Import new standalone pool manager.

Change-Id: Icd46198a2980f4b4e17ac18367a006d5e4a33c69
diff --git a/src/pool-manager-impl.h b/src/pool-manager-impl.h
new file mode 100644
index 0000000..d8ea6b6
--- /dev/null
+++ b/src/pool-manager-impl.h
@@ -0,0 +1,521 @@
+// Copyright 2017, VIXL authors
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+//   * Redistributions of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//   * Redistributions in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//   * Neither the name of ARM Limited nor the names of its contributors may be
+//     used to endorse or promote products derived from this software without
+//     specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_POOL_MANAGER_IMPL_H_
+#define VIXL_POOL_MANAGER_IMPL_H_
+
+#include "pool-manager.h"
+
+#include <algorithm>
+#include "assembler-base-vixl.h"
+
+namespace vixl {
+
+
+template <typename T>
+T PoolManager<T>::Emit(MacroAssemblerInterface* masm,
+                       T pc,
+                       int num_bytes,
+                       ForwardReference<T>* new_reference,
+                       LabelBase<T>* new_object,
+                       EmitOption option) {
+  // Make sure that the buffer still has the alignment we think it does.
+  VIXL_ASSERT(IsAligned(masm->AsAssemblerBase()
+                            ->GetBuffer()
+                            ->GetStartAddress<uintptr_t>(),
+                        buffer_alignment_));
+
+  // We should not call this method when the pools are blocked.
+  VIXL_ASSERT(!IsBlocked());
+  if (objects_.empty()) return pc;
+
+  // Emit header.
+  if (option == kBranchRequired) {
+    masm->EmitPoolHeader();
+    // TODO: The pc at this point might not actually be aligned according to
+    // alignment_. This is to support the current AARCH32 MacroAssembler which
+    // does not have a fixed size instruction set. In practice, the pc will be
+    // aligned to the alignment instructions need for the current instruction
+    // set, so we do not need to align it here. All other calculations do take
+    // the alignment into account, which only makes the checkpoint calculations
+    // more conservative when we use T32. Uncomment the following assertion if
+    // the AARCH32 MacroAssembler is modified to only support one ISA at the
+    // time.
+    // VIXL_ASSERT(pc == AlignUp(pc, alignment_));
+    pc += header_size_;
+  } else {
+    // If the header is optional, we might need to add some extra padding to
+    // meet the minimum location of the first object.
+    if (pc < objects_[0].min_location_) {
+      int32_t padding = objects_[0].min_location_ - pc;
+      masm->EmitNopBytes(padding);
+      pc += padding;
+    }
+  }
+
+  PoolObject<T>* existing_object = GetObjectIfTracked(new_object);
+
+  // Go through all objects and emit one by one.
+  for (objects_iter iter = objects_.begin(); iter != objects_.end();) {
+    PoolObject<T>& current = *iter;
+    if (ShouldSkipObject(&current,
+                         pc,
+                         num_bytes,
+                         new_reference,
+                         new_object,
+                         existing_object)) {
+      ++iter;
+      continue;
+    }
+    LabelBase<T>* label_base = current.label_base_;
+    T aligned_pc = AlignUp(pc, current.alignment_);
+    masm->EmitPaddingBytes(aligned_pc - pc);
+    pc = aligned_pc;
+    VIXL_ASSERT(pc >= current.min_location_);
+    VIXL_ASSERT(pc <= current.max_location_);
+    // First call SetLocation, which will also resolve the references, and then
+    // call EmitPoolObject, which might add a new reference.
+    label_base->SetLocation(masm->AsAssemblerBase(), pc);
+    label_base->EmitPoolObject(masm);
+    if (label_base->ShouldDeletePoolObjectOnPlacement()) {
+      label_base->MarkBound();
+      iter = RemoveAndDelete(iter);
+    } else {
+      VIXL_ASSERT(!current.label_base_->ShouldDeletePoolObjectOnPlacement());
+      current.label_base_->UpdatePoolObject(&current);
+      VIXL_ASSERT(current.alignment_ >= label_base->GetPoolObjectAlignment());
+      ++iter;
+    }
+    pc += label_base->GetPoolObjectSizeInBytes();
+  }
+
+  // Recalculate the checkpoint before emitting the footer. The footer might
+  // call Bind() which will check if we need to emit.
+  RecalculateCheckpoint();
+
+  // Always emit footer - this might add some padding.
+  masm->EmitPoolFooter();
+  pc = AlignUp(pc, alignment_);
+
+  return pc;
+}
+
+template <typename T>
+bool PoolManager<T>::ShouldSkipObject(PoolObject<T>* pool_object,
+                                      T pc,
+                                      int num_bytes,
+                                      ForwardReference<T>* new_reference,
+                                      LabelBase<T>* new_object,
+                                      PoolObject<T>* existing_object) const {
+  // We assume that all objects before this have been skipped and all objects
+  // after this will be emitted, therefore we will emit the whole pool. Add
+  // the header size and alignment, as well as the number of bytes we are
+  // planning to emit.
+  T max_actual_location = pc + num_bytes + max_pool_size_;
+
+  if (new_reference != NULL) {
+    // If we're adding a new object, also assume that it will have to be emitted
+    // before the object we are considering to skip.
+    VIXL_ASSERT(new_object != NULL);
+    T new_object_alignment = std::max(new_reference->object_alignment_,
+                                      new_object->GetPoolObjectAlignment());
+    if ((existing_object != NULL) &&
+        (existing_object->alignment_ > new_object_alignment)) {
+      new_object_alignment = existing_object->alignment_;
+    }
+    max_actual_location +=
+        (new_object->GetPoolObjectSizeInBytes() + new_object_alignment - 1);
+  }
+
+  // Hard limit.
+  if (max_actual_location >= pool_object->max_location_) return false;
+
+  // Use heuristic.
+  return (pc < pool_object->skip_until_location_hint_);
+}
+
+template <typename T>
+T PoolManager<T>::UpdateCheckpointForObject(T checkpoint,
+                                            const PoolObject<T>* object) {
+  checkpoint -= object->label_base_->GetPoolObjectSizeInBytes();
+  if (checkpoint > object->max_location_) checkpoint = object->max_location_;
+  checkpoint = AlignDown(checkpoint, object->alignment_);
+  return checkpoint;
+}
+
+template <typename T>
+static T MaxCheckpoint() {
+  return std::numeric_limits<T>::max();
+}
+
+template <typename T>
+static inline bool CheckCurrentPC(T pc, T checkpoint) {
+  VIXL_ASSERT(pc <= checkpoint);
+  // We must emit the pools if we are at the checkpoint now.
+  return pc == checkpoint;
+}
+
+template <typename T>
+static inline bool CheckFuturePC(T pc, T checkpoint) {
+  // We do not need to emit the pools now if the projected future PC will be
+  // equal to the checkpoint (we will need to emit the pools then).
+  return pc > checkpoint;
+}
+
+template <typename T>
+bool PoolManager<T>::MustEmit(T pc,
+                              int num_bytes,
+                              ForwardReference<T>* reference,
+                              LabelBase<T>* label_base) const {
+  // Check if we are at or past the checkpoint.
+  if (CheckCurrentPC(pc, checkpoint_)) return true;
+
+  // Check if the future PC will be past the checkpoint.
+  pc += num_bytes;
+  if (CheckFuturePC(pc, checkpoint_)) return true;
+
+  // No new reference - nothing to do.
+  if (reference == NULL) {
+    VIXL_ASSERT(label_base == NULL);
+    return false;
+  }
+
+  if (objects_.empty()) {
+    // Basic assertions that restrictions on the new (and only) reference are
+    // possible to satisfy.
+    VIXL_ASSERT(AlignUp(pc + header_size_, alignment_) >=
+                reference->min_object_location_);
+    VIXL_ASSERT(pc <= reference->max_object_location_);
+    return false;
+  }
+
+  // Check if the object is already being tracked.
+  const PoolObject<T>* existing_object = GetObjectIfTracked(label_base);
+  if (existing_object != NULL) {
+    // If the existing_object is already in existing_objects_ and its new
+    // alignment and new location restrictions are not stricter, skip the more
+    // expensive check.
+    if ((reference->min_object_location_ <= existing_object->min_location_) &&
+        (reference->max_object_location_ >= existing_object->max_location_) &&
+        (reference->object_alignment_ <= existing_object->alignment_)) {
+      return false;
+    }
+  }
+
+  // Create a temporary object.
+  PoolObject<T> temp(label_base);
+  temp.RestrictRange(reference->min_object_location_,
+                     reference->max_object_location_);
+  temp.RestrictAlignment(reference->object_alignment_);
+  if (existing_object != NULL) {
+    temp.RestrictRange(existing_object->min_location_,
+                       existing_object->max_location_);
+    temp.RestrictAlignment(existing_object->alignment_);
+  }
+
+  // Check if the new reference can be added after the end of the current pool.
+  // If yes, we don't need to emit.
+  T last_reachable = AlignDown(temp.max_location_, temp.alignment_);
+  const PoolObject<T>& last = objects_.back();
+  T after_pool = AlignDown(last.max_location_, last.alignment_) +
+                 last.label_base_->GetPoolObjectSizeInBytes();
+  // The current object can be placed at the end of the pool, even if the last
+  // object is placed at the last possible location.
+  if (last_reachable >= after_pool) return false;
+  // The current object can be placed after the code we are about to emit and
+  // after the existing pool (with a pessimistic size estimate).
+  if (last_reachable >= pc + num_bytes + max_pool_size_) return false;
+
+  // We're not in a trivial case, so we need to recalculate the checkpoint.
+
+  // Check (conservatively) if we can fit it into the objects_ array, without
+  // breaking our assumptions. Here we want to recalculate the checkpoint as
+  // if the new reference was added to the PoolManager but without actually
+  // adding it (as removing it is non-trivial).
+
+  T checkpoint = MaxCheckpoint<T>();
+  // Will temp be the last object in objects_?
+  if (PoolObjectLessThan(last, temp)) {
+    checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
+    if (checkpoint < temp.min_location_) return true;
+  }
+
+  bool tempNotPlacedYet = true;
+  for (int i = static_cast<int>(objects_.size()) - 1; i >= 0; --i) {
+    const PoolObject<T>& current = objects_[i];
+    if (tempNotPlacedYet && PoolObjectLessThan(current, temp)) {
+      checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
+      if (checkpoint < temp.min_location_) return true;
+      if (CheckFuturePC(pc, checkpoint)) return true;
+      tempNotPlacedYet = false;
+    }
+    if (current.label_base_ == label_base) continue;
+    checkpoint = UpdateCheckpointForObject(checkpoint, &current);
+    if (checkpoint < current.min_location_) return true;
+    if (CheckFuturePC(pc, checkpoint)) return true;
+  }
+  // temp is the object with the smallest max_location_.
+  if (tempNotPlacedYet) {
+    checkpoint = UpdateCheckpointForObject(checkpoint, &temp);
+    if (checkpoint < temp.min_location_) return true;
+  }
+
+  // Take the header into account.
+  checkpoint -= header_size_;
+  checkpoint = AlignDown(checkpoint, alignment_);
+
+  return CheckFuturePC(pc, checkpoint);
+}
+
+template <typename T>
+void PoolManager<T>::RecalculateCheckpoint(SortOption sort_option) {
+  // TODO: Improve the max_pool_size_ estimate by starting from the
+  // min_location_ of the first object, calculating the end of the pool as if
+  // all objects were placed starting from there, and in the end adding the
+  // maximum object alignment found minus one (which is the maximum extra
+  // padding we would need if we were to relocate the pool to a different
+  // address).
+  max_pool_size_ = 0;
+
+  if (objects_.empty()) {
+    checkpoint_ = MaxCheckpoint<T>();
+    return;
+  }
+
+  // Sort objects by their max_location_.
+  if (sort_option == kSortRequired) {
+    std::sort(objects_.begin(), objects_.end(), PoolObjectLessThan);
+  }
+
+  // Add the header size and header and footer max alignment to the maximum
+  // pool size.
+  max_pool_size_ += header_size_ + 2 * (alignment_ - 1);
+
+  T checkpoint = MaxCheckpoint<T>();
+  int last_object_index = static_cast<int>(objects_.size()) - 1;
+  for (int i = last_object_index; i >= 0; --i) {
+    // Bring back the checkpoint by the size of the current object, unless
+    // we need to bring it back more, then align.
+    PoolObject<T>& current = objects_[i];
+    checkpoint = UpdateCheckpointForObject(checkpoint, &current);
+    VIXL_ASSERT(checkpoint >= current.min_location_);
+    max_pool_size_ += (current.alignment_ - 1 +
+                       current.label_base_->GetPoolObjectSizeInBytes());
+  }
+  // Take the header into account.
+  checkpoint -= header_size_;
+  checkpoint = AlignDown(checkpoint, alignment_);
+
+  // Update the checkpoint of the pool manager.
+  checkpoint_ = checkpoint;
+
+  // NOTE: To handle min_location_ in the generic case, we could make a second
+  // pass of the objects_ vector, increasing the checkpoint as needed, while
+  // maintaining the alignment requirements.
+  // It should not be possible to have any issues with min_location_ with actual
+  // code, since there should always be some kind of branch over the pool,
+  // whether introduced by the pool emission or by the user, which will make
+  // sure the min_location_ requirement is satisfied. It's possible that the
+  // user could emit code in the literal pool and intentionally load the first
+  // value and then fall-through into the pool, but that is not a supported use
+  // of VIXL and we will assert in that case.
+}
+
+template <typename T>
+bool PoolManager<T>::PoolObjectLessThan(const PoolObject<T>& a,
+                                        const PoolObject<T>& b) {
+  if (a.max_location_ != b.max_location_)
+    return (a.max_location_ < b.max_location_);
+  int a_size = a.label_base_->GetPoolObjectSizeInBytes();
+  int b_size = b.label_base_->GetPoolObjectSizeInBytes();
+  if (a_size != b_size) return (a_size < b_size);
+  if (a.alignment_ != b.alignment_) return (a.alignment_ < b.alignment_);
+  if (a.min_location_ != b.min_location_)
+    return (a.min_location_ < b.min_location_);
+  return false;
+}
+
+template <typename T>
+void PoolManager<T>::AddObjectReference(const ForwardReference<T>* reference,
+                                        LabelBase<T>* label_base) {
+  VIXL_ASSERT(reference->object_alignment_ <= buffer_alignment_);
+  VIXL_ASSERT(label_base->GetPoolObjectAlignment() <= buffer_alignment_);
+
+  PoolObject<T>* object = GetObjectIfTracked(label_base);
+
+  if (object == NULL) {
+    PoolObject<T> new_object(label_base);
+    new_object.RestrictRange(reference->min_object_location_,
+                             reference->max_object_location_);
+    new_object.RestrictAlignment(reference->object_alignment_);
+    Insert(new_object);
+  } else {
+    object->RestrictRange(reference->min_object_location_,
+                          reference->max_object_location_);
+    object->RestrictAlignment(reference->object_alignment_);
+
+    // Move the object, if needed.
+    if (objects_.size() != 1) {
+      PoolObject<T> new_object(*object);
+      ptrdiff_t distance = std::distance(objects_.data(), object);
+      objects_.erase(objects_.begin() + distance);
+      Insert(new_object);
+    }
+  }
+  // No need to sort, we inserted the object in an already sorted array.
+  RecalculateCheckpoint(kNoSortRequired);
+}
+
+template <typename T>
+void PoolManager<T>::Insert(const PoolObject<T>& new_object) {
+  bool inserted = false;
+  // Place the object in the right position.
+  for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
+    PoolObject<T>& current = *iter;
+    if (!PoolObjectLessThan(current, new_object)) {
+      objects_.insert(iter, new_object);
+      inserted = true;
+      break;
+    }
+  }
+  if (!inserted) {
+    objects_.push_back(new_object);
+  }
+}
+
+template <typename T>
+void PoolManager<T>::RemoveAndDelete(PoolObject<T>* object) {
+  for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
+    PoolObject<T>& current = *iter;
+    if (current.label_base_ == object->label_base_) {
+      (void)RemoveAndDelete(iter);
+      return;
+    }
+  }
+  VIXL_UNREACHABLE();
+}
+
+template <typename T>
+typename PoolManager<T>::objects_iter PoolManager<T>::RemoveAndDelete(
+    objects_iter iter) {
+  PoolObject<T>& object = *iter;
+  LabelBase<T>* label_base = object.label_base_;
+
+  // Check if we also need to delete the LabelBase object.
+  if (label_base->ShouldBeDeletedOnPoolManagerDestruction()) {
+    delete_on_destruction_.push_back(label_base);
+  }
+  if (label_base->ShouldBeDeletedOnPlacementByPoolManager()) {
+    VIXL_ASSERT(!label_base->ShouldBeDeletedOnPoolManagerDestruction());
+    delete label_base;
+  }
+
+  return objects_.erase(iter);
+}
+
+template <typename T>
+T PoolManager<T>::Bind(MacroAssemblerInterface* masm,
+                       LabelBase<T>* object,
+                       T location) {
+  PoolObject<T>* existing_object = GetObjectIfTracked(object);
+  int alignment;
+  T min_location;
+  if (existing_object == NULL) {
+    alignment = object->GetMaxAlignment();
+    min_location = object->GetMinLocation();
+  } else {
+    alignment = existing_object->alignment_;
+    min_location = existing_object->min_location_;
+  }
+
+  // Align if needed, and add necessary padding to reach the min_location_.
+  T aligned_location = AlignUp(location, alignment);
+  masm->EmitNopBytes(aligned_location - location);
+  location = aligned_location;
+  while (location < min_location) {
+    masm->EmitNopBytes(alignment);
+    location += alignment;
+  }
+
+  object->SetLocation(masm->AsAssemblerBase(), location);
+  object->MarkBound();
+
+  if (existing_object != NULL) {
+    RemoveAndDelete(existing_object);
+    // No need to sort, we removed the object from a sorted array.
+    RecalculateCheckpoint(kNoSortRequired);
+  }
+
+  // We assume that the maximum padding we can possibly add here is less
+  // than the header alignment - hence that we're not going to go past our
+  // checkpoint.
+  VIXL_ASSERT(!CheckFuturePC(location, checkpoint_));
+  return location;
+}
+
+template <typename T>
+void PoolManager<T>::Release(T pc) {
+  USE(pc);
+  if (--monitor_ == 0) {
+    // Ensure the pool has not been blocked for too long.
+    VIXL_ASSERT(pc <= checkpoint_);
+  }
+}
+
+template <typename T>
+PoolManager<T>::~PoolManager<T>() {
+#ifdef VIXL_DEBUG
+  // Check for unbound objects.
+  for (objects_iter iter = objects_.begin(); iter != objects_.end(); ++iter) {
+    // There should not be any bound objects left in the pool. For unbound
+    // objects, we will check in the destructor of the object itself.
+    VIXL_ASSERT(!(*iter).label_base_->IsBound());
+  }
+#endif
+  // Delete objects the pool manager owns.
+  for (typename std::vector<LabelBase<T>*>::iterator
+           iter = delete_on_destruction_.begin(),
+           end = delete_on_destruction_.end();
+       iter != end;
+       ++iter) {
+    delete *iter;
+  }
+}
+
+template <typename T>
+int PoolManager<T>::GetPoolSizeForTest() const {
+  // Iterate over objects and return their cumulative size. This does not take
+  // any padding into account, just the size of the objects themselves.
+  int size = 0;
+  for (const_objects_iter iter = objects_.begin(); iter != objects_.end();
+       ++iter) {
+    size += (*iter).label_base_->GetPoolObjectSizeInBytes();
+  }
+  return size;
+}
+}
+
+#endif  // VIXL_POOL_MANAGER_IMPL_H_