aboutsummaryrefslogtreecommitdiff
path: root/target/arm/hvf/hvf.c
blob: 98bd6712c0cb1ce68a202d51223ce7a37b59c1d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
/*
 * QEMU Hypervisor.framework support for Apple Silicon

 * Copyright 2020 Alexander Graf <agraf@csgraf.de>
 * Copyright 2020 Google LLC
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qemu/error-report.h"

#include "sysemu/runstate.h"
#include "sysemu/hvf.h"
#include "sysemu/hvf_int.h"
#include "sysemu/hw_accel.h"

#include <mach/mach_time.h>

#include "exec/address-spaces.h"
#include "hw/irq.h"
#include "hw/intc/gicv3_internal.h"
#include "qemu/main-loop.h"
#include "sysemu/accel.h"
#include "sysemu/cpus.h"
#include "target/arm/cpu.h"
#include "target/arm/internals.h"

#define HVF_DEBUG 0
#define DPRINTF(...)                                        \
    if (HVF_DEBUG) {                                        \
        fprintf(stderr, "HVF %s:%d ", __func__, __LINE__);  \
        fprintf(stderr, __VA_ARGS__);                       \
        fprintf(stderr, "\n");                              \
    }

#define HVF_SYSREG(crn, crm, op0, op1, op2) \
        ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
#define PL1_WRITE_MASK 0x4

#define SYSREG(op0, op1, crn, crm, op2) \
    ((op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (crm << 1))
#define SYSREG_MASK           SYSREG(0x3, 0x7, 0xf, 0xf, 0x7)
#define SYSREG_CNTPCT_EL0     SYSREG(3, 3, 14, 0, 1)
#define SYSREG_PMCCNTR_EL0    SYSREG(3, 3, 9, 13, 0)

#define SYSREG_ICC_AP0R0_EL1     SYSREG(3, 0, 12, 8, 4)
#define SYSREG_ICC_AP0R1_EL1     SYSREG(3, 0, 12, 8, 5)
#define SYSREG_ICC_AP0R2_EL1     SYSREG(3, 0, 12, 8, 6)
#define SYSREG_ICC_AP0R3_EL1     SYSREG(3, 0, 12, 8, 7)
#define SYSREG_ICC_AP1R0_EL1     SYSREG(3, 0, 12, 9, 0)
#define SYSREG_ICC_AP1R1_EL1     SYSREG(3, 0, 12, 9, 1)
#define SYSREG_ICC_AP1R2_EL1     SYSREG(3, 0, 12, 9, 2)
#define SYSREG_ICC_AP1R3_EL1     SYSREG(3, 0, 12, 9, 3)
#define SYSREG_ICC_ASGI1R_EL1    SYSREG(3, 0, 12, 11, 6)
#define SYSREG_ICC_BPR0_EL1      SYSREG(3, 0, 12, 8, 3)
#define SYSREG_ICC_BPR1_EL1      SYSREG(3, 0, 12, 12, 3)
#define SYSREG_ICC_CTLR_EL1      SYSREG(3, 0, 12, 12, 4)
#define SYSREG_ICC_DIR_EL1       SYSREG(3, 0, 12, 11, 1)
#define SYSREG_ICC_EOIR0_EL1     SYSREG(3, 0, 12, 8, 1)
#define SYSREG_ICC_EOIR1_EL1     SYSREG(3, 0, 12, 12, 1)
#define SYSREG_ICC_HPPIR0_EL1    SYSREG(3, 0, 12, 8, 2)
#define SYSREG_ICC_HPPIR1_EL1    SYSREG(3, 0, 12, 12, 2)
#define SYSREG_ICC_IAR0_EL1      SYSREG(3, 0, 12, 8, 0)
#define SYSREG_ICC_IAR1_EL1      SYSREG(3, 0, 12, 12, 0)
#define SYSREG_ICC_IGRPEN0_EL1   SYSREG(3, 0, 12, 12, 6)
#define SYSREG_ICC_IGRPEN1_EL1   SYSREG(3, 0, 12, 12, 7)
#define SYSREG_ICC_PMR_EL1       SYSREG(3, 0, 4, 6, 0)
#define SYSREG_ICC_RPR_EL1       SYSREG(3, 0, 12, 11, 3)
#define SYSREG_ICC_SGI0R_EL1     SYSREG(3, 0, 12, 11, 7)
#define SYSREG_ICC_SGI1R_EL1     SYSREG(3, 0, 12, 11, 5)
#define SYSREG_ICC_SRE_EL1       SYSREG(3, 0, 12, 12, 5)

#define WFX_IS_WFE (1 << 0)

struct hvf_reg_match {
    int reg;
    uint64_t offset;
};

static const struct hvf_reg_match hvf_reg_match[] = {
    { HV_REG_X0,   offsetof(CPUARMState, xregs[0]) },
    { HV_REG_X1,   offsetof(CPUARMState, xregs[1]) },
    { HV_REG_X2,   offsetof(CPUARMState, xregs[2]) },
    { HV_REG_X3,   offsetof(CPUARMState, xregs[3]) },
    { HV_REG_X4,   offsetof(CPUARMState, xregs[4]) },
    { HV_REG_X5,   offsetof(CPUARMState, xregs[5]) },
    { HV_REG_X6,   offsetof(CPUARMState, xregs[6]) },
    { HV_REG_X7,   offsetof(CPUARMState, xregs[7]) },
    { HV_REG_X8,   offsetof(CPUARMState, xregs[8]) },
    { HV_REG_X9,   offsetof(CPUARMState, xregs[9]) },
    { HV_REG_X10,  offsetof(CPUARMState, xregs[10]) },
    { HV_REG_X11,  offsetof(CPUARMState, xregs[11]) },
    { HV_REG_X12,  offsetof(CPUARMState, xregs[12]) },
    { HV_REG_X13,  offsetof(CPUARMState, xregs[13]) },
    { HV_REG_X14,  offsetof(CPUARMState, xregs[14]) },
    { HV_REG_X15,  offsetof(CPUARMState, xregs[15]) },
    { HV_REG_X16,  offsetof(CPUARMState, xregs[16]) },
    { HV_REG_X17,  offsetof(CPUARMState, xregs[17]) },
    { HV_REG_X18,  offsetof(CPUARMState, xregs[18]) },
    { HV_REG_X19,  offsetof(CPUARMState, xregs[19]) },
    { HV_REG_X20,  offsetof(CPUARMState, xregs[20]) },
    { HV_REG_X21,  offsetof(CPUARMState, xregs[21]) },
    { HV_REG_X22,  offsetof(CPUARMState, xregs[22]) },
    { HV_REG_X23,  offsetof(CPUARMState, xregs[23]) },
    { HV_REG_X24,  offsetof(CPUARMState, xregs[24]) },
    { HV_REG_X25,  offsetof(CPUARMState, xregs[25]) },
    { HV_REG_X26,  offsetof(CPUARMState, xregs[26]) },
    { HV_REG_X27,  offsetof(CPUARMState, xregs[27]) },
    { HV_REG_X28,  offsetof(CPUARMState, xregs[28]) },
    { HV_REG_X29,  offsetof(CPUARMState, xregs[29]) },
    { HV_REG_X30,  offsetof(CPUARMState, xregs[30]) },
    { HV_REG_PC,   offsetof(CPUARMState, pc) },
};

struct hvf_sreg_match {
    int reg;
    uint32_t key;
};

static const struct hvf_sreg_match hvf_sreg_match[] = {
    { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 14, 0, 7) },

    { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 4) },
    { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 5) },
    { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 14, 0, 6) },
    { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 14, 0, 7) },

#ifdef SYNC_NO_RAW_REGS
    /*
     * The registers below are manually synced on init because they are
     * marked as NO_RAW. We still list them to make number space sync easier.
     */
    { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
    { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
    { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
    { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
#endif
    { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 2) },
    { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
    { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
    { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
    { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
#ifdef SYNC_NO_MMFR0
    /* We keep the hardware MMFR0 around. HW limits are there anyway */
    { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
#endif
    { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
    { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },

    { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
    { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
    { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
    { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
    { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
    { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },

    { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
    { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
    { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
    { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
    { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
    { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
    { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
    { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
    { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
    { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },

    { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 1, 0) },
    { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
    { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
    { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
    { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
    { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
    { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
    { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
    { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
    { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
    { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
    { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
    { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
    { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
    { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
    { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
    { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
    { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
    { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
    { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
};

int hvf_get_registers(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    hv_return_t ret;
    uint64_t val;
    int i;

    for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
        ret = hv_vcpu_get_reg(cpu->hvf->fd, hvf_reg_match[i].reg, &val);
        *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
        assert_hvf_ok(ret);
    }

    val = 0;
    ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPCR, &val);
    assert_hvf_ok(ret);
    vfp_set_fpcr(env, val);

    val = 0;
    ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_FPSR, &val);
    assert_hvf_ok(ret);
    vfp_set_fpsr(env, val);

    ret = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_CPSR, &val);
    assert_hvf_ok(ret);
    pstate_write(env, val);

    for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
        ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, &val);
        assert_hvf_ok(ret);

        arm_cpu->cpreg_values[i] = val;
    }
    write_list_to_cpustate(arm_cpu);

    return 0;
}

int hvf_put_registers(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    hv_return_t ret;
    uint64_t val;
    int i;

    for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
        val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
        ret = hv_vcpu_set_reg(cpu->hvf->fd, hvf_reg_match[i].reg, val);

        assert_hvf_ok(ret);
    }

    ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPCR, vfp_get_fpcr(env));
    assert_hvf_ok(ret);

    ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_FPSR, vfp_get_fpsr(env));
    assert_hvf_ok(ret);

    ret = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_CPSR, pstate_read(env));
    assert_hvf_ok(ret);

    write_cpustate_to_list(arm_cpu, false);
    for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
        val = arm_cpu->cpreg_values[i];
        ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, hvf_sreg_match[i].reg, val);
        assert_hvf_ok(ret);
    }

    return 0;
}

static void flush_cpu_state(CPUState *cpu)
{
    if (cpu->vcpu_dirty) {
        hvf_put_registers(cpu);
        cpu->vcpu_dirty = false;
    }
}

static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
{
    hv_return_t r;

    flush_cpu_state(cpu);

    if (rt < 31) {
        r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_X0 + rt, val);
        assert_hvf_ok(r);
    }
}

static uint64_t hvf_get_reg(CPUState *cpu, int rt)
{
    uint64_t val = 0;
    hv_return_t r;

    flush_cpu_state(cpu);

    if (rt < 31) {
        r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_X0 + rt, &val);
        assert_hvf_ok(r);
    }

    return val;
}

void hvf_arch_vcpu_destroy(CPUState *cpu)
{
}

int hvf_arch_init_vcpu(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
    uint64_t pfr;
    hv_return_t ret;
    int i;

    env->aarch64 = 1;
    asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));

    /* Allocate enough space for our sysreg sync */
    arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
                                     sregs_match_len);
    arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
                                    sregs_match_len);
    arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
                                             arm_cpu->cpreg_vmstate_indexes,
                                             sregs_match_len);
    arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
                                            arm_cpu->cpreg_vmstate_values,
                                            sregs_match_len);

    memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));
    arm_cpu->cpreg_array_len = sregs_match_len;
    arm_cpu->cpreg_vmstate_array_len = sregs_match_len;

    /* Populate cp list for all known sysregs */
    for (i = 0; i < sregs_match_len; i++) {
        const ARMCPRegInfo *ri;

        arm_cpu->cpreg_indexes[i] = cpreg_to_kvm_id(hvf_sreg_match[i].key);

        ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key);
        if (ri) {
            assert(!(ri->type & ARM_CP_NO_RAW));
        }
    }
    write_cpustate_to_list(arm_cpu, false);

    /* Set CP_NO_RAW system registers on init */
    ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MIDR_EL1,
                              arm_cpu->midr);
    assert_hvf_ok(ret);

    ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_MPIDR_EL1,
                              arm_cpu->mp_affinity);
    assert_hvf_ok(ret);

    ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
    assert_hvf_ok(ret);
    pfr |= env->gicv3state ? (1 << 24) : 0;
    ret = hv_vcpu_set_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
    assert_hvf_ok(ret);

    /* We're limited to underlying hardware caps, override internal versions */
    ret = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
                              &arm_cpu->isar.id_aa64mmfr0);
    assert_hvf_ok(ret);

    return 0;
}

void hvf_kick_vcpu_thread(CPUState *cpu)
{
    cpus_kick_thread(cpu);
    hv_vcpus_exit(&cpu->hvf->fd, 1);
}

static uint32_t hvf_reg2cp_reg(uint32_t reg)
{
    return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
                              (reg >> 10) & 0xf,
                              (reg >> 1) & 0xf,
                              (reg >> 20) & 0x3,
                              (reg >> 14) & 0x7,
                              (reg >> 17) & 0x7);
}

static uint64_t hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    const ARMCPRegInfo *ri;
    uint64_t val = 0;

    ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
    if (ri) {
        if (ri->type & ARM_CP_CONST) {
            val = ri->resetvalue;
        } else if (ri->readfn) {
            val = ri->readfn(env, ri);
        } else {
            val = CPREG_FIELD64(env, ri);
        }
        DPRINTF("vgic read from %s [val=%016llx]", ri->name, val);
    }

    return val;
}

static uint64_t hvf_sysreg_read(CPUState *cpu, uint32_t reg)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    uint64_t val = 0;

    switch (reg) {
    case SYSREG_CNTPCT_EL0:
        val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
              gt_cntfrq_period_ns(arm_cpu);
        break;
    case SYSREG_PMCCNTR_EL0:
        val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
        break;
    case SYSREG_ICC_AP0R0_EL1:
    case SYSREG_ICC_AP0R1_EL1:
    case SYSREG_ICC_AP0R2_EL1:
    case SYSREG_ICC_AP0R3_EL1:
    case SYSREG_ICC_AP1R0_EL1:
    case SYSREG_ICC_AP1R1_EL1:
    case SYSREG_ICC_AP1R2_EL1:
    case SYSREG_ICC_AP1R3_EL1:
    case SYSREG_ICC_ASGI1R_EL1:
    case SYSREG_ICC_BPR0_EL1:
    case SYSREG_ICC_BPR1_EL1:
    case SYSREG_ICC_DIR_EL1:
    case SYSREG_ICC_EOIR0_EL1:
    case SYSREG_ICC_EOIR1_EL1:
    case SYSREG_ICC_HPPIR0_EL1:
    case SYSREG_ICC_HPPIR1_EL1:
    case SYSREG_ICC_IAR0_EL1:
    case SYSREG_ICC_IAR1_EL1:
    case SYSREG_ICC_IGRPEN0_EL1:
    case SYSREG_ICC_IGRPEN1_EL1:
    case SYSREG_ICC_PMR_EL1:
    case SYSREG_ICC_SGI0R_EL1:
    case SYSREG_ICC_SGI1R_EL1:
    case SYSREG_ICC_SRE_EL1:
        val = hvf_sysreg_read_cp(cpu, reg);
        break;
    case SYSREG_ICC_CTLR_EL1:
        val = hvf_sysreg_read_cp(cpu, reg);

        /* AP0R registers above 0 don't trap, expose less PRIs to fit */
        val &= ~ICC_CTLR_EL1_PRIBITS_MASK;
        val |= 4 << ICC_CTLR_EL1_PRIBITS_SHIFT;
        break;
    default:
        DPRINTF("unhandled sysreg read %08x (op0=%d op1=%d op2=%d "
                "crn=%d crm=%d)", reg, (reg >> 20) & 0x3,
                (reg >> 14) & 0x7, (reg >> 17) & 0x7,
                (reg >> 10) & 0xf, (reg >> 1) & 0xf);
        break;
    }

    return val;
}

static void hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    const ARMCPRegInfo *ri;

    ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));

    if (ri) {
        if (ri->writefn) {
            ri->writefn(env, ri, val);
        } else {
            CPREG_FIELD64(env, ri) = val;
        }
        DPRINTF("vgic write to %s [val=%016llx]", ri->name, val);
    }
}

static void hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);

    switch (reg) {
    case SYSREG_CNTPCT_EL0:
        break;
    case SYSREG_ICC_AP0R0_EL1:
    case SYSREG_ICC_AP0R1_EL1:
    case SYSREG_ICC_AP0R2_EL1:
    case SYSREG_ICC_AP0R3_EL1:
    case SYSREG_ICC_AP1R0_EL1:
    case SYSREG_ICC_AP1R1_EL1:
    case SYSREG_ICC_AP1R2_EL1:
    case SYSREG_ICC_AP1R3_EL1:
    case SYSREG_ICC_ASGI1R_EL1:
    case SYSREG_ICC_BPR0_EL1:
    case SYSREG_ICC_BPR1_EL1:
    case SYSREG_ICC_CTLR_EL1:
    case SYSREG_ICC_DIR_EL1:
    case SYSREG_ICC_HPPIR0_EL1:
    case SYSREG_ICC_HPPIR1_EL1:
    case SYSREG_ICC_IAR0_EL1:
    case SYSREG_ICC_IAR1_EL1:
    case SYSREG_ICC_IGRPEN0_EL1:
    case SYSREG_ICC_IGRPEN1_EL1:
    case SYSREG_ICC_PMR_EL1:
    case SYSREG_ICC_SGI0R_EL1:
    case SYSREG_ICC_SGI1R_EL1:
    case SYSREG_ICC_SRE_EL1:
        hvf_sysreg_write_cp(cpu, reg, val);
        break;
    case SYSREG_ICC_EOIR0_EL1:
    case SYSREG_ICC_EOIR1_EL1:
        hvf_sysreg_write_cp(cpu, reg, val);
        qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 0);
        hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
    default:
        DPRINTF("unhandled sysreg write %08x", reg);
        break;
    }
}

static int hvf_inject_interrupts(CPUState *cpu)
{
    if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
        DPRINTF("injecting FIQ");
        hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_FIQ, true);
    }

    if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
        DPRINTF("injecting IRQ");
        hv_vcpu_set_pending_interrupt(cpu->hvf->fd, HV_INTERRUPT_TYPE_IRQ, true);
    }

    return 0;
}

static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
{
    /*
     * Use pselect to sleep so that other threads can IPI us while we're
     * sleeping.
     */
    qatomic_mb_set(&cpu->thread_kicked, false);
    qemu_mutex_unlock_iothread();
    pselect(0, 0, 0, 0, ts, &cpu->hvf->unblock_ipi_mask);
    qemu_mutex_lock_iothread();
}

int hvf_vcpu_exec(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    hv_vcpu_exit_t *hvf_exit = cpu->hvf->exit;
    hv_return_t r;

    while (1) {
        bool advance_pc = false;

        qemu_wait_io_event_common(cpu);
        flush_cpu_state(cpu);

        if (hvf_inject_interrupts(cpu)) {
            return EXCP_INTERRUPT;
        }

        if (cpu->halted) {
            return EXCP_HLT;
        }

        qemu_mutex_unlock_iothread();
        assert_hvf_ok(hv_vcpu_run(cpu->hvf->fd));

        /* handle VMEXIT */
        uint64_t exit_reason = hvf_exit->reason;
        uint64_t syndrome = hvf_exit->exception.syndrome;
        uint32_t ec = syn_get_ec(syndrome);

        qemu_mutex_lock_iothread();
        switch (exit_reason) {
        case HV_EXIT_REASON_EXCEPTION:
            /* This is the main one, handle below. */
            break;
        case HV_EXIT_REASON_VTIMER_ACTIVATED:
            qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
            continue;
        case HV_EXIT_REASON_CANCELED:
            /* we got kicked, no exit to process */
            continue;
        default:
            assert(0);
        }

        switch (ec) {
        case EC_DATAABORT: {
            bool isv = syndrome & ARM_EL_ISV;
            bool iswrite = (syndrome >> 6) & 1;
            bool s1ptw = (syndrome >> 7) & 1;
            uint32_t sas = (syndrome >> 22) & 3;
            uint32_t len = 1 << sas;
            uint32_t srt = (syndrome >> 16) & 0x1f;
            uint64_t val = 0;

            DPRINTF("data abort: [pc=0x%llx va=0x%016llx pa=0x%016llx isv=%x "
                    "iswrite=%x s1ptw=%x len=%d srt=%d]\n",
                    env->pc, hvf_exit->exception.virtual_address,
                    hvf_exit->exception.physical_address, isv, iswrite,
                    s1ptw, len, srt);

            assert(isv);

            if (iswrite) {
                val = hvf_get_reg(cpu, srt);
                address_space_write(&address_space_memory,
                                    hvf_exit->exception.physical_address,
                                    MEMTXATTRS_UNSPECIFIED, &val, len);

                /*
                 * We do not have a callback to see if the timer is out of
                 * pending state. That means every MMIO write could
                 * potentially be an EOI ends the vtimer. Until we get an
                 * actual callback, let's just see if the timer is still
                 * pending on every possible toggle point.
                 */
                qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 0);
                hv_vcpu_set_vtimer_mask(cpu->hvf->fd, false);
            } else {
                address_space_read(&address_space_memory,
                                   hvf_exit->exception.physical_address,
                                   MEMTXATTRS_UNSPECIFIED, &val, len);
                hvf_set_reg(cpu, srt, val);
            }

            advance_pc = true;
            break;
        }
        case EC_SYSTEMREGISTERTRAP: {
            bool isread = (syndrome >> 0) & 1;
            uint32_t rt = (syndrome >> 5) & 0x1f;
            uint32_t reg = syndrome & SYSREG_MASK;
            uint64_t val = 0;

            DPRINTF("sysreg %s operation reg=%08x (op0=%d op1=%d op2=%d "
                    "crn=%d crm=%d)", (isread) ? "read" : "write",
                    reg, (reg >> 20) & 0x3,
                    (reg >> 14) & 0x7, (reg >> 17) & 0x7,
                    (reg >> 10) & 0xf, (reg >> 1) & 0xf);

            if (isread) {
                hvf_set_reg(cpu, rt, hvf_sysreg_read(cpu, reg));
            } else {
                val = hvf_get_reg(cpu, rt);
                hvf_sysreg_write(cpu, reg, val);
            }

            advance_pc = true;
            break;
        }
        case EC_WFX_TRAP:
            advance_pc = true;
            if (!(syndrome & WFX_IS_WFE) && !(cpu->interrupt_request &
                (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ))) {

                uint64_t ctl;
                r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CTL_EL0,
                                        &ctl);
                assert_hvf_ok(r);

                if (!(ctl & 1) || (ctl & 2)) {
                    /* Timer disabled or masked, just wait for an IPI. */
                    hvf_wait_for_ipi(cpu, NULL);
                    break;
                }

                uint64_t cval;
                r = hv_vcpu_get_sys_reg(cpu->hvf->fd, HV_SYS_REG_CNTV_CVAL_EL0,
                                        &cval);
                assert_hvf_ok(r);

                int64_t ticks_to_sleep = cval - mach_absolute_time();
                if (ticks_to_sleep < 0) {
                    break;
                }

                uint64_t seconds = ticks_to_sleep / arm_cpu->gt_cntfrq_hz;
                uint64_t nanos =
                    (ticks_to_sleep - arm_cpu->gt_cntfrq_hz * seconds) *
                    1000000000 / arm_cpu->gt_cntfrq_hz;

                /*
                 * Don't sleep for less than 2ms. This is believed to improve
                 * latency of message passing workloads.
                 */
                if (!seconds && nanos < 2000000) {
                    break;
                }

                struct timespec ts = { seconds, nanos };
                hvf_wait_for_ipi(cpu, &ts);
            }
            break;
        case EC_AA64_HVC:
            cpu_synchronize_state(cpu);
            if (arm_is_psci_call(arm_cpu, EXCP_HVC)) {
                arm_handle_psci_call(arm_cpu);
            } else {
                DPRINTF("unknown HVC! %016llx", env->xregs[0]);
                env->xregs[0] = -1;
            }
            break;
        case EC_AA64_SMC:
            cpu_synchronize_state(cpu);
            if (arm_is_psci_call(arm_cpu, EXCP_SMC)) {
                arm_handle_psci_call(arm_cpu);
            } else {
                DPRINTF("unknown SMC! %016llx", env->xregs[0]);
                env->xregs[0] = -1;
            }
            env->pc += 4;
            break;
        default:
            cpu_synchronize_state(cpu);
            DPRINTF("exit: %llx [ec=0x%x pc=0x%llx]", syndrome, ec, env->pc);
            error_report("%llx: unhandled exit %llx", env->pc, exit_reason);
        }

        if (advance_pc) {
            uint64_t pc;

            flush_cpu_state(cpu);

            r = hv_vcpu_get_reg(cpu->hvf->fd, HV_REG_PC, &pc);
            assert_hvf_ok(r);
            pc += 4;
            r = hv_vcpu_set_reg(cpu->hvf->fd, HV_REG_PC, pc);
            assert_hvf_ok(r);
        }
    }
}