clocksource: arch_timer: use virtual counters

Switching between reading the virtual or physical counters is
problematic, as some core code wants a view of time before we're fully
set up. Using a function pointer and switching the source after the
first read can make time appear to go backwards, and having a check in
the read function is an unfortunate block on what we want to be a fast
path.

Instead, this patch makes us always use the virtual counters. If we're a
guest, or don't have hyp mode, we'll use the virtual timers, and as such
don't care about CNTVOFF as long as it doesn't change in such a way as
to make time appear to travel backwards. As the guest will use the
virtual timers, a (potential) KVM host must use the physical timers
(which can wake up the host even if they fire while a guest is
executing), and hence a host must have CNTVOFF set to zero so as to have
a consistent view of time between the physical timers and virtual
counters.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Rob Herring <rob.herring@calxeda.com>
diff --git a/drivers/clocksource/arm_arch_timer.c b/drivers/clocksource/arm_arch_timer.c
index a2b2541..053d846 100644
--- a/drivers/clocksource/arm_arch_timer.c
+++ b/drivers/clocksource/arm_arch_timer.c
@@ -186,27 +186,19 @@
 	return arch_timer_rate;
 }
 
-/*
- * Some external users of arch_timer_read_counter (e.g. sched_clock) may try to
- * call it before it has been initialised. Rather than incur a performance
- * penalty checking for initialisation, provide a default implementation that
- * won't lead to time appearing to jump backwards.
- */
-static u64 arch_timer_read_zero(void)
+u64 arch_timer_read_counter(void)
 {
-	return 0;
+	return arch_counter_get_cntvct();
 }
 
-u64 (*arch_timer_read_counter)(void) = arch_timer_read_zero;
-
 static cycle_t arch_counter_read(struct clocksource *cs)
 {
-	return arch_timer_read_counter();
+	return arch_counter_get_cntvct();
 }
 
 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
 {
-	return arch_timer_read_counter();
+	return arch_counter_get_cntvct();
 }
 
 static struct clocksource clocksource_counter = {
@@ -287,7 +279,7 @@
 	cyclecounter.mult = clocksource_counter.mult;
 	cyclecounter.shift = clocksource_counter.shift;
 	timecounter_init(&timecounter, &cyclecounter,
-			 arch_counter_get_cntpct());
+			 arch_counter_get_cntvct());
 
 	if (arch_timer_use_virtual) {
 		ppi = arch_timer_ppi[VIRT_PPI];
@@ -376,11 +368,6 @@
 		}
 	}
 
-	if (arch_timer_use_virtual)
-		arch_timer_read_counter = arch_counter_get_cntvct;
-	else
-		arch_timer_read_counter = arch_counter_get_cntpct;
-
 	arch_timer_register();
 	arch_timer_arch_init();
 }