - bp->b_cur_off));
854 /* Stay within count */
855 bytes = min(bytes, (unsigned long)wc->w_count);
856 /*
857 * For clustersize > page size, just stay within
858 * target page, otherwise we have to calculate pos
859 * within the cluster and obey the rightmost
860 * boundary.
861 */
862 if (wc->w_large_pages) {
863 /*
864 * For cluster size < page size, we have to
865 * calculate pos within the cluster and obey
866 * the rightmost boundary.
867 */
868 bytes = min(bytes, (unsigned long)(osb->s_clustersize
869 - (wc->w_pos & (osb->s_clustersize - 1))));
870 } else {
871 /*
872 * cluster size > page size is the most common
873 * case - we just stay within the target page
874 * boundary.
875 */
876 bytes = min(bytes, PAGE_CACHE_SIZE - from);
877 }
878
879 to = from + bytes;
880
881 if (wc->w_this_page_new)
882 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
883 cluster_start, cluster_end, 1);
884 else
885 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
886 from, to, 0);
887 if (ret) {
888 mlog_errno(ret);
889 goto out;
890 }
891
892 BUG_ON(from > PAGE_CACHE_SIZE);
893 BUG_ON(to > PAGE_CACHE_SIZE);
894 BUG_ON(from > osb->s_clustersize);
895 BUG_ON(to > osb->s_clustersize);
896
897 dst = kmap(wc->w_this_page);
898 memcpy(dst + from, bp->b_src_buf + src_from, bytes);
899 kunmap(wc->w_this_page);
900
901 /*
902 * XXX: This is slow, but simple. The caller of
903 * ocfs2_buffered_write_cluster() is responsible for
904 * passing through the iovecs, so it's difficult to
905 * predict what our next step is in here after our
906 * initial write. A future version should be pushing
907 * that iovec manipulation further down.
908 *
909 * By setting this, we indicate that a copy from user
910 * data was done, and subsequent calls for this
911 * cluster will skip copying more data.
912 */
913 wc->w_finished_copy = 1;
914
915 *ret_from = from;
916 *ret_to = to;
917out:
918
919 return bytes ? (unsigned int)bytes : ret;
920}
921
922/*
923 * Map, fill and write a page to disk.
924 *
925 * The work of copying data is done via callback. Newly allocated
926 * pages which don't take user data will be zero'd (set 'new' to
927 * indicate an allocating write)
928 *
929 * Returns a negative error code or the number of bytes copied into
930 * the page.
931 */
932int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
933 u64 *p_blkno, struct page *page,
934 struct ocfs2_write_ctxt *wc, int new)
935{
936 int ret, copied = 0;
937 unsigned int from = 0, to = 0;
938 unsigned int cluster_start, cluster_end;
939 unsigned int zero_from = 0, zero_to = 0;
940
941 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos,
942 &cluster_start, &cluster_end);
943
944 if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index
945 && !wc->w_finished_copy) {
946
947 wc->w_this_page = page;
948 wc->w_this_page_new = new;
949 ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to);
950 if (ret < 0) {
951 mlog_errno(ret);
952 goto out;
953 }
954
955 copied = ret;
956
957 zero_from = from;
958 zero_to = to;
959 if (new) {
960 from = cluster_start;
961 to = cluster_end;
962 }
963 } else {
964 /*
965 * If we haven't allocated the new page yet, we
966 * shouldn't be writing it out without copying user
967 * data. This is likely a math error from the caller.
968 */
969 BUG_ON(!new);
970
971 from = cluster_start;
972 to = cluster_end;
973
974 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
975 cluster_start, cluster_end, 1);
976 if (ret) {
977 mlog_errno(ret);
978 goto out;
979 }
980 }
981
982 /*
983 * Parts of newly allocated pages need to be zero'd.
984 *
985 * Above, we have also rewritten 'to' and 'from' - as far as
986 * the rest of the function is concerned, the entire cluster
987 * range inside of a page needs to be written.
988 *
989 * We can skip this if the page is up to date - it's already
990 * been zero'd from being read in as a hole.
991 */
992 if (new && !PageUptodate(page))
993 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
994 wc->w_cpos, zero_from, zero_to);
995
996 flush_dcache_page(page);
997
998 if (ocfs2_should_order_data(inode)) {
999 ret = walk_page_buffers(handle,
1000 page_buffers(page),
1001 from, to, NULL,
1002 ocfs2_journal_dirty_data);
1003 if (ret < 0)
1004 mlog_errno(ret);
1005 }
1006
1007 /*
1008 * We don't use generic_commit_write() because we need to
1009 * handle our own i_size update.
1010 */
1011 ret = block_commit_write(page, from, to);
1012 if (ret)
1013 mlog_errno(ret);
1014out:
1015
1016 return copied ? copied : ret;
1017}
1018
1019/*
1020 * Do the actual write of some data into an inode. Optionally allocate
1021 * in order to fulfill the write.
1022 *
1023 * cpos is the logical cluster offset within the file to write at
1024 *
1025 * 'phys' is the physical mapping of that offset. a 'phys' value of
1026 * zero indicates that allocation is required. In this case, data_ac
1027 * and meta_ac should be valid (meta_ac can be null if metadata
1028 * allocation isn't required).
1029 */
1030static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
1031 struct buffer_head *di_bh,
1032 struct ocfs2_alloc_context *data_ac,
1033 struct ocfs2_alloc_context *meta_ac,
1034 struct ocfs2_write_ctxt *wc)
1035{
1036 int ret, i, numpages = 1, new;
1037 unsigned int copied = 0;
1038 u32 tmp_pos;
1039 u64 v_blkno, p_blkno;
1040 struct address_space *mapping = file->f_mapping;
1041 struct inode *inode = mapping->host;
Mark Fasheh9517bac2007-02-09 20:24:12 -08001042 unsigned long index, start;
1043 struct page **cpages;
1044
1045 new = phys == 0 ? 1 : 0;
1046
1047 /*
1048 * Figure out how many pages we'll be manipulating here. For
Mark Fasheh60b11392007-02-16 11:46:50 -08001049 * non allocating write, we just change the one
1050 * page. Otherwise, we'll need a whole clusters worth.
Mark Fasheh9517bac2007-02-09 20:24:12 -08001051 */
Mark Fasheh60b11392007-02-16 11:46:50 -08001052 if (new)
1053 numpages = ocfs2_pages_per_cluster(inode->i_sb);
Mark Fasheh9517bac2007-02-09 20:24:12 -08001054
1055 cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS);
1056 if (!cpages) {
1057 ret = -ENOMEM;
1058 mlog_errno(ret);
1059 return ret;
1060 }
1061
1062 /*
1063 * Fill our page array first. That way we've grabbed enough so
1064 * that we can zero and flush if we error after adding the
1065 * extent.
1066 */
1067 if (new) {
1068 start = ocfs2_align_clusters_to_page_index(inode->i_sb,
1069 wc->w_cpos);
1070 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos);
1071 } else {
1072 start = wc->w_pos >> PAGE_CACHE_SHIFT;
1073 v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits;
1074 }
1075
1076 for(i = 0; i < numpages; i++) {
1077 index = start + i;
1078
1079 cpages[i] = grab_cache_page(mapping, index);
1080 if (!cpages[i]) {
1081 ret = -ENOMEM;
1082 mlog_errno(ret);
1083 goto out;
1084 }
1085 }
1086
1087 if (new) {
1088 /*
1089 * This is safe to call with the page locks - it won't take
1090 * any additional semaphores or cluster locks.
1091 */
1092 tmp_pos = wc->w_cpos;
1093 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1094 &tmp_pos, 1, di_bh, handle,
1095 data_ac, meta_ac, NULL);
1096 /*
1097 * This shouldn't happen because we must have already
1098 * calculated the correct meta data allocation required. The
1099 * internal tree allocation code should know how to increase
1100 * transaction credits itself.
1101 *
1102 * If need be, we could handle -EAGAIN for a
1103 * RESTART_TRANS here.
1104 */
1105 mlog_bug_on_msg(ret == -EAGAIN,
1106 "Inode %llu: EAGAIN return during allocation.\n",
1107 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1108 if (ret < 0) {
1109 mlog_errno(ret);
1110 goto out;
1111 }
1112 }
1113
1114 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL);
1115 if (ret < 0) {
1116
1117 /*
1118 * XXX: Should we go readonly here?
1119 */
1120
1121 mlog_errno(ret);
1122 goto out;
1123 }
1124
1125 BUG_ON(p_blkno == 0);
1126
1127 for(i = 0; i < numpages; i++) {
1128 ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i],
1129 wc, new);
1130 if (ret < 0) {
1131 mlog_errno(ret);
1132 goto out;
1133 }
1134
1135 copied += ret;
1136 }
1137
1138out:
1139 for(i = 0; i < numpages; i++) {
1140 unlock_page(cpages[i]);
1141 mark_page_accessed(cpages[i]);
1142 page_cache_release(cpages[i]);
1143 }
1144 kfree(cpages);
1145
1146 return copied ? copied : ret;
1147}
1148
1149static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc,
1150 struct ocfs2_super *osb, loff_t pos,
1151 size_t count, ocfs2_page_writer *cb,
1152 void *cb_priv)
1153{
1154 wc->w_count = count;
1155 wc->w_pos = pos;
1156 wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits;
1157 wc->w_finished_copy = 0;
1158
1159 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1160 wc->w_large_pages = 1;
1161 else
1162 wc->w_large_pages = 0;
1163
1164 wc->w_write_data_page = cb;
1165 wc->w_private = cb_priv;
1166}
1167
1168/*
1169 * Write a cluster to an inode. The cluster may not be allocated yet,
1170 * in which case it will be. This only exists for buffered writes -
1171 * O_DIRECT takes a more "traditional" path through the kernel.
1172 *
1173 * The caller is responsible for incrementing pos, written counts, etc
1174 *
1175 * For file systems that don't support sparse files, pre-allocation
1176 * and page zeroing up until cpos should be done prior to this
1177 * function call.
1178 *
1179 * Callers should be holding i_sem, and the rw cluster lock.
1180 *
1181 * Returns the number of user bytes written, or less than zero for
1182 * error.
1183 */
1184ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
1185 size_t count, ocfs2_page_writer *actor,
1186 void *priv)
1187{
1188 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1189 ssize_t written = 0;
1190 u32 phys;
1191 struct inode *inode = file->f_mapping->host;
1192 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1193 struct buffer_head *di_bh = NULL;
1194 struct ocfs2_dinode *di;
1195 struct ocfs2_alloc_context *data_ac = NULL;
1196 struct ocfs2_alloc_context *meta_ac = NULL;
1197 handle_t *handle;
1198 struct ocfs2_write_ctxt wc;
1199
1200 ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv);
1201
1202 ret = ocfs2_meta_lock(inode, &di_bh, 1);
1203 if (ret) {
1204 mlog_errno(ret);
1205 goto out;
1206 }
1207 di = (struct ocfs2_dinode *)di_bh->b_data;
1208
1209 /*
1210 * Take alloc sem here to prevent concurrent lookups. That way
1211 * the mapping, zeroing and tree manipulation within
1212 * ocfs2_write() will be safe against ->readpage(). This
1213 * should also serve to lock out allocation from a shared
1214 * writeable region.
1215 */
1216 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1217
1218 ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL);
1219 if (ret) {
1220 mlog_errno(ret);
1221 goto out_meta;
1222 }
1223
1224 /* phys == 0 means that allocation is required. */
1225 if (phys == 0) {
1226 ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac);
1227 if (ret) {
1228 mlog_errno(ret);
1229 goto out_meta;
1230 }
1231
1232 credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1);
1233 }
1234
1235 ret = ocfs2_data_lock(inode, 1);
1236 if (ret) {
1237 mlog_errno(ret);
1238 goto out_meta;
1239 }
1240
1241 handle = ocfs2_start_trans(osb, credits);
1242 if (IS_ERR(handle)) {
1243 ret = PTR_ERR(handle);
1244 mlog_errno(ret);
1245 goto out_data;
1246 }
1247
1248 written = ocfs2_write(file, phys, handle, di_bh, data_ac,
1249 meta_ac, &wc);
1250 if (written < 0) {
1251 ret = written;
1252 mlog_errno(ret);
1253 goto out_commit;
1254 }
1255
1256 ret = ocfs2_journal_access(handle, inode, di_bh,
1257 OCFS2_JOURNAL_ACCESS_WRITE);
1258 if (ret) {
1259 mlog_errno(ret);
1260 goto out_commit;
1261 }
1262
1263 pos += written;
1264 if (pos > inode->i_size) {
1265 i_size_write(inode, pos);
1266 mark_inode_dirty(inode);
1267 }
1268 inode->i_blocks = ocfs2_align_bytes_to_sectors((u64)(i_size_read(inode)));
1269 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1270 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1271 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1272 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1273
1274 ret = ocfs2_journal_dirty(handle, di_bh);
1275 if (ret)
1276 mlog_errno(ret);
1277
1278out_commit:
1279 ocfs2_commit_trans(osb, handle);
1280
1281out_data:
1282 ocfs2_data_unlock(inode, 1);
1283
1284out_meta:
1285 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1286 ocfs2_meta_unlock(inode, 1);
1287
1288out:
1289 brelse(di_bh);
1290 if (data_ac)
1291 ocfs2_free_alloc_context(data_ac);
1292 if (meta_ac)
1293 ocfs2_free_alloc_context(meta_ac);
1294
1295 return written ? written : ret;
1296}
1297
Christoph Hellwigf5e54d62006-06-28 04:26:44 -07001298const struct address_space_operations ocfs2_aops = {
Mark Fashehccd979b2005-12-15 14:31:24 -08001299 .readpage = ocfs2_readpage,
1300 .writepage = ocfs2_writepage,
Mark Fashehccd979b2005-12-15 14:31:24 -08001301 .bmap = ocfs2_bmap,
1302 .sync_page = block_sync_page,
Joel Becker03f981c2007-01-04 14:54:41 -08001303 .direct_IO = ocfs2_direct_IO,
1304 .invalidatepage = ocfs2_invalidatepage,
1305 .releasepage = ocfs2_releasepage,
1306 .migratepage = buffer_migrate_page,
Mark Fashehccd979b2005-12-15 14:31:24 -08001307};