aboutsummaryrefslogtreecommitdiff
path: root/target/ppc/mem_helper.c
blob: fba7f84b7ae2f67b5ed925ad413767feac9139f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
/*
 *  PowerPC memory access emulation helpers for QEMU.
 *
 *  Copyright (c) 2003-2007 Jocelyn Mayer
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "qemu/host-utils.h"
#include "qemu/main-loop.h"
#include "exec/helper-proto.h"
#include "helper_regs.h"
#include "exec/cpu_ldst.h"
#include "internal.h"
#include "qemu/atomic128.h"

/* #define DEBUG_OP */

static inline bool needs_byteswap(const CPUPPCState *env)
{
#if TARGET_BIG_ENDIAN
  return msr_le;
#else
  return !msr_le;
#endif
}

/*****************************************************************************/
/* Memory load and stores */

static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
                                    target_long arg)
{
#if defined(TARGET_PPC64)
    if (!msr_is_64bit(env, env->msr)) {
        return (uint32_t)(addr + arg);
    } else
#endif
    {
        return addr + arg;
    }
}

static void *probe_contiguous(CPUPPCState *env, target_ulong addr, uint32_t nb,
                              MMUAccessType access_type, int mmu_idx,
                              uintptr_t raddr)
{
    void *host1, *host2;
    uint32_t nb_pg1, nb_pg2;

    nb_pg1 = -(addr | TARGET_PAGE_MASK);
    if (likely(nb <= nb_pg1)) {
        /* The entire operation is on a single page.  */
        return probe_access(env, addr, nb, access_type, mmu_idx, raddr);
    }

    /* The operation spans two pages.  */
    nb_pg2 = nb - nb_pg1;
    host1 = probe_access(env, addr, nb_pg1, access_type, mmu_idx, raddr);
    addr = addr_add(env, addr, nb_pg1);
    host2 = probe_access(env, addr, nb_pg2, access_type, mmu_idx, raddr);

    /* If the two host pages are contiguous, optimize.  */
    if (host2 == host1 + nb_pg1) {
        return host1;
    }
    return NULL;
}

void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
{
    uintptr_t raddr = GETPC();
    int mmu_idx = cpu_mmu_index(env, false);
    void *host = probe_contiguous(env, addr, (32 - reg) * 4,
                                  MMU_DATA_LOAD, mmu_idx, raddr);

    if (likely(host)) {
        /* Fast path -- the entire operation is in RAM at host.  */
        for (; reg < 32; reg++) {
            env->gpr[reg] = (uint32_t)ldl_be_p(host);
            host += 4;
        }
    } else {
        /* Slow path -- at least some of the operation requires i/o.  */
        for (; reg < 32; reg++) {
            env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr);
            addr = addr_add(env, addr, 4);
        }
    }
}

void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
{
    uintptr_t raddr = GETPC();
    int mmu_idx = cpu_mmu_index(env, false);
    void *host = probe_contiguous(env, addr, (32 - reg) * 4,
                                  MMU_DATA_STORE, mmu_idx, raddr);

    if (likely(host)) {
        /* Fast path -- the entire operation is in RAM at host.  */
        for (; reg < 32; reg++) {
            stl_be_p(host, env->gpr[reg]);
            host += 4;
        }
    } else {
        /* Slow path -- at least some of the operation requires i/o.  */
        for (; reg < 32; reg++) {
            cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr);
            addr = addr_add(env, addr, 4);
        }
    }
}

static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
                   uint32_t reg, uintptr_t raddr)
{
    int mmu_idx;
    void *host;
    uint32_t val;

    if (unlikely(nb == 0)) {
        return;
    }

    mmu_idx = cpu_mmu_index(env, false);
    host = probe_contiguous(env, addr, nb, MMU_DATA_LOAD, mmu_idx, raddr);

    if (likely(host)) {
        /* Fast path -- the entire operation is in RAM at host.  */
        for (; nb > 3; nb -= 4) {
            env->gpr[reg] = (uint32_t)ldl_be_p(host);
            reg = (reg + 1) % 32;
            host += 4;
        }
        switch (nb) {
        default:
            return;
        case 1:
            val = ldub_p(host) << 24;
            break;
        case 2:
            val = lduw_be_p(host) << 16;
            break;
        case 3:
            val = (lduw_be_p(host) << 16) | (ldub_p(host + 2) << 8);
            break;
        }
    } else {
        /* Slow path -- at least some of the operation requires i/o.  */
        for (; nb > 3; nb -= 4) {
            env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr);
            reg = (reg + 1) % 32;
            addr = addr_add(env, addr, 4);
        }
        switch (nb) {
        default:
            return;
        case 1:
            val = cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 24;
            break;
        case 2:
            val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16;
            break;
        case 3:
            val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16;
            addr = addr_add(env, addr, 2);
            val |= cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 8;
            break;
        }
    }
    env->gpr[reg] = val;
}

void helper_lsw(CPUPPCState *env, target_ulong addr,
                uint32_t nb, uint32_t reg)
{
    do_lsw(env, addr, nb, reg, GETPC());
}

/*
 * PPC32 specification says we must generate an exception if rA is in
 * the range of registers to be loaded.  In an other hand, IBM says
 * this is valid, but rA won't be loaded.  For now, I'll follow the
 * spec...
 */
void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
                 uint32_t ra, uint32_t rb)
{
    if (likely(xer_bc != 0)) {
        int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
        if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
                     lsw_reg_in_range(reg, num_used_regs, rb))) {
            raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
                                   POWERPC_EXCP_INVAL |
                                   POWERPC_EXCP_INVAL_LSWX, GETPC());
        } else {
            do_lsw(env, addr, xer_bc, reg, GETPC());
        }
    }
}

void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
                 uint32_t reg)
{
    uintptr_t raddr = GETPC();
    int mmu_idx;
    void *host;
    uint32_t val;

    if (unlikely(nb == 0)) {
        return;
    }

    mmu_idx = cpu_mmu_index(env, false);
    host = probe_contiguous(env, addr, nb, MMU_DATA_STORE, mmu_idx, raddr);

    if (likely(host)) {
        /* Fast path -- the entire operation is in RAM at host.  */
        for (; nb > 3; nb -= 4) {
            stl_be_p(host, env->gpr[reg]);
            reg = (reg + 1) % 32;
            host += 4;
        }
        val = env->gpr[reg];
        switch (nb) {
        case 1:
            stb_p(host, val >> 24);
            break;
        case 2:
            stw_be_p(host, val >> 16);
            break;
        case 3:
            stw_be_p(host, val >> 16);
            stb_p(host + 2, val >> 8);
            break;
        }
    } else {
        for (; nb > 3; nb -= 4) {
            cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr);
            reg = (reg + 1) % 32;
            addr = addr_add(env, addr, 4);
        }
        val = env->gpr[reg];
        switch (nb) {
        case 1:
            cpu_stb_mmuidx_ra(env, addr, val >> 24, mmu_idx, raddr);
            break;
        case 2:
            cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr);
            break;
        case 3:
            cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr);
            addr = addr_add(env, addr, 2);
            cpu_stb_mmuidx_ra(env, addr, val >> 8, mmu_idx, raddr);
            break;
        }
    }
}

static void dcbz_common(CPUPPCState *env, target_ulong addr,
                        uint32_t opcode, bool epid, uintptr_t retaddr)
{
    target_ulong mask, dcbz_size = env->dcache_line_size;
    uint32_t i;
    void *haddr;
    int mmu_idx = epid ? PPC_TLB_EPID_STORE : cpu_mmu_index(env, false);

#if defined(TARGET_PPC64)
    /* Check for dcbz vs dcbzl on 970 */
    if (env->excp_model == POWERPC_EXCP_970 &&
        !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
        dcbz_size = 32;
    }
#endif

    /* Align address */
    mask = ~(dcbz_size - 1);
    addr &= mask;

    /* Check reservation */
    if ((env->reserve_addr & mask) == addr)  {
        env->reserve_addr = (target_ulong)-1ULL;
    }

    /* Try fast path translate */
    haddr = probe_write(env, addr, dcbz_size, mmu_idx, retaddr);
    if (haddr) {
        memset(haddr, 0, dcbz_size);
    } else {
        /* Slow path */
        for (i = 0; i < dcbz_size; i += 8) {
            cpu_stq_mmuidx_ra(env, addr + i, 0, mmu_idx, retaddr);
        }
    }
}

void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
{
    dcbz_common(env, addr, opcode, false, GETPC());
}

void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode)
{
    dcbz_common(env, addr, opcode, true, GETPC());
}

void helper_icbi(CPUPPCState *env, target_ulong addr)
{
    addr &= ~(env->dcache_line_size - 1);
    /*
     * Invalidate one cache line :
     * PowerPC specification says this is to be treated like a load
     * (not a fetch) by the MMU. To be sure it will be so,
     * do the load "by hand".
     */
    cpu_ldl_data_ra(env, addr, GETPC());
}

void helper_icbiep(CPUPPCState *env, target_ulong addr)
{
#if !defined(CONFIG_USER_ONLY)
    /* See comments above */
    addr &= ~(env->dcache_line_size - 1);
    cpu_ldl_mmuidx_ra(env, addr, PPC_TLB_EPID_LOAD, GETPC());
#endif
}

/* XXX: to be tested */
target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
                          uint32_t ra, uint32_t rb)
{
    int i, c, d;

    d = 24;
    for (i = 0; i < xer_bc; i++) {
        c = cpu_ldub_data_ra(env, addr, GETPC());
        addr = addr_add(env, addr, 1);
        /* ra (if not 0) and rb are never modified */
        if (likely(reg != rb && (ra == 0 || reg != ra))) {
            env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
        }
        if (unlikely(c == xer_cmp)) {
            break;
        }
        if (likely(d != 0)) {
            d -= 8;
        } else {
            d = 24;
            reg++;
            reg = reg & 0x1F;
        }
    }
    return i;
}

#ifdef TARGET_PPC64
uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr,
                               uint32_t opidx)
{
    Int128 ret;

    /* We will have raised EXCP_ATOMIC from the translator.  */
    assert(HAVE_ATOMIC128);
    ret = cpu_atomic_ldo_le_mmu(env, addr, opidx, GETPC());
    env->retxh = int128_gethi(ret);
    return int128_getlo(ret);
}

uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr,
                               uint32_t opidx)
{
    Int128 ret;

    /* We will have raised EXCP_ATOMIC from the translator.  */
    assert(HAVE_ATOMIC128);
    ret = cpu_atomic_ldo_be_mmu(env, addr, opidx, GETPC());
    env->retxh = int128_gethi(ret);
    return int128_getlo(ret);
}

void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr,
                            uint64_t lo, uint64_t hi, uint32_t opidx)
{
    Int128 val;

    /* We will have raised EXCP_ATOMIC from the translator.  */
    assert(HAVE_ATOMIC128);
    val = int128_make128(lo, hi);
    cpu_atomic_sto_le_mmu(env, addr, val, opidx, GETPC());
}

void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr,
                            uint64_t lo, uint64_t hi, uint32_t opidx)
{
    Int128 val;

    /* We will have raised EXCP_ATOMIC from the translator.  */
    assert(HAVE_ATOMIC128);
    val = int128_make128(lo, hi);
    cpu_atomic_sto_be_mmu(env, addr, val, opidx, GETPC());
}

uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr,
                                  uint64_t new_lo, uint64_t new_hi,
                                  uint32_t opidx)
{
    bool success = false;

    /* We will have raised EXCP_ATOMIC from the translator.  */
    assert(HAVE_CMPXCHG128);

    if (likely(addr == env->reserve_addr)) {
        Int128 oldv, cmpv, newv;

        cmpv = int128_make128(env->reserve_val2, env->reserve_val);
        newv = int128_make128(new_lo, new_hi);
        oldv = cpu_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv,
                                          opidx, GETPC());
        success = int128_eq(oldv, cmpv);
    }
    env->reserve_addr = -1;
    return env->so + success * CRF_EQ_BIT;
}

uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr,
                                  uint64_t new_lo, uint64_t new_hi,
                                  uint32_t opidx)
{
    bool success = false;

    /* We will have raised EXCP_ATOMIC from the translator.  */
    assert(HAVE_CMPXCHG128);

    if (likely(addr == env->reserve_addr)) {
        Int128 oldv, cmpv, newv;

        cmpv = int128_make128(env->reserve_val2, env->reserve_val);
        newv = int128_make128(new_lo, new_hi);
        oldv = cpu_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv,
                                          opidx, GETPC());
        success = int128_eq(oldv, cmpv);
    }
    env->reserve_addr = -1;
    return env->so + success * CRF_EQ_BIT;
}
#endif

/*****************************************************************************/
/* Altivec extension helpers */
#if HOST_BIG_ENDIAN
#define HI_IDX 0
#define LO_IDX 1
#else
#define HI_IDX 1
#define LO_IDX 0
#endif

/*
 * We use msr_le to determine index ordering in a vector.  However,
 * byteswapping is not simply controlled by msr_le.  We also need to
 * take into account endianness of the target.  This is done for the
 * little-endian PPC64 user-mode target.
 */

#define LVE(name, access, swap, element)                        \
    void helper_##name(CPUPPCState *env, ppc_avr_t *r,          \
                       target_ulong addr)                       \
    {                                                           \
        size_t n_elems = ARRAY_SIZE(r->element);                \
        int adjust = HI_IDX * (n_elems - 1);                    \
        int sh = sizeof(r->element[0]) >> 1;                    \
        int index = (addr & 0xf) >> sh;                         \
        if (msr_le) {                                           \
            index = n_elems - index - 1;                        \
        }                                                       \
                                                                \
        if (needs_byteswap(env)) {                              \
            r->element[LO_IDX ? index : (adjust - index)] =     \
                swap(access(env, addr, GETPC()));               \
        } else {                                                \
            r->element[LO_IDX ? index : (adjust - index)] =     \
                access(env, addr, GETPC());                     \
        }                                                       \
    }
#define I(x) (x)
LVE(lvebx, cpu_ldub_data_ra, I, u8)
LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
#undef I
#undef LVE

#define STVE(name, access, swap, element)                               \
    void helper_##name(CPUPPCState *env, ppc_avr_t *r,                  \
                       target_ulong addr)                               \
    {                                                                   \
        size_t n_elems = ARRAY_SIZE(r->element);                        \
        int adjust = HI_IDX * (n_elems - 1);                            \
        int sh = sizeof(r->element[0]) >> 1;                            \
        int index = (addr & 0xf) >> sh;                                 \
        if (msr_le) {                                                   \
            index = n_elems - index - 1;                                \
        }                                                               \
                                                                        \
        if (needs_byteswap(env)) {                                      \
            access(env, addr, swap(r->element[LO_IDX ? index :          \
                                              (adjust - index)]),       \
                        GETPC());                                       \
        } else {                                                        \
            access(env, addr, r->element[LO_IDX ? index :               \
                                         (adjust - index)], GETPC());   \
        }                                                               \
    }
#define I(x) (x)
STVE(stvebx, cpu_stb_data_ra, I, u8)
STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
#undef I
#undef LVE

#ifdef TARGET_PPC64
#define GET_NB(rb) ((rb >> 56) & 0xFF)

#define VSX_LXVL(name, lj)                                              \
void helper_##name(CPUPPCState *env, target_ulong addr,                 \
                   ppc_vsr_t *xt, target_ulong rb)                      \
{                                                                       \
    ppc_vsr_t t;                                                        \
    uint64_t nb = GET_NB(rb);                                           \
    int i;                                                              \
                                                                        \
    t.s128 = int128_zero();                                             \
    if (nb) {                                                           \
        nb = (nb >= 16) ? 16 : nb;                                      \
        if (msr_le && !lj) {                                            \
            for (i = 16; i > 16 - nb; i--) {                            \
                t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC());   \
                addr = addr_add(env, addr, 1);                          \
            }                                                           \
        } else {                                                        \
            for (i = 0; i < nb; i++) {                                  \
                t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC());       \
                addr = addr_add(env, addr, 1);                          \
            }                                                           \
        }                                                               \
    }                                                                   \
    *xt = t;                                                            \
}

VSX_LXVL(lxvl, 0)
VSX_LXVL(lxvll, 1)
#undef VSX_LXVL

#define VSX_STXVL(name, lj)                                       \
void helper_##name(CPUPPCState *env, target_ulong addr,           \
                   ppc_vsr_t *xt, target_ulong rb)                \
{                                                                 \
    target_ulong nb = GET_NB(rb);                                 \
    int i;                                                        \
                                                                  \
    if (!nb) {                                                    \
        return;                                                   \
    }                                                             \
                                                                  \
    nb = (nb >= 16) ? 16 : nb;                                    \
    if (msr_le && !lj) {                                          \
        for (i = 16; i > 16 - nb; i--) {                          \
            cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \
            addr = addr_add(env, addr, 1);                        \
        }                                                         \
    } else {                                                      \
        for (i = 0; i < nb; i++) {                                \
            cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC());     \
            addr = addr_add(env, addr, 1);                        \
        }                                                         \
    }                                                             \
}

VSX_STXVL(stxvl, 0)
VSX_STXVL(stxvll, 1)
#undef VSX_STXVL
#undef GET_NB
#endif /* TARGET_PPC64 */

#undef HI_IDX
#undef LO_IDX

void helper_tbegin(CPUPPCState *env)
{
    /*
     * As a degenerate implementation, always fail tbegin.  The reason
     * given is "Nesting overflow".  The "persistent" bit is set,
     * providing a hint to the error handler to not retry.  The TFIAR
     * captures the address of the failure, which is this tbegin
     * instruction.  Instruction execution will continue with the next
     * instruction in memory, which is precisely what we want.
     */

    env->spr[SPR_TEXASR] =
        (1ULL << TEXASR_FAILURE_PERSISTENT) |
        (1ULL << TEXASR_NESTING_OVERFLOW) |
        (msr_hv << TEXASR_PRIVILEGE_HV) |
        (FIELD_EX64(env->msr, MSR, PR) << TEXASR_PRIVILEGE_PR) |
        (1ULL << TEXASR_FAILURE_SUMMARY) |
        (1ULL << TEXASR_TFIAR_EXACT);
    env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) |
                          FIELD_EX64(env->msr, MSR, PR);
    env->spr[SPR_TFHAR] = env->nip + 4;
    env->crf[0] = 0xB; /* 0b1010 = transaction failure */
}