aboutsummaryrefslogtreecommitdiff
path: root/target/arm/helper.c
blob: 6b4f0eb533408056392914fe4fa0240c38998ada (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
/*
 * ARM generic helpers.
 *
 * This code is licensed under the GNU GPL v2 or later.
 *
 * SPDX-License-Identifier: GPL-2.0-or-later
 */

#include "qemu/osdep.h"
#include "qemu/units.h"
#include "target/arm/idau.h"
#include "trace.h"
#include "cpu.h"
#include "internals.h"
#include "exec/gdbstub.h"
#include "exec/helper-proto.h"
#include "qemu/host-utils.h"
#include "qemu/main-loop.h"
#include "qemu/bitops.h"
#include "qemu/crc32c.h"
#include "qemu/qemu-print.h"
#include "exec/exec-all.h"
#include <zlib.h> /* For crc32 */
#include "hw/irq.h"
#include "hw/semihosting/semihost.h"
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
#include "sysemu/tcg.h"
#include "qemu/range.h"
#include "qapi/qapi-commands-machine-target.h"
#include "qapi/error.h"
#include "qemu/guest-random.h"
#ifdef CONFIG_TCG
#include "arm_ldst.h"
#include "exec/cpu_ldst.h"
#endif

#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */

#ifndef CONFIG_USER_ONLY

static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
                               bool s1_is_el0,
                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
                               target_ulong *page_size_ptr,
                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
    __attribute__((nonnull));
#endif

static void switch_mode(CPUARMState *env, int mode);

static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
{
    ARMCPU *cpu = env_archcpu(env);
    int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;

    /* VFP data registers are always little-endian.  */
    if (reg < nregs) {
        return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        /* Aliases for Q regs.  */
        nregs += 16;
        if (reg < nregs) {
            uint64_t *q = aa32_vfp_qreg(env, reg - 32);
            return gdb_get_reg128(buf, q[0], q[1]);
        }
    }
    switch (reg - nregs) {
    case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
    case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
    case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
    }
    return 0;
}

static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    ARMCPU *cpu = env_archcpu(env);
    int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;

    if (reg < nregs) {
        *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        nregs += 16;
        if (reg < nregs) {
            uint64_t *q = aa32_vfp_qreg(env, reg - 32);
            q[0] = ldq_le_p(buf);
            q[1] = ldq_le_p(buf + 8);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
    }
    return 0;
}

static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
    {
        /* 128 bit FP register - quads are in LE order */
        uint64_t *q = aa64_vfp_qreg(env, reg);
        return gdb_get_reg128(buf, q[1], q[0]);
    }
    case 32:
        /* FPSR */
        return gdb_get_reg32(buf, vfp_get_fpsr(env));
    case 33:
        /* FPCR */
        return gdb_get_reg32(buf,vfp_get_fpcr(env));
    default:
        return 0;
    }
}

static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        {
            uint64_t *q = aa64_vfp_qreg(env, reg);
            q[0] = ldq_le_p(buf);
            q[1] = ldq_le_p(buf + 8);
            return 16;
        }
    case 32:
        /* FPSR */
        vfp_set_fpsr(env, ldl_p(buf));
        return 4;
    case 33:
        /* FPCR */
        vfp_set_fpcr(env, ldl_p(buf));
        return 4;
    default:
        return 0;
    }
}

static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    assert(ri->fieldoffset);
    if (cpreg_field_is_64bit(ri)) {
        return CPREG_FIELD64(env, ri);
    } else {
        return CPREG_FIELD32(env, ri);
    }
}

static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
{
    assert(ri->fieldoffset);
    if (cpreg_field_is_64bit(ri)) {
        CPREG_FIELD64(env, ri) = value;
    } else {
        CPREG_FIELD32(env, ri) = value;
    }
}

static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return (char *)env + ri->fieldoffset;
}

uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Raw read of a coprocessor register (as needed for migration, etc). */
    if (ri->type & ARM_CP_CONST) {
        return ri->resetvalue;
    } else if (ri->raw_readfn) {
        return ri->raw_readfn(env, ri);
    } else if (ri->readfn) {
        return ri->readfn(env, ri);
    } else {
        return raw_read(env, ri);
    }
}

static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t v)
{
    /* Raw write of a coprocessor register (as needed for migration, etc).
     * Note that constant registers are treated as write-ignored; the
     * caller should check for success by whether a readback gives the
     * value written.
     */
    if (ri->type & ARM_CP_CONST) {
        return;
    } else if (ri->raw_writefn) {
        ri->raw_writefn(env, ri, v);
    } else if (ri->writefn) {
        ri->writefn(env, ri, v);
    } else {
        raw_write(env, ri, v);
    }
}

/**
 * arm_get/set_gdb_*: get/set a gdb register
 * @env: the CPU state
 * @buf: a buffer to copy to/from
 * @reg: register number (offset from start of group)
 *
 * We return the number of bytes copied
 */

static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
{
    ARMCPU *cpu = env_archcpu(env);
    const ARMCPRegInfo *ri;
    uint32_t key;

    key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
    ri = get_arm_cp_reginfo(cpu->cp_regs, key);
    if (ri) {
        if (cpreg_field_is_64bit(ri)) {
            return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
        } else {
            return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
        }
    }
    return 0;
}

static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
{
    return 0;
}

#ifdef TARGET_AARCH64
static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
{
    ARMCPU *cpu = env_archcpu(env);

    switch (reg) {
    /* The first 32 registers are the zregs */
    case 0 ... 31:
    {
        int vq, len = 0;
        for (vq = 0; vq < cpu->sve_max_vq; vq++) {
            len += gdb_get_reg128(buf,
                                  env->vfp.zregs[reg].d[vq * 2 + 1],
                                  env->vfp.zregs[reg].d[vq * 2]);
        }
        return len;
    }
    case 32:
        return gdb_get_reg32(buf, vfp_get_fpsr(env));
    case 33:
        return gdb_get_reg32(buf, vfp_get_fpcr(env));
    /* then 16 predicates and the ffr */
    case 34 ... 50:
    {
        int preg = reg - 34;
        int vq, len = 0;
        for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
            len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
        }
        return len;
    }
    case 51:
    {
        /*
         * We report in Vector Granules (VG) which is 64bit in a Z reg
         * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
         */
        int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
        return gdb_get_reg32(buf, vq * 2);
    }
    default:
        /* gdbstub asked for something out our range */
        qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
        break;
    }

    return 0;
}

static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
{
    ARMCPU *cpu = env_archcpu(env);

    /* The first 32 registers are the zregs */
    switch (reg) {
    /* The first 32 registers are the zregs */
    case 0 ... 31:
    {
        int vq, len = 0;
        uint64_t *p = (uint64_t *) buf;
        for (vq = 0; vq < cpu->sve_max_vq; vq++) {
            env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
            env->vfp.zregs[reg].d[vq * 2] = *p++;
            len += 16;
        }
        return len;
    }
    case 32:
        vfp_set_fpsr(env, *(uint32_t *)buf);
        return 4;
    case 33:
        vfp_set_fpcr(env, *(uint32_t *)buf);
        return 4;
    case 34 ... 50:
    {
        int preg = reg - 34;
        int vq, len = 0;
        uint64_t *p = (uint64_t *) buf;
        for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
            env->vfp.pregs[preg].p[vq / 4] = *p++;
            len += 8;
        }
        return len;
    }
    case 51:
        /* cannot set vg via gdbstub */
        return 0;
    default:
        /* gdbstub asked for something out our range */
        break;
    }

    return 0;
}
#endif /* TARGET_AARCH64 */

static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
{
   /* Return true if the regdef would cause an assertion if you called
    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
    * program bug for it not to have the NO_RAW flag).
    * NB that returning false here doesn't necessarily mean that calling
    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
    * read/write access functions which are safe for raw use" from "has
    * read/write access functions which have side effects but has forgotten
    * to provide raw access functions".
    * The tests here line up with the conditions in read/write_raw_cp_reg()
    * and assertions in raw_read()/raw_write().
    */
    if ((ri->type & ARM_CP_CONST) ||
        ri->fieldoffset ||
        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
        return false;
    }
    return true;
}

bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
{
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        const ARMCPRegInfo *ri;
        uint64_t newval;

        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
        if (!ri) {
            ok = false;
            continue;
        }
        if (ri->type & ARM_CP_NO_RAW) {
            continue;
        }

        newval = read_raw_cp_reg(&cpu->env, ri);
        if (kvm_sync) {
            /*
             * Only sync if the previous list->cpustate sync succeeded.
             * Rather than tracking the success/failure state for every
             * item in the list, we just recheck "does the raw write we must
             * have made in write_list_to_cpustate() read back OK" here.
             */
            uint64_t oldval = cpu->cpreg_values[i];

            if (oldval == newval) {
                continue;
            }

            write_raw_cp_reg(&cpu->env, ri, oldval);
            if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
                continue;
            }

            write_raw_cp_reg(&cpu->env, ri, newval);
        }
        cpu->cpreg_values[i] = newval;
    }
    return ok;
}

bool write_list_to_cpustate(ARMCPU *cpu)
{
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        uint64_t v = cpu->cpreg_values[i];
        const ARMCPRegInfo *ri;

        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
        if (!ri) {
            ok = false;
            continue;
        }
        if (ri->type & ARM_CP_NO_RAW) {
            continue;
        }
        /* Write value and confirm it reads back as written
         * (to catch read-only registers and partially read-only
         * registers where the incoming migration value doesn't match)
         */
        write_raw_cp_reg(&cpu->env, ri, v);
        if (read_raw_cp_reg(&cpu->env, ri) != v) {
            ok = false;
        }
    }
    return ok;
}

static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);

    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
        /* The value array need not be initialized at this point */
        cpu->cpreg_array_len++;
    }
}

static void count_cpreg(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);

    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
        cpu->cpreg_array_len++;
    }
}

static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);

    if (aidx > bidx) {
        return 1;
    }
    if (aidx < bidx) {
        return -1;
    }
    return 0;
}

void init_cpreg_list(ARMCPU *cpu)
{
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
     * Note that we require cpreg_tuples[] to be sorted by key ID.
     */
    GList *keys;
    int arraylen;

    keys = g_hash_table_get_keys(cpu->cp_regs);
    keys = g_list_sort(keys, cpreg_key_compare);

    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, count_cpreg, cpu);

    arraylen = cpu->cpreg_array_len;
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, add_cpreg_to_list, cpu);

    assert(cpu->cpreg_array_len == arraylen);

    g_list_free(keys);
}

/*
 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
 */
static CPAccessResult access_el3_aa32ns(CPUARMState *env,
                                        const ARMCPRegInfo *ri,
                                        bool isread)
{
    if (!is_a64(env) && arm_current_el(env) == 3 &&
        arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

/* Some secure-only AArch32 registers trap to EL3 if used from
 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
 * We assume that the .access field is set to PL1_RW.
 */
static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
                                            const ARMCPRegInfo *ri,
                                            bool isread)
{
    if (arm_current_el(env) == 3) {
        return CP_ACCESS_OK;
    }
    if (arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL3;
    }
    /* This will be EL1 NS and EL2 NS, which just UNDEF */
    return CP_ACCESS_TRAP_UNCATEGORIZED;
}

/* Check for traps to "powerdown debug" registers, which are controlled
 * by MDCR.TDOSA
 */
static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    int el = arm_current_el(env);
    bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
        (env->cp15.mdcr_el2 & MDCR_TDE) ||
        (arm_hcr_el2_eff(env) & HCR_TGE);

    if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

/* Check for traps to "debug ROM" registers, which are controlled
 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
 */
static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    int el = arm_current_el(env);
    bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
        (env->cp15.mdcr_el2 & MDCR_TDE) ||
        (arm_hcr_el2_eff(env) & HCR_TGE);

    if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

/* Check for traps to general debug registers, which are controlled
 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
 */
static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    int el = arm_current_el(env);
    bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
        (env->cp15.mdcr_el2 & MDCR_TDE) ||
        (arm_hcr_el2_eff(env) & HCR_TGE);

    if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

/* Check for traps to performance monitor registers, which are controlled
 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
 */
static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
                                 bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

/* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
                                      bool isread)
{
    if (arm_current_el(env) == 1) {
        uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
        if (arm_hcr_el2_eff(env) & trap) {
            return CP_ACCESS_TRAP_EL2;
        }
    }
    return CP_ACCESS_OK;
}

/* Check for traps from EL1 due to HCR_EL2.TSW.  */
static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
                                 bool isread)
{
    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
        return CP_ACCESS_TRAP_EL2;
    }
    return CP_ACCESS_OK;
}

/* Check for traps from EL1 due to HCR_EL2.TACR.  */
static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
        return CP_ACCESS_TRAP_EL2;
    }
    return CP_ACCESS_OK;
}

/* Check for traps from EL1 due to HCR_EL2.TTLB. */
static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
        return CP_ACCESS_TRAP_EL2;
    }
    return CP_ACCESS_OK;
}

static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);

    raw_write(env, ri, value);
    tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
}

static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);

    if (raw_read(env, ri) != value) {
        /* Unlike real hardware the qemu TLB uses virtual addresses,
         * not modified virtual addresses, so this causes a TLB flush.
         */
        tlb_flush(CPU(cpu));
        raw_write(env, ri, value);
    }
}

static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);

    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
        && !extended_addresses_enabled(env)) {
        /* For VMSA (when not using the LPAE long descriptor page table
         * format) this register includes the ASID, so do a TLB flush.
         * For PMSA it is purely a process ID and no action is needed.
         */
        tlb_flush(CPU(cpu));
    }
    raw_write(env, ri, value);
}

/* IS variants of TLB operations must affect all cores */
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *cs = env_cpu(env);

    tlb_flush_all_cpus_synced(cs);
}

static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *cs = env_cpu(env);

    tlb_flush_all_cpus_synced(cs);
}

static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *cs = env_cpu(env);

    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
}

static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *cs = env_cpu(env);

    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
}

/*
 * Non-IS variants of TLB operations are upgraded to
 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
 * force broadcast of these operations.
 */
static bool tlb_force_broadcast(CPUARMState *env)
{
    return (env->cp15.hcr_el2 & HCR_FB) &&
        arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
}

static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
{
    /* Invalidate all (TLBIALL) */
    CPUState *cs = env_cpu(env);

    if (tlb_force_broadcast(env)) {
        tlb_flush_all_cpus_synced(cs);
    } else {
        tlb_flush(cs);
    }
}

static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
{
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
    CPUState *cs = env_cpu(env);

    value &= TARGET_PAGE_MASK;
    if (tlb_force_broadcast(env)) {
        tlb_flush_page_all_cpus_synced(cs, value);
    } else {
        tlb_flush_page(cs, value);
    }
}

static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
{
    /* Invalidate by ASID (TLBIASID) */
    CPUState *cs = env_cpu(env);

    if (tlb_force_broadcast(env)) {
        tlb_flush_all_cpus_synced(cs);
    } else {
        tlb_flush(cs);
    }
}

static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
{
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
    CPUState *cs = env_cpu(env);

    value &= TARGET_PAGE_MASK;
    if (tlb_force_broadcast(env)) {
        tlb_flush_page_all_cpus_synced(cs, value);
    } else {
        tlb_flush_page(cs, value);
    }
}

static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    CPUState *cs = env_cpu(env);

    tlb_flush_by_mmuidx(cs,
                        ARMMMUIdxBit_E10_1 |
                        ARMMMUIdxBit_E10_1_PAN |
                        ARMMMUIdxBit_E10_0);
}

static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    CPUState *cs = env_cpu(env);

    tlb_flush_by_mmuidx_all_cpus_synced(cs,
                                        ARMMMUIdxBit_E10_1 |
                                        ARMMMUIdxBit_E10_1_PAN |
                                        ARMMMUIdxBit_E10_0);
}


static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    CPUState *cs = env_cpu(env);

    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
}

static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    CPUState *cs = env_cpu(env);

    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
}

static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    CPUState *cs = env_cpu(env);
    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);

    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
}

static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    CPUState *cs = env_cpu(env);
    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);

    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
                                             ARMMMUIdxBit_E2);
}

static const ARMCPRegInfo cp_reginfo[] = {
    /* Define the secure and non-secure FCSE identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated. There is also no
     * v8 EL1 version of the register so the non-secure instance stands alone.
     */
    { .name = "FCSEIDR",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
    { .name = "FCSEIDR_S",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
    /* Define the secure and non-secure context identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated.  In the
     * non-secure case, the 32-bit register will have reset and migration
     * disabled during registration as it is handled by the 64-bit instance.
     */
    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
    { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v8_cp_reginfo[] = {
    /* NB: Some of these registers exist in v8 but with more precise
     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
     */
    /* MMU Domain access control / MPU write buffer control */
    { .name = "DACR",
      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
    /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
     * For v6 and v5, these mappings are overly broad.
     */
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    /* Cache maintenance ops; some of this space may be overridden later. */
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v6_cp_reginfo[] = {
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
     * over-broad.
     */
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_WFI },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v7_cp_reginfo[] = {
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
     */
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_WFI },
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
     * OMAPCP will override this space.
     */
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
      .resetvalue = 0 },
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
      .resetvalue = 0 },
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
      .resetvalue = 0 },
    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
     * implementing it as RAZ means the "debug architecture version" bits
     * will read as a reserved value, which should cause Linux to not try
     * to use the debug hardware.
     */
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
    /* MMU TLB control. Note that the wildcarding means we cover not just
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
     */
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
      .type = ARM_CP_NO_RAW },
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
      .type = ARM_CP_NO_RAW },
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
      .type = ARM_CP_NO_RAW },
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
      .type = ARM_CP_NO_RAW },
    { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
    REGINFO_SENTINEL
};

static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    uint32_t mask = 0;

    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
         */
        if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
            /* VFP coprocessor: cp10 & cp11 [23:20] */
            mask |= (1 << 31) | (1 << 30) | (0xf << 20);

            if (!arm_feature(env, ARM_FEATURE_NEON)) {
                /* ASEDIS [31] bit is RAO/WI */
                value |= (1 << 31);
            }

            /* VFPv3 and upwards with NEON implement 32 double precision
             * registers (D0-D31).
             */
            if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
                value |= (1 << 30);
            }
        }
        value &= mask;
    }

    /*
     * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
     * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
     */
    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
        value &= ~(0xf << 20);
        value |= env->cp15.cpacr_el1 & (0xf << 20);
    }

    env->cp15.cpacr_el1 = value;
}

static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /*
     * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
     * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
     */
    uint64_t value = env->cp15.cpacr_el1;

    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
        value &= ~(0xf << 20);
    }
    return value;
}


static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Call cpacr_write() so that we reset with the correct RAO bits set
     * for our CPU features.
     */
    cpacr_write(env, ri, 0);
}

static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    if (arm_feature(env, ARM_FEATURE_V8)) {
        /* Check if CPACR accesses are to be trapped to EL2 */
        if (arm_current_el(env) == 1 &&
            (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
            return CP_ACCESS_TRAP_EL2;
        /* Check if CPACR accesses are to be trapped to EL3 */
        } else if (arm_current_el(env) < 3 &&
                   (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
            return CP_ACCESS_TRAP_EL3;
        }
    }

    return CP_ACCESS_OK;
}

static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    /* Check if CPTR accesses are set to trap to EL3 */
    if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
        return CP_ACCESS_TRAP_EL3;
    }

    return CP_ACCESS_OK;
}

static const ARMCPRegInfo v6_cp_reginfo[] = {
    /* prefetch by MVA in v6, NOP in v7 */
    { .name = "MVA_prefetch",
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    /* We need to break the TB after ISB to execute self-modifying code
     * correctly and also to take any pending interrupts immediately.
     * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
     */
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
      .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
      .access = PL0_W, .type = ARM_CP_NOP },
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
      .access = PL0_W, .type = ARM_CP_NOP },
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
                             offsetof(CPUARMState, cp15.ifar_ns) },
      .resetvalue = 0, },
    /* Watchpoint Fault Address Register : should actually only be present
     * for 1136, 1176, 11MPCore.
     */
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
      .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
    REGINFO_SENTINEL
};

/* Definitions for the PMU registers */
#define PMCRN_MASK  0xf800
#define PMCRN_SHIFT 11
#define PMCRLC  0x40
#define PMCRDP  0x20
#define PMCRX   0x10
#define PMCRD   0x8
#define PMCRC   0x4
#define PMCRP   0x2
#define PMCRE   0x1
/*
 * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
 * which can be written as 1 to trigger behaviour but which stay RAZ).
 */
#define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)

#define PMXEVTYPER_P          0x80000000
#define PMXEVTYPER_U          0x40000000
#define PMXEVTYPER_NSK        0x20000000
#define PMXEVTYPER_NSU        0x10000000
#define PMXEVTYPER_NSH        0x08000000
#define PMXEVTYPER_M          0x04000000
#define PMXEVTYPER_MT         0x02000000
#define PMXEVTYPER_EVTCOUNT   0x0000ffff
#define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
                               PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
                               PMXEVTYPER_M | PMXEVTYPER_MT | \
                               PMXEVTYPER_EVTCOUNT)

#define PMCCFILTR             0xf8000000
#define PMCCFILTR_M           PMXEVTYPER_M
#define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)

static inline uint32_t pmu_num_counters(CPUARMState *env)
{
  return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
}

/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
static inline uint64_t pmu_counter_mask(CPUARMState *env)
{
  return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
}

typedef struct pm_event {
    uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
    /* If the event is supported on this CPU (used to generate PMCEID[01]) */
    bool (*supported)(CPUARMState *);
    /*
     * Retrieve the current count of the underlying event. The programmed
     * counters hold a difference from the return value from this function
     */
    uint64_t (*get_count)(CPUARMState *);
    /*
     * Return how many nanoseconds it will take (at a minimum) for count events
     * to occur. A negative value indicates the counter will never overflow, or
     * that the counter has otherwise arranged for the overflow bit to be set
     * and the PMU interrupt to be raised on overflow.
     */
    int64_t (*ns_per_count)(uint64_t);
} pm_event;

static bool event_always_supported(CPUARMState *env)
{
    return true;
}

static uint64_t swinc_get_count(CPUARMState *env)
{
    /*
     * SW_INCR events are written directly to the pmevcntr's by writes to
     * PMSWINC, so there is no underlying count maintained by the PMU itself
     */
    return 0;
}

static int64_t swinc_ns_per(uint64_t ignored)
{
    return -1;
}

/*
 * Return the underlying cycle count for the PMU cycle counters. If we're in
 * usermode, simply return 0.
 */
static uint64_t cycles_get_count(CPUARMState *env)
{
#ifndef CONFIG_USER_ONLY
    return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                   ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
#else
    return cpu_get_host_ticks();
#endif
}

#ifndef CONFIG_USER_ONLY
static int64_t cycles_ns_per(uint64_t cycles)
{
    return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
}

static bool instructions_supported(CPUARMState *env)
{
    return use_icount == 1 /* Precise instruction counting */;
}

static uint64_t instructions_get_count(CPUARMState *env)
{
    return (uint64_t)cpu_get_icount_raw();
}

static int64_t instructions_ns_per(uint64_t icount)
{
    return cpu_icount_to_ns((int64_t)icount);
}
#endif

static bool pmu_8_1_events_supported(CPUARMState *env)
{
    /* For events which are supported in any v8.1 PMU */
    return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
}

static bool pmu_8_4_events_supported(CPUARMState *env)
{
    /* For events which are supported in any v8.1 PMU */
    return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
}

static uint64_t zero_event_get_count(CPUARMState *env)
{
    /* For events which on QEMU never fire, so their count is always zero */
    return 0;
}

static int64_t zero_event_ns_per(uint64_t cycles)
{
    /* An event which never fires can never overflow */
    return -1;
}

static const pm_event pm_events[] = {
    { .number = 0x000, /* SW_INCR */
      .supported = event_always_supported,
      .get_count = swinc_get_count,
      .ns_per_count = swinc_ns_per,
    },
#ifndef CONFIG_USER_ONLY
    { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
      .supported = instructions_supported,
      .get_count = instructions_get_count,
      .ns_per_count = instructions_ns_per,
    },
    { .number = 0x011, /* CPU_CYCLES, Cycle */
      .supported = event_always_supported,
      .get_count = cycles_get_count,
      .ns_per_count = cycles_ns_per,
    },
#endif
    { .number = 0x023, /* STALL_FRONTEND */
      .supported = pmu_8_1_events_supported,
      .get_count = zero_event_get_count,
      .ns_per_count = zero_event_ns_per,
    },
    { .number = 0x024, /* STALL_BACKEND */
      .supported = pmu_8_1_events_supported,
      .get_count = zero_event_get_count,
      .ns_per_count = zero_event_ns_per,
    },
    { .number = 0x03c, /* STALL */
      .supported = pmu_8_4_events_supported,
      .get_count = zero_event_get_count,
      .ns_per_count = zero_event_ns_per,
    },
};

/*
 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
 * events (i.e. the statistical profiling extension), this implementation
 * should first be updated to something sparse instead of the current
 * supported_event_map[] array.
 */
#define MAX_EVENT_ID 0x3c
#define UNSUPPORTED_EVENT UINT16_MAX
static uint16_t supported_event_map[MAX_EVENT_ID + 1];

/*
 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
 * of ARM event numbers to indices in our pm_events array.
 *
 * Note: Events in the 0x40XX range are not currently supported.
 */
void pmu_init(ARMCPU *cpu)
{
    unsigned int i;

    /*
     * Empty supported_event_map and cpu->pmceid[01] before adding supported
     * events to them
     */
    for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
        supported_event_map[i] = UNSUPPORTED_EVENT;
    }
    cpu->pmceid0 = 0;
    cpu->pmceid1 = 0;

    for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
        const pm_event *cnt = &pm_events[i];
        assert(cnt->number <= MAX_EVENT_ID);
        /* We do not currently support events in the 0x40xx range */
        assert(cnt->number <= 0x3f);

        if (cnt->supported(&cpu->env)) {
            supported_event_map[cnt->number] = i;
            uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
            if (cnt->number & 0x20) {
                cpu->pmceid1 |= event_mask;
            } else {
                cpu->pmceid0 |= event_mask;
            }
        }
    }
}

/*
 * Check at runtime whether a PMU event is supported for the current machine
 */
static bool event_supported(uint16_t number)
{
    if (number > MAX_EVENT_ID) {
        return false;
    }
    return supported_event_map[number] != UNSUPPORTED_EVENT;
}

static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    /* Performance monitor registers user accessibility is controlled
     * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
     * trapping to EL2 or EL3 for other accesses.
     */
    int el = arm_current_el(env);

    if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
        return CP_ACCESS_TRAP;
    }
    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
        return CP_ACCESS_TRAP_EL3;
    }

    return CP_ACCESS_OK;
}

static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
                                           const ARMCPRegInfo *ri,
                                           bool isread)
{
    /* ER: event counter read trap control */
    if (arm_feature(env, ARM_FEATURE_V8)
        && arm_current_el(env) == 0
        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
        && isread) {
        return CP_ACCESS_OK;
    }

    return pmreg_access(env, ri, isread);
}

static CPAccessResult pmreg_access_swinc(CPUARMState *env,
                                         const ARMCPRegInfo *ri,
                                         bool isread)
{
    /* SW: software increment write trap control */
    if (arm_feature(env, ARM_FEATURE_V8)
        && arm_current_el(env) == 0
        && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
        && !isread) {
        return CP_ACCESS_OK;
    }

    return pmreg_access(env, ri, isread);
}

static CPAccessResult pmreg_access_selr(CPUARMState *env,
                                        const ARMCPRegInfo *ri,
                                        bool isread)
{
    /* ER: event counter read trap control */
    if (arm_feature(env, ARM_FEATURE_V8)
        && arm_current_el(env) == 0
        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
        return CP_ACCESS_OK;
    }

    return pmreg_access(env, ri, isread);
}

static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
                                         const ARMCPRegInfo *ri,
                                         bool isread)
{
    /* CR: cycle counter read trap control */
    if (arm_feature(env, ARM_FEATURE_V8)
        && arm_current_el(env) == 0
        && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
        && isread) {
        return CP_ACCESS_OK;
    }

    return pmreg_access(env, ri, isread);
}

/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
 * the current EL, security state, and register configuration.
 */
static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
{
    uint64_t filter;
    bool e, p, u, nsk, nsu, nsh, m;
    bool enabled, prohibited, filtered;
    bool secure = arm_is_secure(env);
    int el = arm_current_el(env);
    uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;

    if (!arm_feature(env, ARM_FEATURE_PMU)) {
        return false;
    }

    if (!arm_feature(env, ARM_FEATURE_EL2) ||
            (counter < hpmn || counter == 31)) {
        e = env->cp15.c9_pmcr & PMCRE;
    } else {
        e = env->cp15.mdcr_el2 & MDCR_HPME;
    }
    enabled = e && (env->cp15.c9_pmcnten & (1 << counter));

    if (!secure) {
        if (el == 2 && (counter < hpmn || counter == 31)) {
            prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
        } else {
            prohibited = false;
        }
    } else {
        prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
           (env->cp15.mdcr_el3 & MDCR_SPME);
    }

    if (prohibited && counter == 31) {
        prohibited = env->cp15.c9_pmcr & PMCRDP;
    }

    if (counter == 31) {
        filter = env->cp15.pmccfiltr_el0;
    } else {
        filter = env->cp15.c14_pmevtyper[counter];
    }

    p   = filter & PMXEVTYPER_P;
    u   = filter & PMXEVTYPER_U;
    nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
    nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
    nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
    m   = arm_el_is_aa64(env, 1) &&
              arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);

    if (el == 0) {
        filtered = secure ? u : u != nsu;
    } else if (el == 1) {
        filtered = secure ? p : p != nsk;
    } else if (el == 2) {
        filtered = !nsh;
    } else { /* EL3 */
        filtered = m != p;
    }

    if (counter != 31) {
        /*
         * If not checking PMCCNTR, ensure the counter is setup to an event we
         * support
         */
        uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
        if (!event_supported(event)) {
            return false;
        }
    }

    return enabled && !prohibited && !filtered;
}

static void pmu_update_irq(CPUARMState *env)
{
    ARMCPU *cpu = env_archcpu(env);
    qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
            (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
}

/*
 * Ensure c15_ccnt is the guest-visible count so that operations such as
 * enabling/disabling the counter or filtering, modifying the count itself,
 * etc. can be done logically. This is essentially a no-op if the counter is
 * not enabled at the time of the call.
 */
static void pmccntr_op_start(CPUARMState *env)
{
    uint64_t cycles = cycles_get_count(env);

    if (pmu_counter_enabled(env, 31)) {
        uint64_t eff_cycles = cycles;
        if (env->cp15.c9_pmcr & PMCRD) {
            /* Increment once every 64 processor clock cycles */
            eff_cycles /= 64;
        }

        uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;

        uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
                                 1ull << 63 : 1ull << 31;
        if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
            env->cp15.c9_pmovsr |= (1 << 31);
            pmu_update_irq(env);
        }

        env->cp15.c15_ccnt = new_pmccntr;
    }
    env->cp15.c15_ccnt_delta = cycles;
}

/*
 * If PMCCNTR is enabled, recalculate the delta between the clock and the
 * guest-visible count. A call to pmccntr_op_finish should follow every call to
 * pmccntr_op_start.
 */
static void pmccntr_op_finish(CPUARMState *env)
{
    if (pmu_counter_enabled(env, 31)) {
#ifndef CONFIG_USER_ONLY
        /* Calculate when the counter will next overflow */
        uint64_t remaining_cycles = -env->cp15.c15_ccnt;
        if (!(env->cp15.c9_pmcr & PMCRLC)) {
            remaining_cycles = (uint32_t)remaining_cycles;
        }
        int64_t overflow_in = cycles_ns_per(remaining_cycles);

        if (overflow_in > 0) {
            int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
                overflow_in;
            ARMCPU *cpu = env_archcpu(env);
            timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
        }
#endif

        uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
        if (env->cp15.c9_pmcr & PMCRD) {
            /* Increment once every 64 processor clock cycles */
            prev_cycles /= 64;
        }
        env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
    }
}

static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
{

    uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
    uint64_t count = 0;
    if (event_supported(event)) {
        uint16_t event_idx = supported_event_map[event];
        count = pm_events[event_idx].get_count(env);
    }

    if (pmu_counter_enabled(env, counter)) {
        uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];

        if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
            env->cp15.c9_pmovsr |= (1 << counter);
            pmu_update_irq(env);
        }
        env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
    }
    env->cp15.c14_pmevcntr_delta[counter] = count;
}

static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
{
    if (pmu_counter_enabled(env, counter)) {
#ifndef CONFIG_USER_ONLY
        uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
        uint16_t event_idx = supported_event_map[event];
        uint64_t delta = UINT32_MAX -
            (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
        int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);

        if (overflow_in > 0) {
            int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
                overflow_in;
            ARMCPU *cpu = env_archcpu(env);
            timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
        }
#endif

        env->cp15.c14_pmevcntr_delta[counter] -=
            env->cp15.c14_pmevcntr[counter];
    }
}

void pmu_op_start(CPUARMState *env)
{
    unsigned int i;
    pmccntr_op_start(env);
    for (i = 0; i < pmu_num_counters(env); i++) {
        pmevcntr_op_start(env, i);
    }
}

void pmu_op_finish(CPUARMState *env)
{
    unsigned int i;
    pmccntr_op_finish(env);
    for (i = 0; i < pmu_num_counters(env); i++) {
        pmevcntr_op_finish(env, i);
    }
}

void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
{
    pmu_op_start(&cpu->env);
}

void pmu_post_el_change(ARMCPU *cpu, void *ignored)
{
    pmu_op_finish(&cpu->env);
}

void arm_pmu_timer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    /*
     * Update all the counter values based on the current underlying counts,
     * triggering interrupts to be raised, if necessary. pmu_op_finish() also
     * has the effect of setting the cpu->pmu_timer to the next earliest time a
     * counter may expire.
     */
    pmu_op_start(&cpu->env);
    pmu_op_finish(&cpu->env);
}

static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
{
    pmu_op_start(env);

    if (value & PMCRC) {
        /* The counter has been reset */
        env->cp15.c15_ccnt = 0;
    }

    if (value & PMCRP) {
        unsigned int i;
        for (i = 0; i < pmu_num_counters(env); i++) {
            env->cp15.c14_pmevcntr[i] = 0;
        }
    }

    env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
    env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);

    pmu_op_finish(env);
}

static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
{
    unsigned int i;
    for (i = 0; i < pmu_num_counters(env); i++) {
        /* Increment a counter's count iff: */
        if ((value & (1 << i)) && /* counter's bit is set */
                /* counter is enabled and not filtered */
                pmu_counter_enabled(env, i) &&
                /* counter is SW_INCR */
                (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
            pmevcntr_op_start(env, i);

            /*
             * Detect if this write causes an overflow since we can't predict
             * PMSWINC overflows like we can for other events
             */
            uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;

            if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
                env->cp15.c9_pmovsr |= (1 << i);
                pmu_update_irq(env);
            }

            env->cp15.c14_pmevcntr[i] = new_pmswinc;

            pmevcntr_op_finish(env, i);
        }
    }
}

static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    uint64_t ret;
    pmccntr_op_start(env);
    ret = env->cp15.c15_ccnt;
    pmccntr_op_finish(env);
    return ret;
}

static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
     * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
     * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
     * accessed.
     */
    env->cp15.c9_pmselr = value & 0x1f;
}

static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    pmccntr_op_start(env);
    env->cp15.c15_ccnt = value;
    pmccntr_op_finish(env);
}

static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    uint64_t cur_val = pmccntr_read(env, NULL);

    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
}

static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    pmccntr_op_start(env);
    env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
    pmccntr_op_finish(env);
}

static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    pmccntr_op_start(env);
    /* M is not accessible from AArch32 */
    env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
        (value & PMCCFILTR);
    pmccntr_op_finish(env);
}

static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* M is not visible in AArch32 */
    return env->cp15.pmccfiltr_el0 & PMCCFILTR;
}

static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    value &= pmu_counter_mask(env);
    env->cp15.c9_pmcnten |= value;
}

static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    value &= pmu_counter_mask(env);
    env->cp15.c9_pmcnten &= ~value;
}

static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    value &= pmu_counter_mask(env);
    env->cp15.c9_pmovsr &= ~value;
    pmu_update_irq(env);
}

static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    value &= pmu_counter_mask(env);
    env->cp15.c9_pmovsr |= value;
    pmu_update_irq(env);
}

static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value, const uint8_t counter)
{
    if (counter == 31) {
        pmccfiltr_write(env, ri, value);
    } else if (counter < pmu_num_counters(env)) {
        pmevcntr_op_start(env, counter);

        /*
         * If this counter's event type is changing, store the current
         * underlying count for the new type in c14_pmevcntr_delta[counter] so
         * pmevcntr_op_finish has the correct baseline when it converts back to
         * a delta.
         */
        uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
            PMXEVTYPER_EVTCOUNT;
        uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
        if (old_event != new_event) {
            uint64_t count = 0;
            if (event_supported(new_event)) {
                uint16_t event_idx = supported_event_map[new_event];
                count = pm_events[event_idx].get_count(env);
            }
            env->cp15.c14_pmevcntr_delta[counter] = count;
        }

        env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
        pmevcntr_op_finish(env, counter);
    }
    /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
     * PMSELR value is equal to or greater than the number of implemented
     * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
     */
}

static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
                               const uint8_t counter)
{
    if (counter == 31) {
        return env->cp15.pmccfiltr_el0;
    } else if (counter < pmu_num_counters(env)) {
        return env->cp15.c14_pmevtyper[counter];
    } else {
      /*
       * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
       * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
       */
        return 0;
    }
}

static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
    pmevtyper_write(env, ri, value, counter);
}

static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
    env->cp15.c14_pmevtyper[counter] = value;

    /*
     * pmevtyper_rawwrite is called between a pair of pmu_op_start and
     * pmu_op_finish calls when loading saved state for a migration. Because
     * we're potentially updating the type of event here, the value written to
     * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
     * different counter type. Therefore, we need to set this value to the
     * current count for the counter type we're writing so that pmu_op_finish
     * has the correct count for its calculation.
     */
    uint16_t event = value & PMXEVTYPER_EVTCOUNT;
    if (event_supported(event)) {
        uint16_t event_idx = supported_event_map[event];
        env->cp15.c14_pmevcntr_delta[counter] =
            pm_events[event_idx].get_count(env);
    }
}

static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
{
    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
    return pmevtyper_read(env, ri, counter);
}

static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
}

static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
}

static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value, uint8_t counter)
{
    if (counter < pmu_num_counters(env)) {
        pmevcntr_op_start(env, counter);
        env->cp15.c14_pmevcntr[counter] = value;
        pmevcntr_op_finish(env, counter);
    }
    /*
     * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
     * are CONSTRAINED UNPREDICTABLE.
     */
}

static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint8_t counter)
{
    if (counter < pmu_num_counters(env)) {
        uint64_t ret;
        pmevcntr_op_start(env, counter);
        ret = env->cp15.c14_pmevcntr[counter];
        pmevcntr_op_finish(env, counter);
        return ret;
    } else {
      /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
       * are CONSTRAINED UNPREDICTABLE. */
        return 0;
    }
}

static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
    pmevcntr_write(env, ri, value, counter);
}

static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
{
    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
    return pmevcntr_read(env, ri, counter);
}

static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
    assert(counter < pmu_num_counters(env));
    env->cp15.c14_pmevcntr[counter] = value;
    pmevcntr_write(env, ri, value, counter);
}

static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
{
    uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
    assert(counter < pmu_num_counters(env));
    return env->cp15.c14_pmevcntr[counter];
}

static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
}

static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
}

static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    if (arm_feature(env, ARM_FEATURE_V8)) {
        env->cp15.c9_pmuserenr = value & 0xf;
    } else {
        env->cp15.c9_pmuserenr = value & 1;
    }
}

static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    /* We have no event counters so only the C bit can be changed */
    value &= pmu_counter_mask(env);
    env->cp15.c9_pminten |= value;
    pmu_update_irq(env);
}

static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    value &= pmu_counter_mask(env);
    env->cp15.c9_pminten &= ~value;
    pmu_update_irq(env);
}

static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
{
    /* Note that even though the AArch64 view of this register has bits
     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
     * architectural requirements for bits which are RES0 only in some
     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
     */
    raw_write(env, ri, value & ~0x1FULL);
}

static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    /* Begin with base v8.0 state.  */
    uint32_t valid_mask = 0x3fff;
    ARMCPU *cpu = env_archcpu(env);

    if (ri->state == ARM_CP_STATE_AA64) {
        value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
        valid_mask &= ~SCR_NET;

        if (cpu_isar_feature(aa64_lor, cpu)) {
            valid_mask |= SCR_TLOR;
        }
        if (cpu_isar_feature(aa64_pauth, cpu)) {
            valid_mask |= SCR_API | SCR_APK;
        }
        if (cpu_isar_feature(aa64_mte, cpu)) {
            valid_mask |= SCR_ATA;
        }
    } else {
        valid_mask &= ~(SCR_RW | SCR_ST);
    }

    if (!arm_feature(env, ARM_FEATURE_EL2)) {
        valid_mask &= ~SCR_HCE;

        /* On ARMv7, SMD (or SCD as it is called in v7) is only
         * supported if EL2 exists. The bit is UNK/SBZP when
         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
         * when EL2 is unavailable.
         * On ARMv8, this bit is always available.
         */
        if (arm_feature(env, ARM_FEATURE_V7) &&
            !arm_feature(env, ARM_FEATURE_V8)) {
            valid_mask &= ~SCR_SMD;
        }
    }

    /* Clear all-context RES0 bits.  */
    value &= valid_mask;
    raw_write(env, ri, value);
}

static CPAccessResult access_aa64_tid2(CPUARMState *env,
                                       const ARMCPRegInfo *ri,
                                       bool isread)
{
    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
        return CP_ACCESS_TRAP_EL2;
    }

    return CP_ACCESS_OK;
}

static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = env_archcpu(env);

    /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
     * bank
     */
    uint32_t index = A32_BANKED_REG_GET(env, csselr,
                                        ri->secure & ARM_CP_SECSTATE_S);

    return cpu->ccsidr[index];
}

static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    raw_write(env, ri, value & 0xf);
}

static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    CPUState *cs = env_cpu(env);
    uint64_t hcr_el2 = arm_hcr_el2_eff(env);
    uint64_t ret = 0;
    bool allow_virt = (arm_current_el(env) == 1 &&
                       (!arm_is_secure_below_el3(env) ||
                        (env->cp15.scr_el3 & SCR_EEL2)));

    if (allow_virt && (hcr_el2 & HCR_IMO)) {
        if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
            ret |= CPSR_I;
        }
    } else {
        if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
            ret |= CPSR_I;
        }
    }

    if (allow_virt && (hcr_el2 & HCR_FMO)) {
        if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
            ret |= CPSR_F;
        }
    } else {
        if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
            ret |= CPSR_F;
        }
    }

    /* External aborts are not possible in QEMU so A bit is always clear */
    return ret;
}

static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
{
    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
        return CP_ACCESS_TRAP_EL2;
    }

    return CP_ACCESS_OK;
}

static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
{
    if (arm_feature(env, ARM_FEATURE_V8)) {
        return access_aa64_tid1(env, ri, isread);
    }

    return CP_ACCESS_OK;
}

static const ARMCPRegInfo v7_cp_reginfo[] = {
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
    /* Performance monitors are implementation defined in v7,
     * but with an ARM recommended set of registers, which we
     * follow.
     *
     * Performance registers fall into three categories:
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
     */
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
      .writefn = pmcntenset_write,
      .accessfn = pmreg_access,
      .raw_writefn = raw_write },
    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
      .access = PL0_RW, .accessfn = pmreg_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
      .writefn = pmcntenset_write, .raw_writefn = raw_write },
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
      .accessfn = pmreg_access,
      .writefn = pmcntenclr_write,
      .type = ARM_CP_ALIAS },
    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
      .writefn = pmcntenclr_write },
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
      .access = PL0_RW, .type = ARM_CP_IO,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
      .accessfn = pmreg_access,
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
    { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_ALIAS | ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
      .access = PL0_W, .accessfn = pmreg_access_swinc,
      .type = ARM_CP_NO_RAW | ARM_CP_IO,
      .writefn = pmswinc_write },
    { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
      .access = PL0_W, .accessfn = pmreg_access_swinc,
      .type = ARM_CP_NO_RAW | ARM_CP_IO,
      .writefn = pmswinc_write },
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
      .access = PL0_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
      .accessfn = pmreg_access_selr, .writefn = pmselr_write,
      .raw_writefn = raw_write},
    { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
      .access = PL0_RW, .accessfn = pmreg_access_selr,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
      .writefn = pmselr_write, .raw_writefn = raw_write, },
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
      .readfn = pmccntr_read, .writefn = pmccntr_write32,
      .accessfn = pmreg_access_ccntr },
    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
      .access = PL0_RW, .accessfn = pmreg_access_ccntr,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
      .readfn = pmccntr_read, .writefn = pmccntr_write,
      .raw_readfn = raw_read, .raw_writefn = raw_write, },
    { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
      .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_ALIAS | ARM_CP_IO,
      .resetvalue = 0, },
    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
      .writefn = pmccfiltr_write, .raw_writefn = raw_write,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
      .resetvalue = 0, },
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
      .accessfn = pmreg_access,
      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
    { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
      .accessfn = pmreg_access,
      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
      .accessfn = pmreg_access_xevcntr,
      .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
    { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
      .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
      .accessfn = pmreg_access_xevcntr,
      .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
      .access = PL0_R | PL1_RW, .accessfn = access_tpm,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
    { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
      .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_tpm,
      .type = ARM_CP_ALIAS | ARM_CP_IO,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
      .resetvalue = 0,
      .writefn = pmintenset_write, .raw_writefn = raw_write },
    { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_tpm,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .writefn = pmintenset_write, .raw_writefn = raw_write,
      .resetvalue = 0x0 },
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .accessfn = access_tpm,
      .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .writefn = pmintenclr_write, },
    { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
      .access = PL1_RW, .accessfn = access_tpm,
      .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .writefn = pmintenclr_write },
    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
      .access = PL1_R,
      .accessfn = access_aa64_tid2,
      .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
      .access = PL1_RW,
      .accessfn = access_aa64_tid2,
      .writefn = csselr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
                             offsetof(CPUARMState, cp15.csselr_ns) } },
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
     * just RAZ for all cores:
     */
    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
      .access = PL1_R, .type = ARM_CP_CONST,
      .accessfn = access_aa64_tid1,
      .resetvalue = 0 },
    /* Auxiliary fault status registers: these also are IMPDEF, and we
     * choose to RAZ/WI for all cores.
     */
    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    /* MAIR can just read-as-written because we don't implement caches
     * and so don't need to care about memory attributes.
     */
    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
      .resetvalue = 0 },
    { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
      .resetvalue = 0 },
    /* For non-long-descriptor page tables these are PRRR and NMRR;
     * regardless they still act as reads-as-written for QEMU.
     */
     /* MAIR0/1 are defined separately from their 64-bit counterpart which
      * allows them to assign the correct fieldoffset based on the endianness
      * handled in the field definitions.
      */
    { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
                             offsetof(CPUARMState, cp15.mair0_ns) },
      .resetfn = arm_cp_reset_ignore },
    { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
                             offsetof(CPUARMState, cp15.mair1_ns) },
      .resetfn = arm_cp_reset_ignore },
    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
    /* 32 bit ITLB invalidates */
    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbiall_write },
    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbimva_write },
    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbiasid_write },
    /* 32 bit DTLB invalidates */
    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbiall_write },
    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbimva_write },
    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbiasid_write },
    /* 32 bit TLB invalidates */
    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbiall_write },
    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbimva_write },
    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbiasid_write },
    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbimvaa_write },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo v7mp_cp_reginfo[] = {
    /* 32 bit TLB invalidates, Inner Shareable */
    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbiall_is_write },
    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbimva_is_write },
    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbiasid_is_write },
    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbimvaa_is_write },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
    /* PMOVSSET is not implemented in v7 before v7ve */
    { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_ALIAS | ARM_CP_IO,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
      .writefn = pmovsset_write,
      .raw_writefn = raw_write },
    { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_ALIAS | ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
      .writefn = pmovsset_write,
      .raw_writefn = raw_write },
    REGINFO_SENTINEL
};

static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    value &= 1;
    env->teecr = value;
}

static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                    bool isread)
{
    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static const ARMCPRegInfo t2ee_cp_reginfo[] = {
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
      .resetvalue = 0,
      .writefn = teecr_write },
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
      .accessfn = teehbr_access, .resetvalue = 0 },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo v6k_cp_reginfo[] = {
    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
      .access = PL0_R|PL1_W,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
      .resetvalue = 0},
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL0_R|PL1_W,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
      .access = PL1_RW,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
      .resetvalue = 0 },
    REGINFO_SENTINEL
};

#ifndef CONFIG_USER_ONLY

static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
{
    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
     * Writable only at the highest implemented exception level.
     */
    int el = arm_current_el(env);
    uint64_t hcr;
    uint32_t cntkctl;

    switch (el) {
    case 0:
        hcr = arm_hcr_el2_eff(env);
        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
            cntkctl = env->cp15.cnthctl_el2;
        } else {
            cntkctl = env->cp15.c14_cntkctl;
        }
        if (!extract32(cntkctl, 0, 2)) {
            return CP_ACCESS_TRAP;
        }
        break;
    case 1:
        if (!isread && ri->state == ARM_CP_STATE_AA32 &&
            arm_is_secure_below_el3(env)) {
            /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
            return CP_ACCESS_TRAP_UNCATEGORIZED;
        }
        break;
    case 2:
    case 3:
        break;
    }

    if (!isread && el < arm_highest_el(env)) {
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }

    return CP_ACCESS_OK;
}

static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
                                        bool isread)
{
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);
    uint64_t hcr = arm_hcr_el2_eff(env);

    switch (cur_el) {
    case 0:
        /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
            return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
                    ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
        }

        /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
        if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
            return CP_ACCESS_TRAP;
        }

        /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
        if (hcr & HCR_E2H) {
            if (timeridx == GTIMER_PHYS &&
                !extract32(env->cp15.cnthctl_el2, 10, 1)) {
                return CP_ACCESS_TRAP_EL2;
            }
        } else {
            /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
            if (arm_feature(env, ARM_FEATURE_EL2) &&
                timeridx == GTIMER_PHYS && !secure &&
                !extract32(env->cp15.cnthctl_el2, 1, 1)) {
                return CP_ACCESS_TRAP_EL2;
            }
        }
        break;

    case 1:
        /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
        if (arm_feature(env, ARM_FEATURE_EL2) &&
            timeridx == GTIMER_PHYS && !secure &&
            (hcr & HCR_E2H
             ? !extract32(env->cp15.cnthctl_el2, 10, 1)
             : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
            return CP_ACCESS_TRAP_EL2;
        }
        break;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
                                      bool isread)
{
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);
    uint64_t hcr = arm_hcr_el2_eff(env);

    switch (cur_el) {
    case 0:
        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
            /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
            return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
                    ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
        }

        /*
         * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
         * EL0 if EL0[PV]TEN is zero.
         */
        if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
            return CP_ACCESS_TRAP;
        }
        /* fall through */

    case 1:
        if (arm_feature(env, ARM_FEATURE_EL2) &&
            timeridx == GTIMER_PHYS && !secure) {
            if (hcr & HCR_E2H) {
                /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
                if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
                    return CP_ACCESS_TRAP_EL2;
                }
            } else {
                /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
                if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
                    return CP_ACCESS_TRAP_EL2;
                }
            }
        }
        break;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult gt_pct_access(CPUARMState *env,
                                    const ARMCPRegInfo *ri,
                                    bool isread)
{
    return gt_counter_access(env, GTIMER_PHYS, isread);
}

static CPAccessResult gt_vct_access(CPUARMState *env,
                                    const ARMCPRegInfo *ri,
                                    bool isread)
{
    return gt_counter_access(env, GTIMER_VIRT, isread);
}

static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
{
    return gt_timer_access(env, GTIMER_PHYS, isread);
}

static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
{
    return gt_timer_access(env, GTIMER_VIRT, isread);
}

static CPAccessResult gt_stimer_access(CPUARMState *env,
                                       const ARMCPRegInfo *ri,
                                       bool isread)
{
    /* The AArch64 register view of the secure physical timer is
     * always accessible from EL3, and configurably accessible from
     * Secure EL1.
     */
    switch (arm_current_el(env)) {
    case 1:
        if (!arm_is_secure(env)) {
            return CP_ACCESS_TRAP;
        }
        if (!(env->cp15.scr_el3 & SCR_ST)) {
            return CP_ACCESS_TRAP_EL3;
        }
        return CP_ACCESS_OK;
    case 0:
    case 2:
        return CP_ACCESS_TRAP;
    case 3:
        return CP_ACCESS_OK;
    default:
        g_assert_not_reached();
    }
}

static uint64_t gt_get_countervalue(CPUARMState *env)
{
    ARMCPU *cpu = env_archcpu(env);

    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
}

static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];

    if (gt->ctl & 1) {
        /* Timer enabled: calculate and set current ISTATUS, irq, and
         * reset timer to when ISTATUS next has to change
         */
        uint64_t offset = timeridx == GTIMER_VIRT ?
                                      cpu->env.cp15.cntvoff_el2 : 0;
        uint64_t count = gt_get_countervalue(&cpu->env);
        /* Note that this must be unsigned 64 bit arithmetic: */
        int istatus = count - offset >= gt->cval;
        uint64_t nexttick;
        int irqstate;

        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);

        irqstate = (istatus && !(gt->ctl & 2));
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);

        if (istatus) {
            /* Next transition is when count rolls back over to zero */
            nexttick = UINT64_MAX;
        } else {
            /* Next transition is when we hit cval */
            nexttick = gt->cval + offset;
        }
        /* Note that the desired next expiry time might be beyond the
         * signed-64-bit range of a QEMUTimer -- in this case we just
         * set the timer for as far in the future as possible. When the
         * timer expires we will reset the timer for any remaining period.
         */
        if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
            timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
        } else {
            timer_mod(cpu->gt_timer[timeridx], nexttick);
        }
        trace_arm_gt_recalc(timeridx, irqstate, nexttick);
    } else {
        /* Timer disabled: ISTATUS and timer output always clear */
        gt->ctl &= ~4;
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
        timer_del(cpu->gt_timer[timeridx]);
        trace_arm_gt_recalc_disabled(timeridx);
    }
}

static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
                           int timeridx)
{
    ARMCPU *cpu = env_archcpu(env);

    timer_del(cpu->gt_timer[timeridx]);
}

static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_get_countervalue(env);
}

static uint64_t gt_virt_cnt_offset(CPUARMState *env)
{
    uint64_t hcr;

    switch (arm_current_el(env)) {
    case 2:
        hcr = arm_hcr_el2_eff(env);
        if (hcr & HCR_E2H) {
            return 0;
        }
        break;
    case 0:
        hcr = arm_hcr_el2_eff(env);
        if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
            return 0;
        }
        break;
    }

    return env->cp15.cntvoff_el2;
}

static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
}

static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          int timeridx,
                          uint64_t value)
{
    trace_arm_gt_cval_write(timeridx, value);
    env->cp15.c14_timer[timeridx].cval = value;
    gt_recalc_timer(env_archcpu(env), timeridx);
}

static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
                             int timeridx)
{
    uint64_t offset = 0;

    switch (timeridx) {
    case GTIMER_VIRT:
    case GTIMER_HYPVIRT:
        offset = gt_virt_cnt_offset(env);
        break;
    }

    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
                      (gt_get_countervalue(env) - offset));
}

static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          int timeridx,
                          uint64_t value)
{
    uint64_t offset = 0;

    switch (timeridx) {
    case GTIMER_VIRT:
    case GTIMER_HYPVIRT:
        offset = gt_virt_cnt_offset(env);
        break;
    }

    trace_arm_gt_tval_write(timeridx, value);
    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
                                         sextract64(value, 0, 32);
    gt_recalc_timer(env_archcpu(env), timeridx);
}

static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         int timeridx,
                         uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;

    trace_arm_gt_ctl_write(timeridx, value);
    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
    if ((oldval ^ value) & 1) {
        /* Enable toggled */
        gt_recalc_timer(cpu, timeridx);
    } else if ((oldval ^ value) & 2) {
        /* IMASK toggled: don't need to recalculate,
         * just set the interrupt line based on ISTATUS
         */
        int irqstate = (oldval & 4) && !(value & 2);

        trace_arm_gt_imask_toggle(timeridx, irqstate);
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
    }
}

static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_PHYS);
}

static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_PHYS, value);
}

static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_PHYS);
}

static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_PHYS, value);
}

static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_PHYS, value);
}

static int gt_phys_redir_timeridx(CPUARMState *env)
{
    switch (arm_mmu_idx(env)) {
    case ARMMMUIdx_E20_0:
    case ARMMMUIdx_E20_2:
    case ARMMMUIdx_E20_2_PAN:
        return GTIMER_HYP;
    default:
        return GTIMER_PHYS;
    }
}

static int gt_virt_redir_timeridx(CPUARMState *env)
{
    switch (arm_mmu_idx(env)) {
    case ARMMMUIdx_E20_0:
    case ARMMMUIdx_E20_2:
    case ARMMMUIdx_E20_2_PAN:
        return GTIMER_HYPVIRT;
    default:
        return GTIMER_VIRT;
    }
}

static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
                                        const ARMCPRegInfo *ri)
{
    int timeridx = gt_phys_redir_timeridx(env);
    return env->cp15.c14_timer[timeridx].cval;
}

static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                     uint64_t value)
{
    int timeridx = gt_phys_redir_timeridx(env);
    gt_cval_write(env, ri, timeridx, value);
}

static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
                                        const ARMCPRegInfo *ri)
{
    int timeridx = gt_phys_redir_timeridx(env);
    return gt_tval_read(env, ri, timeridx);
}

static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                     uint64_t value)
{
    int timeridx = gt_phys_redir_timeridx(env);
    gt_tval_write(env, ri, timeridx, value);
}

static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
                                       const ARMCPRegInfo *ri)
{
    int timeridx = gt_phys_redir_timeridx(env);
    return env->cp15.c14_timer[timeridx].ctl;
}

static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    int timeridx = gt_phys_redir_timeridx(env);
    gt_ctl_write(env, ri, timeridx, value);
}

static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_VIRT);
}

static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_VIRT, value);
}

static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_VIRT);
}

static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_VIRT, value);
}

static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_VIRT, value);
}

static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);

    trace_arm_gt_cntvoff_write(value);
    raw_write(env, ri, value);
    gt_recalc_timer(cpu, GTIMER_VIRT);
}

static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
                                        const ARMCPRegInfo *ri)
{
    int timeridx = gt_virt_redir_timeridx(env);
    return env->cp15.c14_timer[timeridx].cval;
}

static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                     uint64_t value)
{
    int timeridx = gt_virt_redir_timeridx(env);
    gt_cval_write(env, ri, timeridx, value);
}

static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
                                        const ARMCPRegInfo *ri)
{
    int timeridx = gt_virt_redir_timeridx(env);
    return gt_tval_read(env, ri, timeridx);
}

static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                     uint64_t value)
{
    int timeridx = gt_virt_redir_timeridx(env);
    gt_tval_write(env, ri, timeridx, value);
}

static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
                                       const ARMCPRegInfo *ri)
{
    int timeridx = gt_virt_redir_timeridx(env);
    return env->cp15.c14_timer[timeridx].ctl;
}

static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    int timeridx = gt_virt_redir_timeridx(env);
    gt_ctl_write(env, ri, timeridx, value);
}

static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_HYP);
}

static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_HYP, value);
}

static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_HYP);
}

static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_HYP, value);
}

static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_HYP, value);
}

static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_SEC);
}

static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_SEC, value);
}

static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_SEC);
}

static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_SEC, value);
}

static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_SEC, value);
}

static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_HYPVIRT);
}

static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
}

static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_HYPVIRT);
}

static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
}

static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
}

void arm_gt_ptimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_PHYS);
}

void arm_gt_vtimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_VIRT);
}

void arm_gt_htimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_HYP);
}

void arm_gt_stimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_SEC);
}

void arm_gt_hvtimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_HYPVIRT);
}

static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
{
    ARMCPU *cpu = env_archcpu(env);

    cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
}

static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    /* Note that CNTFRQ is purely reads-as-written for the benefit
     * of software; writing it doesn't actually change the timer frequency.
     * Our reset value matches the fixed frequency we implement the timer at.
     */
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
      .type = ARM_CP_ALIAS,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
    },
    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
      .resetfn = arm_gt_cntfrq_reset,
    },
    /* overall control: mostly access permissions */
    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
      .resetvalue = 0,
    },
    /* per-timer control */
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
      .secure = ARM_CP_SECSTATE_NS,
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_PHYS].ctl),
      .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
      .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CTL_S",
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
      .secure = ARM_CP_SECSTATE_S,
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_SEC].ctl),
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
      .type = ARM_CP_IO, .access = PL0_RW,
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetvalue = 0,
      .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
      .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
      .accessfn = gt_vtimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_VIRT].ctl),
      .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
      .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
      .type = ARM_CP_IO, .access = PL0_RW,
      .accessfn = gt_vtimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetvalue = 0,
      .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
      .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
    },
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
      .secure = ARM_CP_SECSTATE_NS,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
      .accessfn = gt_ptimer_access,
      .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
    },
    { .name = "CNTP_TVAL_S",
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
      .secure = ARM_CP_SECSTATE_S,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
      .accessfn = gt_ptimer_access,
      .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
    },
    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
      .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
      .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
    },
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
      .accessfn = gt_vtimer_access,
      .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
    },
    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
      .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
      .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
    },
    /* The counter itself */
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
      .accessfn = gt_pct_access,
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
      .accessfn = gt_pct_access, .readfn = gt_cnt_read,
    },
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
      .accessfn = gt_vct_access,
      .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
      .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
    },
    /* Comparison value, indicating when the timer goes off */
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
      .secure = ARM_CP_SECSTATE_NS,
      .access = PL0_RW,
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
      .accessfn = gt_ptimer_access,
      .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
      .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
      .secure = ARM_CP_SECSTATE_S,
      .access = PL0_RW,
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
      .accessfn = gt_ptimer_access,
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL0_RW,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
      .resetvalue = 0, .accessfn = gt_ptimer_access,
      .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
      .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
      .access = PL0_RW,
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .accessfn = gt_vtimer_access,
      .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
      .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
    },
    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
      .access = PL0_RW,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
      .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
      .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
    },
    /* Secure timer -- this is actually restricted to only EL3
     * and configurably Secure-EL1 via the accessfn.
     */
    { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .readfn = gt_sec_tval_read,
      .writefn = gt_sec_tval_write,
      .resetfn = gt_sec_timer_reset,
    },
    { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
      .type = ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
      .resetvalue = 0,
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
      .type = ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
    },
    REGINFO_SENTINEL
};

static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                 bool isread)
{
    if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

#else

/* In user-mode most of the generic timer registers are inaccessible
 * however modern kernels (4.12+) allow access to cntvct_el0
 */

static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = env_archcpu(env);

    /* Currently we have no support for QEMUTimer in linux-user so we
     * can't call gt_get_countervalue(env), instead we directly
     * call the lower level functions.
     */
    return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
}

static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
      .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
      .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
    },
    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
      .readfn = gt_virt_cnt_read,
    },
    REGINFO_SENTINEL
};

#endif

static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        raw_write(env, ri, value);
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
        raw_write(env, ri, value & 0xfffff6ff);
    } else {
        raw_write(env, ri, value & 0xfffff1ff);
    }
}

#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */

static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                 bool isread)
{
    if (ri->opc2 & 4) {
        /* The ATS12NSO* operations must trap to EL3 if executed in
         * Secure EL1 (which can only happen if EL3 is AArch64).
         * They are simply UNDEF if executed from NS EL1.
         * They function normally from EL2 or EL3.
         */
        if (arm_current_el(env) == 1) {
            if (arm_is_secure_below_el3(env)) {
                return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
            }
            return CP_ACCESS_TRAP_UNCATEGORIZED;
        }
    }
    return CP_ACCESS_OK;
}

#ifdef CONFIG_TCG
static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
                             MMUAccessType access_type, ARMMMUIdx mmu_idx)
{
    hwaddr phys_addr;
    target_ulong page_size;
    int prot;
    bool ret;
    uint64_t par64;
    bool format64 = false;
    MemTxAttrs attrs = {};
    ARMMMUFaultInfo fi = {};
    ARMCacheAttrs cacheattrs = {};

    ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
                        &prot, &page_size, &fi, &cacheattrs);

    if (ret) {
        /*
         * Some kinds of translation fault must cause exceptions rather
         * than being reported in the PAR.
         */
        int current_el = arm_current_el(env);
        int target_el;
        uint32_t syn, fsr, fsc;
        bool take_exc = false;

        if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
            && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
            /*
             * Synchronous stage 2 fault on an access made as part of the
             * translation table walk for AT S1E0* or AT S1E1* insn
             * executed from NS EL1. If this is a synchronous external abort
             * and SCR_EL3.EA == 1, then we take a synchronous external abort
             * to EL3. Otherwise the fault is taken as an exception to EL2,
             * and HPFAR_EL2 holds the faulting IPA.
             */
            if (fi.type == ARMFault_SyncExternalOnWalk &&
                (env->cp15.scr_el3 & SCR_EA)) {
                target_el = 3;
            } else {
                env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
                target_el = 2;
            }
            take_exc = true;
        } else if (fi.type == ARMFault_SyncExternalOnWalk) {
            /*
             * Synchronous external aborts during a translation table walk
             * are taken as Data Abort exceptions.
             */
            if (fi.stage2) {
                if (current_el == 3) {
                    target_el = 3;
                } else {
                    target_el = 2;
                }
            } else {
                target_el = exception_target_el(env);
            }
            take_exc = true;
        }

        if (take_exc) {
            /* Construct FSR and FSC using same logic as arm_deliver_fault() */
            if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
                arm_s1_regime_using_lpae_format(env, mmu_idx)) {
                fsr = arm_fi_to_lfsc(&fi);
                fsc = extract32(fsr, 0, 6);
            } else {
                fsr = arm_fi_to_sfsc(&fi);
                fsc = 0x3f;
            }
            /*
             * Report exception with ESR indicating a fault due to a
             * translation table walk for a cache maintenance instruction.
             */
            syn = syn_data_abort_no_iss(current_el == target_el, 0,
                                        fi.ea, 1, fi.s1ptw, 1, fsc);
            env->exception.vaddress = value;
            env->exception.fsr = fsr;
            raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
        }
    }

    if (is_a64(env)) {
        format64 = true;
    } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /*
         * ATS1Cxx:
         * * TTBCR.EAE determines whether the result is returned using the
         *   32-bit or the 64-bit PAR format
         * * Instructions executed in Hyp mode always use the 64bit format
         *
         * ATS1S2NSOxx uses the 64bit format if any of the following is true:
         * * The Non-secure TTBCR.EAE bit is set to 1
         * * The implementation includes EL2, and the value of HCR.VM is 1
         *
         * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
         *
         * ATS1Hx always uses the 64bit format.
         */
        format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);

        if (arm_feature(env, ARM_FEATURE_EL2)) {
            if (mmu_idx == ARMMMUIdx_E10_0 ||
                mmu_idx == ARMMMUIdx_E10_1 ||
                mmu_idx == ARMMMUIdx_E10_1_PAN) {
                format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
            } else {
                format64 |= arm_current_el(env) == 2;
            }
        }
    }

    if (format64) {
        /* Create a 64-bit PAR */
        par64 = (1 << 11); /* LPAE bit always set */
        if (!ret) {
            par64 |= phys_addr & ~0xfffULL;
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
            par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
            par64 |= cacheattrs.shareability << 7; /* SH */
        } else {
            uint32_t fsr = arm_fi_to_lfsc(&fi);

            par64 |= 1; /* F */
            par64 |= (fsr & 0x3f) << 1; /* FS */
            if (fi.stage2) {
                par64 |= (1 << 9); /* S */
            }
            if (fi.s1ptw) {
                par64 |= (1 << 8); /* PTW */
            }
        }
    } else {
        /* fsr is a DFSR/IFSR value for the short descriptor
         * translation table format (with WnR always clear).
         * Convert it to a 32-bit PAR.
         */
        if (!ret) {
            /* We do not set any attribute bits in the PAR */
            if (page_size == (1 << 24)
                && arm_feature(env, ARM_FEATURE_V7)) {
                par64 = (phys_addr & 0xff000000) | (1 << 1);
            } else {
                par64 = phys_addr & 0xfffff000;
            }
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
        } else {
            uint32_t fsr = arm_fi_to_sfsc(&fi);

            par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
                    ((fsr & 0xf) << 1) | 1;
        }
    }
    return par64;
}
#endif /* CONFIG_TCG */

static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
#ifdef CONFIG_TCG
    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
    uint64_t par64;
    ARMMMUIdx mmu_idx;
    int el = arm_current_el(env);
    bool secure = arm_is_secure_below_el3(env);

    switch (ri->opc2 & 6) {
    case 0:
        /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_SE3;
            break;
        case 2:
            g_assert(!secure);  /* TODO: ARMv8.4-SecEL2 */
            /* fall through */
        case 1:
            if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
                mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
                           : ARMMMUIdx_Stage1_E1_PAN);
            } else {
                mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
            }
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2:
        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_SE10_0;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_Stage1_E0;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 4:
        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
        mmu_idx = ARMMMUIdx_E10_1;
        break;
    case 6:
        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
        mmu_idx = ARMMMUIdx_E10_0;
        break;
    default:
        g_assert_not_reached();
    }

    par64 = do_ats_write(env, value, access_type, mmu_idx);

    A32_BANKED_CURRENT_REG_SET(env, par, par64);
#else
    /* Handled by hardware accelerator. */
    g_assert_not_reached();
#endif /* CONFIG_TCG */
}

static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
#ifdef CONFIG_TCG
    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
    uint64_t par64;

    par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);

    A32_BANKED_CURRENT_REG_SET(env, par, par64);
#else
    /* Handled by hardware accelerator. */
    g_assert_not_reached();
#endif /* CONFIG_TCG */
}

static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
{
    if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
#ifdef CONFIG_TCG
    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
    ARMMMUIdx mmu_idx;
    int secure = arm_is_secure_below_el3(env);

    switch (ri->opc2 & 6) {
    case 0:
        switch (ri->opc1) {
        case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
            if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
                mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
                           : ARMMMUIdx_Stage1_E1_PAN);
            } else {
                mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
            }
            break;
        case 4: /* AT S1E2R, AT S1E2W */
            mmu_idx = ARMMMUIdx_E2;
            break;
        case 6: /* AT S1E3R, AT S1E3W */
            mmu_idx = ARMMMUIdx_SE3;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2: /* AT S1E0R, AT S1E0W */
        mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
        break;
    case 4: /* AT S12E1R, AT S12E1W */
        mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
        break;
    case 6: /* AT S12E0R, AT S12E0W */
        mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
        break;
    default:
        g_assert_not_reached();
    }

    env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
#else
    /* Handled by hardware accelerator. */
    g_assert_not_reached();
#endif /* CONFIG_TCG */
}
#endif

static const ARMCPRegInfo vapa_cp_reginfo[] = {
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
                             offsetoflow32(CPUARMState, cp15.par_ns) },
      .writefn = par_write },
#ifndef CONFIG_USER_ONLY
    /* This underdecoding is safe because the reginfo is NO_RAW. */
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
      .access = PL1_W, .accessfn = ats_access,
      .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
#endif
    REGINFO_SENTINEL
};

/* Return basic MPU access permission bits.  */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val >> i) & mask;
        mask <<= 2;
    }
    return ret;
}

/* Pad basic MPU access permission bits to extended format.  */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val & mask) << i;
        mask <<= 2;
    }
    return ret;
}

static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
}

static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
}

static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
}

static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
}

static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return 0;
    }

    u32p += env->pmsav7.rnr[M_REG_NS];
    return *u32p;
}

static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return;
    }

    u32p += env->pmsav7.rnr[M_REG_NS];
    tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
    *u32p = value;
}

static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);
    uint32_t nrgs = cpu->pmsav7_dregion;

    if (value >= nrgs) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "PMSAv7 RGNR write >= # supported regions, %" PRIu32
                      " > %" PRIu32 "\n", (uint32_t)value, nrgs);
        return;
    }

    raw_write(env, ri, value);
}

static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
    /* Reset for all these registers is handled in arm_cpu_reset(),
     * because the PMSAv7 is also used by M-profile CPUs, which do
     * not register cpregs but still need the state to be reset.
     */
    { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
      .readfn = pmsav7_read, .writefn = pmsav7_write,
      .resetfn = arm_cp_reset_ignore },
    { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
      .readfn = pmsav7_read, .writefn = pmsav7_write,
      .resetfn = arm_cp_reset_ignore },
    { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
      .readfn = pmsav7_read, .writefn = pmsav7_write,
      .resetfn = arm_cp_reset_ignore },
    { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
      .writefn = pmsav7_rgnr_write,
      .resetfn = arm_cp_reset_ignore },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
      .resetvalue = 0, },
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
      .resetvalue = 0, },
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
    /* Protection region base and size registers */
    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
    REGINFO_SENTINEL
};

static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    TCR *tcr = raw_ptr(env, ri);
    int maskshift = extract32(value, 0, 3);

    if (!arm_feature(env, ARM_FEATURE_V8)) {
        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
             * using Long-desciptor translation table format */
            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
            /* In an implementation that includes the Security Extensions
             * TTBCR has additional fields PD0 [4] and PD1 [5] for
             * Short-descriptor translation table format.
             */
            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
        } else {
            value &= TTBCR_N;
        }
    }

    /* Update the masks corresponding to the TCR bank being written
     * Note that we always calculate mask and base_mask, but
     * they are only used for short-descriptor tables (ie if EAE is 0);
     * for long-descriptor tables the TCR fields are used differently
     * and the mask and base_mask values are meaningless.
     */
    tcr->raw_tcr = value;
    tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
}

static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);
    TCR *tcr = raw_ptr(env, ri);

    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /* With LPAE the TTBCR could result in a change of ASID
         * via the TTBCR.A1 bit, so do a TLB flush.
         */
        tlb_flush(CPU(cpu));
    }
    /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
    value = deposit64(tcr->raw_tcr, 0, 32, value);
    vmsa_ttbcr_raw_write(env, ri, value);
}

static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    TCR *tcr = raw_ptr(env, ri);

    /* Reset both the TCR as well as the masks corresponding to the bank of
     * the TCR being reset.
     */
    tcr->raw_tcr = 0;
    tcr->mask = 0;
    tcr->base_mask = 0xffffc000u;
}

static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);
    TCR *tcr = raw_ptr(env, ri);

    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
    tlb_flush(CPU(cpu));
    tcr->raw_tcr = value;
}

static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
    if (cpreg_field_is_64bit(ri) &&
        extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
        ARMCPU *cpu = env_archcpu(env);
        tlb_flush(CPU(cpu));
    }
    raw_write(env, ri, value);
}

static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    /*
     * If we are running with E2&0 regime, then an ASID is active.
     * Flush if that might be changing.  Note we're not checking
     * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
     * holds the active ASID, only checking the field that might.
     */
    if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
        (arm_hcr_el2_eff(env) & HCR_E2H)) {
        tlb_flush_by_mmuidx(env_cpu(env),
                            ARMMMUIdxBit_E20_2 |
                            ARMMMUIdxBit_E20_2_PAN |
                            ARMMMUIdxBit_E20_0);
    }
    raw_write(env, ri, value);
}

static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);
    CPUState *cs = CPU(cpu);

    /*
     * A change in VMID to the stage2 page table (Stage2) invalidates
     * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
     */
    if (raw_read(env, ri) != value) {
        tlb_flush_by_mmuidx(cs,
                            ARMMMUIdxBit_E10_1 |
                            ARMMMUIdxBit_E10_1_PAN |
                            ARMMMUIdxBit_E10_0);
        raw_write(env, ri, value);
    }
}

static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
                             offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
                             offsetof(CPUARMState, cp15.dfar_ns) } },
    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
      .resetvalue = 0, },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo vmsa_cp_reginfo[] = {
    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .writefn = vmsa_tcr_el12_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
      .raw_writefn = vmsa_ttbcr_raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
                             offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
    REGINFO_SENTINEL
};

/* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
 * qemu tlbs nor adjusting cached masks.
 */
static const ARMCPRegInfo ttbcr2_reginfo = {
    .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
    .access = PL1_RW, .accessfn = access_tvm_trvm,
    .type = ARM_CP_ALIAS,
    .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
                           offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
};

static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
{
    env->cp15.c15_ticonfig = value & 0xe7;
    /* The OS_TYPE bit in this register changes the reported CPUID! */
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}

static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
{
    env->cp15.c15_threadid = value & 0xffff;
}

static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
{
    /* Wait-for-interrupt (deprecated) */
    cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
}

static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    /* On OMAP there are registers indicating the max/min index of dcache lines
     * containing a dirty line; cache flush operations have to reset these.
     */
    env->cp15.c15_i_max = 0x000;
    env->cp15.c15_i_min = 0xff0;
}

static const ARMCPRegInfo omap_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
      .resetvalue = 0, },
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
      .writefn = omap_ticonfig_write },
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0xff0,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
      .writefn = omap_threadid_write },
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .type = ARM_CP_NO_RAW,
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
    /* TODO: Peripheral port remap register:
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
     * when MMU is off.
     */
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
      .writefn = omap_cachemaint_write },
    { .name = "C9", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
    REGINFO_SENTINEL
};

static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    env->cp15.c15_cpar = value & 0x3fff;
}

static const ARMCPRegInfo xscale_cp_reginfo[] = {
    { .name = "XSCALE_CPAR",
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
      .writefn = xscale_cpar_write, },
    { .name = "XSCALE_AUXCR",
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
      .resetvalue = 0, },
    /* XScale specific cache-lockdown: since we have no cache we NOP these
     * and hope the guest does not really rely on cache behaviour.
     */
    { .name = "XSCALE_LOCK_ICACHE_LINE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_ICACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_DCACHE_LOCK",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_DCACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
     * implementation of this implementation-defined space.
     * Ideally this should eventually disappear in favour of actually
     * implementing the correct behaviour for all cores.
     */
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
      .resetvalue = 0 },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
    /* Cache status: RAZ because we have no cache so it's always clean */
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
      .resetvalue = 0 },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
    /* We never have a a block transfer operation in progress */
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
      .resetvalue = 0 },
    /* The cache ops themselves: these all NOP for QEMU */
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
    /* The cache test-and-clean instructions always return (1 << 30)
     * to indicate that there are no dirty cache lines.
     */
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
      .resetvalue = (1 << 30) },
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
      .resetvalue = (1 << 30) },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo strongarm_cp_reginfo[] = {
    /* Ignore ReadBuffer accesses */
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .resetvalue = 0,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
    REGINFO_SENTINEL
};

static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = env_archcpu(env);
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

    if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
        return env->cp15.vpidr_el2;
    }
    return raw_read(env, ri);
}

static uint64_t mpidr_read_val(CPUARMState *env)
{
    ARMCPU *cpu = env_archcpu(env);
    uint64_t mpidr = cpu->mp_affinity;

    if (arm_feature(env, ARM_FEATURE_V7MP)) {
        mpidr |= (1U << 31);
        /* Cores which are uniprocessor (non-coherent)
         * but still implement the MP extensions set
         * bit 30. (For instance, Cortex-R5).
         */
        if (cpu->mp_is_up) {
            mpidr |= (1u << 30);
        }
    }
    return mpidr;
}

static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

    if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
        return env->cp15.vmpidr_el2;
    }
    return mpidr_read_val(env);
}

static const ARMCPRegInfo lpae_cp_reginfo[] = {
    /* NOP AMAIR0/1 */
    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
                             offsetof(CPUARMState, cp15.par_ns)} },
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) },
      .writefn = vmsa_ttbr_write, },
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
      .access = PL1_RW, .accessfn = access_tvm_trvm,
      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) },
      .writefn = vmsa_ttbr_write, },
    REGINFO_SENTINEL
};

static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return vfp_get_fpcr(env);
}

static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    vfp_set_fpcr(env, value);
}

static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return vfp_get_fpsr(env);
}

static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    vfp_set_fpsr(env, value);
}

static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
{
    if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    env->daif = value & PSTATE_DAIF;
}

static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return env->pstate & PSTATE_PAN;
}

static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
{
    env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
}

static const ARMCPRegInfo pan_reginfo = {
    .name = "PAN", .state = ARM_CP_STATE_AA64,
    .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
    .type = ARM_CP_NO_RAW, .access = PL1_RW,
    .readfn = aa64_pan_read, .writefn = aa64_pan_write
};

static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return env->pstate & PSTATE_UAO;
}

static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
{
    env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
}

static const ARMCPRegInfo uao_reginfo = {
    .name = "UAO", .state = ARM_CP_STATE_AA64,
    .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
    .type = ARM_CP_NO_RAW, .access = PL1_RW,
    .readfn = aa64_uao_read, .writefn = aa64_uao_write
};

static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
                                              const ARMCPRegInfo *ri,
                                              bool isread)
{
    /* Cache invalidate/clean to Point of Coherency or Persistence...  */
    switch (arm_current_el(env)) {
    case 0:
        /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
        if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
            return CP_ACCESS_TRAP;
        }
        /* fall through */
    case 1:
        /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
        if (arm_hcr_el2_eff(env) & HCR_TPCP) {
            return CP_ACCESS_TRAP_EL2;
        }
        break;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
                                              const ARMCPRegInfo *ri,
                                              bool isread)
{
    /* Cache invalidate/clean to Point of Unification... */
    switch (arm_current_el(env)) {
    case 0:
        /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
        if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
            return CP_ACCESS_TRAP;
        }
        /* fall through */
    case 1:
        /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
        if (arm_hcr_el2_eff(env) & HCR_TPU) {
            return CP_ACCESS_TRAP_EL2;
        }
        break;
    }
    return CP_ACCESS_OK;
}

/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
 * Page D4-1736 (DDI0487A.b)
 */

static int vae1_tlbmask(CPUARMState *env)
{
    /* Since we exclude secure first, we may read HCR_EL2 directly. */
    if (arm_is_secure_below_el3(env)) {
        return ARMMMUIdxBit_SE10_1 |
               ARMMMUIdxBit_SE10_1_PAN |
               ARMMMUIdxBit_SE10_0;
    } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
               == (HCR_E2H | HCR_TGE)) {
        return ARMMMUIdxBit_E20_2 |
               ARMMMUIdxBit_E20_2_PAN |
               ARMMMUIdxBit_E20_0;
    } else {
        return ARMMMUIdxBit_E10_1 |
               ARMMMUIdxBit_E10_1_PAN |
               ARMMMUIdxBit_E10_0;
    }
}

static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                      uint64_t value)
{
    CPUState *cs = env_cpu(env);
    int mask = vae1_tlbmask(env);

    tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
}

static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    CPUState *cs = env_cpu(env);
    int mask = vae1_tlbmask(env);

    if (tlb_force_broadcast(env)) {
        tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
    } else {
        tlb_flush_by_mmuidx(cs, mask);
    }
}

static int alle1_tlbmask(CPUARMState *env)
{
    /*
     * Note that the 'ALL' scope must invalidate both stage 1 and
     * stage 2 translations, whereas most other scopes only invalidate
     * stage 1 translations.
     */
    if (arm_is_secure_below_el3(env)) {
        return ARMMMUIdxBit_SE10_1 |
               ARMMMUIdxBit_SE10_1_PAN |
               ARMMMUIdxBit_SE10_0;
    } else {
        return ARMMMUIdxBit_E10_1 |
               ARMMMUIdxBit_E10_1_PAN |
               ARMMMUIdxBit_E10_0;
    }
}

static int e2_tlbmask(CPUARMState *env)
{
    /* TODO: ARMv8.4-SecEL2 */
    return ARMMMUIdxBit_E20_0 |
           ARMMMUIdxBit_E20_2 |
           ARMMMUIdxBit_E20_2_PAN |
           ARMMMUIdxBit_E2;
}

static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    CPUState *cs = env_cpu(env);
    int mask = alle1_tlbmask(env);

    tlb_flush_by_mmuidx(cs, mask);
}

static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    CPUState *cs = env_cpu(env);
    int mask = e2_tlbmask(env);

    tlb_flush_by_mmuidx(cs, mask);
}

static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);
    CPUState *cs = CPU(cpu);

    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
}

static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    CPUState *cs = env_cpu(env);
    int mask = alle1_tlbmask(env);

    tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
}

static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    CPUState *cs = env_cpu(env);
    int mask = e2_tlbmask(env);

    tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
}

static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    CPUState *cs = env_cpu(env);

    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
}

static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by VA, EL2
     * Currently handles both VAE2 and VALE2, since we don't support
     * flush-last-level-only.
     */
    CPUState *cs = env_cpu(env);
    int mask = e2_tlbmask(env);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
}

static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by VA, EL3
     * Currently handles both VAE3 and VALE3, since we don't support
     * flush-last-level-only.
     */
    ARMCPU *cpu = env_archcpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
}

static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
{
    CPUState *cs = env_cpu(env);
    int mask = vae1_tlbmask(env);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
}

static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by VA, EL1&0 (AArch64 version).
     * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
     * since we don't support flush-for-specific-ASID-only or
     * flush-last-level-only.
     */
    CPUState *cs = env_cpu(env);
    int mask = vae1_tlbmask(env);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    if (tlb_force_broadcast(env)) {
        tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
    } else {
        tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
    }
}

static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
{
    CPUState *cs = env_cpu(env);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
                                             ARMMMUIdxBit_E2);
}

static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
{
    CPUState *cs = env_cpu(env);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
                                             ARMMMUIdxBit_SE3);
}

static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                      bool isread)
{
    int cur_el = arm_current_el(env);

    if (cur_el < 2) {
        uint64_t hcr = arm_hcr_el2_eff(env);

        if (cur_el == 0) {
            if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
                if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
                    return CP_ACCESS_TRAP_EL2;
                }
            } else {
                if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
                    return CP_ACCESS_TRAP;
                }
                if (hcr & HCR_TDZ) {
                    return CP_ACCESS_TRAP_EL2;
                }
            }
        } else if (hcr & HCR_TDZ) {
            return CP_ACCESS_TRAP_EL2;
        }
    }
    return CP_ACCESS_OK;
}

static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = env_archcpu(env);
    int dzp_bit = 1 << 4;

    /* DZP indicates whether DC ZVA access is allowed */
    if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
        dzp_bit = 0;
    }
    return cpu->dcz_blocksize | dzp_bit;
}

static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                    bool isread)
{
    if (!(env->pstate & PSTATE_SP)) {
        /* Access to SP_EL0 is undefined if it's being used as
         * the stack pointer.
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return env->pstate & PSTATE_SP;
}

static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
{
    update_spsel(env, val);
}

static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);

    if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
        /* M bit is RAZ/WI for PMSA with no MPU implemented */
        value &= ~SCTLR_M;
    }

    /* ??? Lots of these bits are not implemented.  */

    if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
        if (ri->opc1 == 6) { /* SCTLR_EL3 */
            value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
        } else {
            value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
                       SCTLR_ATA0 | SCTLR_ATA);
        }
    }

    if (raw_read(env, ri) == value) {
        /* Skip the TLB flush if nothing actually changed; Linux likes
         * to do a lot of pointless SCTLR writes.
         */
        return;
    }

    raw_write(env, ri, value);

    /* This may enable/disable the MMU, so do a TLB flush.  */
    tlb_flush(CPU(cpu));

    if (ri->type & ARM_CP_SUPPRESS_TB_END) {
        /*
         * Normally we would always end the TB on an SCTLR write; see the
         * comment in ARMCPRegInfo sctlr initialization below for why Xscale
         * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
         * of hflags from the translator, so do it here.
         */
        arm_rebuild_hflags(env);
    }
}

static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
{
    if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
        return CP_ACCESS_TRAP_FP_EL2;
    }
    if (env->cp15.cptr_el[3] & CPTR_TFP) {
        return CP_ACCESS_TRAP_FP_EL3;
    }
    return CP_ACCESS_OK;
}

static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
{
    env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
}

static const ARMCPRegInfo v8_cp_reginfo[] = {
    /* Minimal set of EL0-visible registers. This will need to be expanded
     * significantly for system emulation of AArch64 CPUs.
     */
    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
      .access = PL0_RW, .type = ARM_CP_NZCV },
    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
      .type = ARM_CP_NO_RAW,
      .access = PL0_RW, .accessfn = aa64_daif_access,
      .fieldoffset = offsetof(CPUARMState, daif),
      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
      .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
      .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
      .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
      .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
      .access = PL0_R, .type = ARM_CP_NO_RAW,
      .readfn = aa64_dczid_read },
    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_DC_ZVA,
#ifndef CONFIG_USER_ONLY
      /* Avoid overhead of an access check that always passes in user-mode */
      .accessfn = aa64_zva_access,
#endif
    },
    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
      .access = PL1_R, .type = ARM_CP_CURRENTEL },
    /* Cache ops: all NOPs since we don't emulate caches */
    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_pou_access },
    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_pou_access },
    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_pou_access },
    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
      .type = ARM_CP_NOP },
    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_poc_access },
    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_pou_access },
    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_poc_access },
    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
    /* TLBI operations */
    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vmalle1is_write },
    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae1is_write },
    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vmalle1is_write },
    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae1is_write },
    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae1is_write },
    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae1is_write },
    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vmalle1_write },
    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae1_write },
    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vmalle1_write },
    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae1_write },
    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae1_write },
    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
      .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae1_write },
    { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
      .access = PL2_W, .type = ARM_CP_NOP },
    { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NOP },
    { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1is_write },
    { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1is_write },
    { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
      .access = PL2_W, .type = ARM_CP_NOP },
    { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NOP },
    { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1_write },
    { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1is_write },
#ifndef CONFIG_USER_ONLY
    /* 64 bit address translation operations */
    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
      .writefn = ats_write64 },
    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
      .writefn = ats_write64 },
    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
      .writefn = ats_write64 },
    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
      .writefn = ats_write64 },
    { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
      .writefn = ats_write64 },
    { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
      .writefn = ats_write64 },
    { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
      .writefn = ats_write64 },
    { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
      .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
      .writefn = ats_write64 },
    /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
    { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
      .writefn = ats_write64 },
    { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
      .writefn = ats_write64 },
    { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
      .writefn = par_write },
#endif
    /* TLB invalidate last level of translation table walk */
    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbimva_is_write },
    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbimvaa_is_write },
    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbimva_write },
    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
      .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
      .writefn = tlbimvaa_write },
    { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_write },
    { .name = "TLBIMVALHIS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_is_write },
    { .name = "TLBIIPAS2",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL2_W },
    { .name = "TLBIIPAS2IS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL2_W },
    { .name = "TLBIIPAS2L",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
      .type = ARM_CP_NOP, .access = PL2_W },
    { .name = "TLBIIPAS2LIS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
      .type = ARM_CP_NOP, .access = PL2_W },
    /* 32 bit cache operations */
    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
    /* MMU Domain access control / MPU write buffer control */
    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
    /* We rely on the access checks not allowing the guest to write to the
     * state field when SPSel indicates that it's being used as the stack
     * pointer.
     */
    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .accessfn = sp_el0_access,
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_RAW,
      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
    { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
      .access = PL2_RW, .accessfn = fpexc32_access },
    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
    { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
    { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
    { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
    { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
    { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
      .resetvalue = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
    { .name = "SDCR", .type = ARM_CP_ALIAS,
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .writefn = sdcr_write,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
    REGINFO_SENTINEL
};

/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
    { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
      .type = ARM_CP_NO_RAW,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL2_RW,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 6, .crm = 2,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .accessfn = access_tda,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
      .type = ARM_CP_CONST,
      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .resetvalue = 0 },
    REGINFO_SENTINEL
};

/* Ditto, but for registers which exist in ARMv8 but not v7 */
static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
    { .name = "HCR2", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
      .access = PL2_RW,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    REGINFO_SENTINEL
};

static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
{
    ARMCPU *cpu = env_archcpu(env);

    if (arm_feature(env, ARM_FEATURE_V8)) {
        valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
    } else {
        valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
    }

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        valid_mask &= ~HCR_HCD;
    } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
        /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
         * However, if we're using the SMC PSCI conduit then QEMU is
         * effectively acting like EL3 firmware and so the guest at
         * EL2 should retain the ability to prevent EL1 from being
         * able to make SMC calls into the ersatz firmware, so in
         * that case HCR.TSC should be read/write.
         */
        valid_mask &= ~HCR_TSC;
    }

    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
        if (cpu_isar_feature(aa64_vh, cpu)) {
            valid_mask |= HCR_E2H;
        }
        if (cpu_isar_feature(aa64_lor, cpu)) {
            valid_mask |= HCR_TLOR;
        }
        if (cpu_isar_feature(aa64_pauth, cpu)) {
            valid_mask |= HCR_API | HCR_APK;
        }
        if (cpu_isar_feature(aa64_mte, cpu)) {
            valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
        }
    }

    /* Clear RES0 bits.  */
    value &= valid_mask;

    /*
     * These bits change the MMU setup:
     * HCR_VM enables stage 2 translation
     * HCR_PTW forbids certain page-table setups
     * HCR_DC disables stage1 and enables stage2 translation
     * HCR_DCT enables tagging on (disabled) stage1 translation
     */
    if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
        tlb_flush(CPU(cpu));
    }
    env->cp15.hcr_el2 = value;

    /*
     * Updates to VI and VF require us to update the status of
     * virtual interrupts, which are the logical OR of these bits
     * and the state of the input lines from the GIC. (This requires
     * that we have the iothread lock, which is done by marking the
     * reginfo structs as ARM_CP_IO.)
     * Note that if a write to HCR pends a VIRQ or VFIQ it is never
     * possible for it to be taken immediately, because VIRQ and
     * VFIQ are masked unless running at EL0 or EL1, and HCR
     * can only be written at EL2.
     */
    g_assert(qemu_mutex_iothread_locked());
    arm_cpu_update_virq(cpu);
    arm_cpu_update_vfiq(cpu);
}

static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    do_hcr_write(env, value, 0);
}

static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
{
    /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
    value = deposit64(env->cp15.hcr_el2, 32, 32, value);
    do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
}

static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    /* Handle HCR write, i.e. write to low half of HCR_EL2 */
    value = deposit64(env->cp15.hcr_el2, 0, 32, value);
    do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
}

/*
 * Return the effective value of HCR_EL2.
 * Bits that are not included here:
 * RW       (read from SCR_EL3.RW as needed)
 */
uint64_t arm_hcr_el2_eff(CPUARMState *env)
{
    uint64_t ret = env->cp15.hcr_el2;

    if (arm_is_secure_below_el3(env)) {
        /*
         * "This register has no effect if EL2 is not enabled in the
         * current Security state".  This is ARMv8.4-SecEL2 speak for
         * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
         *
         * Prior to that, the language was "In an implementation that
         * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
         * as if this field is 0 for all purposes other than a direct
         * read or write access of HCR_EL2".  With lots of enumeration
         * on a per-field basis.  In current QEMU, this is condition
         * is arm_is_secure_below_el3.
         *
         * Since the v8.4 language applies to the entire register, and
         * appears to be backward compatible, use that.
         */
        return 0;
    }

    /*
     * For a cpu that supports both aarch64 and aarch32, we can set bits
     * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
     * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
     */
    if (!arm_el_is_aa64(env, 2)) {
        uint64_t aa32_valid;

        /*
         * These bits are up-to-date as of ARMv8.6.
         * For HCR, it's easiest to list just the 2 bits that are invalid.
         * For HCR2, list those that are valid.
         */
        aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
        aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
                       HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
        ret &= aa32_valid;
    }

    if (ret & HCR_TGE) {
        /* These bits are up-to-date as of ARMv8.6.  */
        if (ret & HCR_E2H) {
            ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
                     HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
                     HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
                     HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
                     HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
                     HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
        } else {
            ret |= HCR_FMO | HCR_IMO | HCR_AMO;
        }
        ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
                 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
                 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
                 HCR_TLOR);
    }

    return ret;
}

static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
{
    /*
     * For A-profile AArch32 EL3, if NSACR.CP10
     * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
     */
    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
        value &= ~(0x3 << 10);
        value |= env->cp15.cptr_el[2] & (0x3 << 10);
    }
    env->cp15.cptr_el[2] = value;
}

static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /*
     * For A-profile AArch32 EL3, if NSACR.CP10
     * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
     */
    uint64_t value = env->cp15.cptr_el[2];

    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
        !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
        value |= 0x3 << 10;
    }
    return value;
}

static const ARMCPRegInfo el2_cp_reginfo[] = {
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_IO,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
      .writefn = hcr_write },
    { .name = "HCR", .state = ARM_CP_STATE_AA32,
      .type = ARM_CP_ALIAS | ARM_CP_IO,
      .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
      .writefn = hcr_writelow },
    { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
    { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
    { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
    { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
      .type = ARM_CP_ALIAS,
      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
      .access = PL2_RW,
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
      .resetvalue = 0 },
    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
      .readfn = cptr_el2_read, .writefn = cptr_el2_write },
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
    { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
      /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
    { .name = "VTCR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
      .type = ARM_CP_ALIAS,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
    { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
      .access = PL2_RW,
      /* no .writefn needed as this can't cause an ASID change;
       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
       */
      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 6, .crm = 2,
      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
      .writefn = vttbr_write },
    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .writefn = vttbr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
    { .name = "TLBIALLNSNH",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_nsnh_write },
    { .name = "TLBIALLNSNHIS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_nsnh_is_write },
    { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_hyp_write },
    { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_hyp_is_write },
    { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_write },
    { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_is_write },
    { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbi_aa64_alle2_write },
    { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbi_aa64_vae2_write },
    { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae2_write },
    { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle2is_write },
    { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbi_aa64_vae2is_write },
    { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae2is_write },
#ifndef CONFIG_USER_ONLY
    /* Unlike the other EL2-related AT operations, these must
     * UNDEF from EL3 if EL2 is not implemented, which is why we
     * define them here rather than with the rest of the AT ops.
     */
    { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL2_W, .accessfn = at_s1e2_access,
      .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
    { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL2_W, .accessfn = at_s1e2_access,
      .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
    /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
     * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
     * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
     * to behave as if SCR.NS was 1.
     */
    { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL2_W,
      .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
    { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL2_W,
      .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
      /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
       * reset values as IMPDEF. We choose to reset to 3 to comply with
       * both ARMv7 and ARMv8.
       */
      .access = PL2_RW, .resetvalue = 3,
      .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
      .writefn = gt_cntvoff_write,
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
      .writefn = gt_cntvoff_write,
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
      .type = ARM_CP_IO, .access = PL2_RW,
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
      .resetfn = gt_hyp_timer_reset,
      .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
      .type = ARM_CP_IO,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
      .resetvalue = 0,
      .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
#endif
    /* The only field of MDCR_EL2 that has a defined architectural reset value
     * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
     * don't implement any PMU event counters, so using zero as a reset
     * value for MDCR_EL2 is okay
     */
    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
    { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
      .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
    { .name = "HCR2", .state = ARM_CP_STATE_AA32,
      .type = ARM_CP_ALIAS | ARM_CP_IO,
      .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
      .access = PL2_RW,
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
      .writefn = hcr_writehigh },
    REGINFO_SENTINEL
};

static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
     * At Secure EL1 it traps to EL3.
     */
    if (arm_current_el(env) == 3) {
        return CP_ACCESS_OK;
    }
    if (arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL3;
    }
    /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
    if (isread) {
        return CP_ACCESS_OK;
    }
    return CP_ACCESS_TRAP_UNCATEGORIZED;
}

static const ARMCPRegInfo el3_cp_reginfo[] = {
    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
      .resetvalue = 0, .writefn = scr_write },
    { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
      .writefn = scr_write },
    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
    { .name = "SDER",
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .writefn = vbar_write, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL3_RW,
      /* no .writefn needed as this can't cause an ASID change;
       * we must provide a .raw_writefn and .resetfn because we handle
       * reset and migration for the AArch32 TTBCR(S), which might be
       * using mask and base_mask.
       */
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
      .resetvalue = 0 },
    { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
    { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
    { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle3is_write },
    { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3is_write },
    { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3is_write },
    { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle3_write },
    { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3_write },
    { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3_write },
    REGINFO_SENTINEL
};

#ifndef CONFIG_USER_ONLY
/* Test if system register redirection is to occur in the current state.  */
static bool redirect_for_e2h(CPUARMState *env)
{
    return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
}

static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    CPReadFn *readfn;

    if (redirect_for_e2h(env)) {
        /* Switch to the saved EL2 version of the register.  */
        ri = ri->opaque;
        readfn = ri->readfn;
    } else {
        readfn = ri->orig_readfn;
    }
    if (readfn == NULL) {
        readfn = raw_read;
    }
    return readfn(env, ri);
}

static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
{
    CPWriteFn *writefn;

    if (redirect_for_e2h(env)) {
        /* Switch to the saved EL2 version of the register.  */
        ri = ri->opaque;
        writefn = ri->writefn;
    } else {
        writefn = ri->orig_writefn;
    }
    if (writefn == NULL) {
        writefn = raw_write;
    }
    writefn(env, ri, value);
}

static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
{
    struct E2HAlias {
        uint32_t src_key, dst_key, new_key;
        const char *src_name, *dst_name, *new_name;
        bool (*feature)(const ARMISARegisters *id);
    };

#define K(op0, op1, crn, crm, op2) \
    ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)

    static const struct E2HAlias aliases[] = {
        { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
          "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
        { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
          "CPACR", "CPTR_EL2", "CPACR_EL12" },
        { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
          "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
        { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
          "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
        { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
          "TCR_EL1", "TCR_EL2", "TCR_EL12" },
        { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
          "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
        { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
          "ELR_EL1", "ELR_EL2", "ELR_EL12" },
        { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
          "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
        { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
          "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
        { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
          "ESR_EL1", "ESR_EL2", "ESR_EL12" },
        { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
          "FAR_EL1", "FAR_EL2", "FAR_EL12" },
        { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
          "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
        { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
          "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
        { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
          "VBAR", "VBAR_EL2", "VBAR_EL12" },
        { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
          "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
        { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
          "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },

        /*
         * Note that redirection of ZCR is mentioned in the description
         * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
         * not in the summary table.
         */
        { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
          "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },

        { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
          "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },

        /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
        /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
    };
#undef K

    size_t i;

    for (i = 0; i < ARRAY_SIZE(aliases); i++) {
        const struct E2HAlias *a = &aliases[i];
        ARMCPRegInfo *src_reg, *dst_reg;

        if (a->feature && !a->feature(&cpu->isar)) {
            continue;
        }

        src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
        dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
        g_assert(src_reg != NULL);
        g_assert(dst_reg != NULL);

        /* Cross-compare names to detect typos in the keys.  */
        g_assert(strcmp(src_reg->name, a->src_name) == 0);
        g_assert(strcmp(dst_reg->name, a->dst_name) == 0);

        /* None of the core system registers use opaque; we will.  */
        g_assert(src_reg->opaque == NULL);

        /* Create alias before redirection so we dup the right data. */
        if (a->new_key) {
            ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
            uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
            bool ok;

            new_reg->name = a->new_name;
            new_reg->type |= ARM_CP_ALIAS;
            /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
            new_reg->access &= PL2_RW | PL3_RW;

            ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
            g_assert(ok);
        }

        src_reg->opaque = dst_reg;
        src_reg->orig_readfn = src_reg->readfn ?: raw_read;
        src_reg->orig_writefn = src_reg->writefn ?: raw_write;
        if (!src_reg->raw_readfn) {
            src_reg->raw_readfn = raw_read;
        }
        if (!src_reg->raw_writefn) {
            src_reg->raw_writefn = raw_write;
        }
        src_reg->readfn = el2_e2h_read;
        src_reg->writefn = el2_e2h_write;
    }
}
#endif

static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
{
    int cur_el = arm_current_el(env);

    if (cur_el < 2) {
        uint64_t hcr = arm_hcr_el2_eff(env);

        if (cur_el == 0) {
            if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
                if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
                    return CP_ACCESS_TRAP_EL2;
                }
            } else {
                if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
                    return CP_ACCESS_TRAP;
                }
                if (hcr & HCR_TID2) {
                    return CP_ACCESS_TRAP_EL2;
                }
            }
        } else if (hcr & HCR_TID2) {
            return CP_ACCESS_TRAP_EL2;
        }
    }

    if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
        return CP_ACCESS_TRAP_EL2;
    }

    return CP_ACCESS_OK;
}

static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    /* Writes to OSLAR_EL1 may update the OS lock status, which can be
     * read via a bit in OSLSR_EL1.
     */
    int oslock;

    if (ri->state == ARM_CP_STATE_AA32) {
        oslock = (value == 0xC5ACCE55);
    } else {
        oslock = value & 1;
    }

    env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
}

static const ARMCPRegInfo debug_cp_reginfo[] = {
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
     * unlike DBGDRAR it is never accessible from EL0.
     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
     * accessor.
     */
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL1_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
      .access = PL1_RW, .accessfn = access_tda,
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
      .resetvalue = 0 },
    /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
     * We don't implement the configurable EL0 access.
     */
    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
      .type = ARM_CP_ALIAS,
      .access = PL1_R, .accessfn = access_tda,
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NO_RAW,
      .accessfn = access_tdosa,
      .writefn = oslar_write },
    { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
      .access = PL1_R, .resetvalue = 10,
      .accessfn = access_tdosa,
      .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
      .access = PL1_RW, .accessfn = access_tdosa,
      .type = ARM_CP_NOP },
    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
     * implement vector catch debug events yet.
     */
    { .name = "DBGVCR",
      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP },
    /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
     * to save and restore a 32-bit guest's DBGVCR)
     */
    { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
      .access = PL2_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP },
    /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
     * Channel but Linux may try to access this register. The 32-bit
     * alias is DBGDCCINT.
     */
    { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
    /* 64 bit access versions of the (dummy) debug registers */
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    REGINFO_SENTINEL
};

/* Return the exception level to which exceptions should be taken
 * via SVEAccessTrap.  If an exception should be routed through
 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
 * take care of raising that exception.
 * C.f. the ARM pseudocode function CheckSVEEnabled.
 */
int sve_exception_el(CPUARMState *env, int el)
{
#ifndef CONFIG_USER_ONLY
    uint64_t hcr_el2 = arm_hcr_el2_eff(env);

    if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
        bool disabled = false;

        /* The CPACR.ZEN controls traps to EL1:
         * 0, 2 : trap EL0 and EL1 accesses
         * 1    : trap only EL0 accesses
         * 3    : trap no accesses
         */
        if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
            disabled = true;
        } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
            disabled = el == 0;
        }
        if (disabled) {
            /* route_to_el2 */
            return hcr_el2 & HCR_TGE ? 2 : 1;
        }

        /* Check CPACR.FPEN.  */
        if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
            disabled = true;
        } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
            disabled = el == 0;
        }
        if (disabled) {
            return 0;
        }
    }

    /* CPTR_EL2.  Since TZ and TFP are positive,
     * they will be zero when EL2 is not present.
     */
    if (el <= 2 && !arm_is_secure_below_el3(env)) {
        if (env->cp15.cptr_el[2] & CPTR_TZ) {
            return 2;
        }
        if (env->cp15.cptr_el[2] & CPTR_TFP) {
            return 0;
        }
    }

    /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
    if (arm_feature(env, ARM_FEATURE_EL3)
        && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
        return 3;
    }
#endif
    return 0;
}

static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
{
    uint32_t end_len;

    end_len = start_len &= 0xf;
    if (!test_bit(start_len, cpu->sve_vq_map)) {
        end_len = find_last_bit(cpu->sve_vq_map, start_len);
        assert(end_len < start_len);
    }
    return end_len;
}

/*
 * Given that SVE is enabled, return the vector length for EL.
 */
uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
{
    ARMCPU *cpu = env_archcpu(env);
    uint32_t zcr_len = cpu->sve_max_vq - 1;

    if (el <= 1) {
        zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
    }
    if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
        zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
    }
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
    }

    return sve_zcr_get_valid_len(cpu, zcr_len);
}

static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
{
    int cur_el = arm_current_el(env);
    int old_len = sve_zcr_len_for_el(env, cur_el);
    int new_len;

    /* Bits other than [3:0] are RAZ/WI.  */
    QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
    raw_write(env, ri, value & 0xf);

    /*
     * Because we arrived here, we know both FP and SVE are enabled;
     * otherwise we would have trapped access to the ZCR_ELn register.
     */
    new_len = sve_zcr_len_for_el(env, cur_el);
    if (new_len < old_len) {
        aarch64_sve_narrow_vq(env, new_len + 1);
    }
}

static const ARMCPRegInfo zcr_el1_reginfo = {
    .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
    .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
    .access = PL1_RW, .type = ARM_CP_SVE,
    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
    .writefn = zcr_write, .raw_writefn = raw_write
};

static const ARMCPRegInfo zcr_el2_reginfo = {
    .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
    .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
    .access = PL2_RW, .type = ARM_CP_SVE,
    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
    .writefn = zcr_write, .raw_writefn = raw_write
};

static const ARMCPRegInfo zcr_no_el2_reginfo = {
    .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
    .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
    .access = PL2_RW, .type = ARM_CP_SVE,
    .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
};

static const ARMCPRegInfo zcr_el3_reginfo = {
    .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
    .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
    .access = PL3_RW, .type = ARM_CP_SVE,
    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
    .writefn = zcr_write, .raw_writefn = raw_write
};

void hw_watchpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    vaddr len = 0;
    vaddr wvr = env->cp15.dbgwvr[n];
    uint64_t wcr = env->cp15.dbgwcr[n];
    int mask;
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;

    if (env->cpu_watchpoint[n]) {
        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
        env->cpu_watchpoint[n] = NULL;
    }

    if (!extract64(wcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    switch (extract64(wcr, 3, 2)) {
    case 0:
        /* LSC 00 is reserved and must behave as if the wp is disabled */
        return;
    case 1:
        flags |= BP_MEM_READ;
        break;
    case 2:
        flags |= BP_MEM_WRITE;
        break;
    case 3:
        flags |= BP_MEM_ACCESS;
        break;
    }

    /* Attempts to use both MASK and BAS fields simultaneously are
     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
     * thus generating a watchpoint for every byte in the masked region.
     */
    mask = extract64(wcr, 24, 4);
    if (mask == 1 || mask == 2) {
        /* Reserved values of MASK; we must act as if the mask value was
         * some non-reserved value, or as if the watchpoint were disabled.
         * We choose the latter.
         */
        return;
    } else if (mask) {
        /* Watchpoint covers an aligned area up to 2GB in size */
        len = 1ULL << mask;
        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
         * whether the watchpoint fires when the unmasked bits match; we opt
         * to generate the exceptions.
         */
        wvr &= ~(len - 1);
    } else {
        /* Watchpoint covers bytes defined by the byte address select bits */
        int bas = extract64(wcr, 5, 8);
        int basstart;

        if (extract64(wvr, 2, 1)) {
            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
             * ignored, and BAS[3:0] define which bytes to watch.
             */
            bas &= 0xf;
        }

        if (bas == 0) {
            /* This must act as if the watchpoint is disabled */
            return;
        }

        /* The BAS bits are supposed to be programmed to indicate a contiguous
         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
         * we fire for each byte in the word/doubleword addressed by the WVR.
         * We choose to ignore any non-zero bits after the first range of 1s.
         */
        basstart = ctz32(bas);
        len = cto32(bas >> basstart);
        wvr += basstart;
    }

    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
                          &env->cpu_watchpoint[n]);
}

void hw_watchpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU watchpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
        hw_watchpoint_update(cpu, i);
    }
}

static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);
    int i = ri->crm;

    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
     * register reads and behaves as if values written are sign extended.
     * Bits [1:0] are RES0.
     */
    value = sextract64(value, 0, 49) & ~3ULL;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

void hw_breakpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    uint64_t bvr = env->cp15.dbgbvr[n];
    uint64_t bcr = env->cp15.dbgbcr[n];
    vaddr addr;
    int bt;
    int flags = BP_CPU;

    if (env->cpu_breakpoint[n]) {
        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
        env->cpu_breakpoint[n] = NULL;
    }

    if (!extract64(bcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    bt = extract64(bcr, 20, 4);

    switch (bt) {
    case 4: /* unlinked address mismatch (reserved if AArch64) */
    case 5: /* linked address mismatch (reserved if AArch64) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: address mismatch breakpoint types not implemented\n");
        return;
    case 0: /* unlinked address match */
    case 1: /* linked address match */
    {
        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
         * we behave as if the register was sign extended. Bits [1:0] are
         * RES0. The BAS field is used to allow setting breakpoints on 16
         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
         * a bp will fire if the addresses covered by the bp and the addresses
         * covered by the insn overlap but the insn doesn't start at the
         * start of the bp address range. We choose to require the insn and
         * the bp to have the same address. The constraints on writing to
         * BAS enforced in dbgbcr_write mean we have only four cases:
         *  0b0000  => no breakpoint
         *  0b0011  => breakpoint on addr
         *  0b1100  => breakpoint on addr + 2
         *  0b1111  => breakpoint on addr
         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
         */
        int bas = extract64(bcr, 5, 4);
        addr = sextract64(bvr, 0, 49) & ~3ULL;
        if (bas == 0) {
            return;
        }
        if (bas == 0xc) {
            addr += 2;
        }
        break;
    }
    case 2: /* unlinked context ID match */
    case 8: /* unlinked VMID match (reserved if no EL2) */
    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: unlinked context breakpoint types not implemented\n");
        return;
    case 9: /* linked VMID match (reserved if no EL2) */
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
    case 3: /* linked context ID match */
    default:
        /* We must generate no events for Linked context matches (unless
         * they are linked to by some other bp/wp, which is handled in
         * updates for the linking bp/wp). We choose to also generate no events
         * for reserved values.
         */
        return;
    }

    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
}

void hw_breakpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU breakpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
        hw_breakpoint_update(cpu, i);
    }
}

static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);
    int i = ri->crm;

    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
     * copy of BAS[0].
     */
    value = deposit64(value, 6, 1, extract64(value, 5, 1));
    value = deposit64(value, 8, 1, extract64(value, 7, 1));

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

static void define_debug_regs(ARMCPU *cpu)
{
    /* Define v7 and v8 architectural debug registers.
     * These are just dummy implementations for now.
     */
    int i;
    int wrps, brps, ctx_cmps;
    ARMCPRegInfo dbgdidr = {
        .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
        .access = PL0_R, .accessfn = access_tda,
        .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
    };

    /* Note that all these register fields hold "number of Xs minus 1". */
    brps = arm_num_brps(cpu);
    wrps = arm_num_wrps(cpu);
    ctx_cmps = arm_num_ctx_cmps(cpu);

    assert(ctx_cmps <= brps);

    define_one_arm_cp_reg(cpu, &dbgdidr);
    define_arm_cp_regs(cpu, debug_cp_reginfo);

    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
    }

    for (i = 0; i < brps; i++) {
        ARMCPRegInfo dbgregs[] = {
            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
              .access = PL1_RW, .accessfn = access_tda,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
              .writefn = dbgbvr_write, .raw_writefn = raw_write
            },
            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
              .access = PL1_RW, .accessfn = access_tda,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
              .writefn = dbgbcr_write, .raw_writefn = raw_write
            },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, dbgregs);
    }

    for (i = 0; i < wrps; i++) {
        ARMCPRegInfo dbgregs[] = {
            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
              .access = PL1_RW, .accessfn = access_tda,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
              .writefn = dbgwvr_write, .raw_writefn = raw_write
            },
            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
              .access = PL1_RW, .accessfn = access_tda,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
              .writefn = dbgwcr_write, .raw_writefn = raw_write
            },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, dbgregs);
    }
}

static void define_pmu_regs(ARMCPU *cpu)
{
    /*
     * v7 performance monitor control register: same implementor
     * field as main ID register, and we implement four counters in
     * addition to the cycle count register.
     */
    unsigned int i, pmcrn = 4;
    ARMCPRegInfo pmcr = {
        .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
        .access = PL0_RW,
        .type = ARM_CP_IO | ARM_CP_ALIAS,
        .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
        .accessfn = pmreg_access, .writefn = pmcr_write,
        .raw_writefn = raw_write,
    };
    ARMCPRegInfo pmcr64 = {
        .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
        .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
        .access = PL0_RW, .accessfn = pmreg_access,
        .type = ARM_CP_IO,
        .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
        .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
                      PMCRLC,
        .writefn = pmcr_write, .raw_writefn = raw_write,
    };
    define_one_arm_cp_reg(cpu, &pmcr);
    define_one_arm_cp_reg(cpu, &pmcr64);
    for (i = 0; i < pmcrn; i++) {
        char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
        char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
        char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
        char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
        ARMCPRegInfo pmev_regs[] = {
            { .name = pmevcntr_name, .cp = 15, .crn = 14,
              .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
              .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
              .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
              .accessfn = pmreg_access },
            { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
              .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
              .type = ARM_CP_IO,
              .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
              .raw_readfn = pmevcntr_rawread,
              .raw_writefn = pmevcntr_rawwrite },
            { .name = pmevtyper_name, .cp = 15, .crn = 14,
              .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
              .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
              .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
              .accessfn = pmreg_access },
            { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
              .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
              .type = ARM_CP_IO,
              .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
              .raw_writefn = pmevtyper_rawwrite },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, pmev_regs);
        g_free(pmevcntr_name);
        g_free(pmevcntr_el0_name);
        g_free(pmevtyper_name);
        g_free(pmevtyper_el0_name);
    }
    if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
        ARMCPRegInfo v81_pmu_regs[] = {
            { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = extract64(cpu->pmceid0, 32, 32) },
            { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = extract64(cpu->pmceid1, 32, 32) },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v81_pmu_regs);
    }
    if (cpu_isar_feature(any_pmu_8_4, cpu)) {
        static const ARMCPRegInfo v84_pmmir = {
            .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
            .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
            .resetvalue = 0
        };
        define_one_arm_cp_reg(cpu, &v84_pmmir);
    }
}

/* We don't know until after realize whether there's a GICv3
 * attached, and that is what registers the gicv3 sysregs.
 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
 * at runtime.
 */
static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = env_archcpu(env);
    uint64_t pfr1 = cpu->id_pfr1;

    if (env->gicv3state) {
        pfr1 |= 1 << 28;
    }
    return pfr1;
}

#ifndef CONFIG_USER_ONLY
static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = env_archcpu(env);
    uint64_t pfr0 = cpu->isar.id_aa64pfr0;

    if (env->gicv3state) {
        pfr0 |= 1 << 24;
    }
    return pfr0;
}
#endif

/* Shared logic between LORID and the rest of the LOR* registers.
 * Secure state has already been delt with.
 */
static CPAccessResult access_lor_ns(CPUARMState *env)
{
    int el = arm_current_el(env);

    if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    if (arm_is_secure_below_el3(env)) {
        /* Access ok in secure mode.  */
        return CP_ACCESS_OK;
    }
    return access_lor_ns(env);
}

static CPAccessResult access_lor_other(CPUARMState *env,
                                       const ARMCPRegInfo *ri, bool isread)
{
    if (arm_is_secure_below_el3(env)) {
        /* Access denied in secure mode.  */
        return CP_ACCESS_TRAP;
    }
    return access_lor_ns(env);
}

/*
 * A trivial implementation of ARMv8.1-LOR leaves all of these
 * registers fixed at 0, which indicates that there are zero
 * supported Limited Ordering regions.
 */
static const ARMCPRegInfo lor_reginfo[] = {
    { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_lor_other,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_lor_other,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
      .access = PL1_RW, .accessfn = access_lor_other,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
      .access = PL1_RW, .accessfn = access_lor_other,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
      .access = PL1_R, .accessfn = access_lorid,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    REGINFO_SENTINEL
};

#ifdef TARGET_AARCH64
static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 &&
        arm_feature(env, ARM_FEATURE_EL2) &&
        !(arm_hcr_el2_eff(env) & HCR_APK)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 &&
        arm_feature(env, ARM_FEATURE_EL3) &&
        !(env->cp15.scr_el3 & SCR_APK)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

static const ARMCPRegInfo pauth_reginfo[] = {
    { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_pauth,
      .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
    { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_pauth,
      .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
    { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
      .access = PL1_RW, .accessfn = access_pauth,
      .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
    { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
      .access = PL1_RW, .accessfn = access_pauth,
      .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
    { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_pauth,
      .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
    { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_pauth,
      .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
    { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_pauth,
      .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
    { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_pauth,
      .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
    { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
      .access = PL1_RW, .accessfn = access_pauth,
      .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
    { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
      .access = PL1_RW, .accessfn = access_pauth,
      .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
    REGINFO_SENTINEL
};

static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
{
    Error *err = NULL;
    uint64_t ret;

    /* Success sets NZCV = 0000.  */
    env->NF = env->CF = env->VF = 0, env->ZF = 1;

    if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
        /*
         * ??? Failed, for unknown reasons in the crypto subsystem.
         * The best we can do is log the reason and return the
         * timed-out indication to the guest.  There is no reason
         * we know to expect this failure to be transitory, so the
         * guest may well hang retrying the operation.
         */
        qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
                      ri->name, error_get_pretty(err));
        error_free(err);

        env->ZF = 0; /* NZCF = 0100 */
        return 0;
    }
    return ret;
}

/* We do not support re-seeding, so the two registers operate the same.  */
static const ARMCPRegInfo rndr_reginfo[] = {
    { .name = "RNDR", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
      .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
      .access = PL0_R, .readfn = rndr_readfn },
    { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
      .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
      .access = PL0_R, .readfn = rndr_readfn },
    REGINFO_SENTINEL
};

#ifndef CONFIG_USER_ONLY
static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
                          uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);
    /* CTR_EL0 System register -> DminLine, bits [19:16] */
    uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
    uint64_t vaddr_in = (uint64_t) value;
    uint64_t vaddr = vaddr_in & ~(dline_size - 1);
    void *haddr;
    int mem_idx = cpu_mmu_index(env, false);

    /* This won't be crossing page boundaries */
    haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
    if (haddr) {

        ram_addr_t offset;
        MemoryRegion *mr;

        /* RCU lock is already being held */
        mr = memory_region_from_host(haddr, &offset);

        if (mr) {
            memory_region_writeback(mr, offset, dline_size);
        }
    }
}

static const ARMCPRegInfo dcpop_reg[] = {
    { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
      .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo dcpodp_reg[] = {
    { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
      .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
    REGINFO_SENTINEL
};
#endif /*CONFIG_USER_ONLY*/

static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
{
    if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
        return CP_ACCESS_TRAP_EL2;
    }

    return CP_ACCESS_OK;
}

static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
                                 bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 &&
        arm_feature(env, ARM_FEATURE_EL2) &&
        !(arm_hcr_el2_eff(env) & HCR_ATA)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 &&
        arm_feature(env, ARM_FEATURE_EL3) &&
        !(env->cp15.scr_el3 & SCR_ATA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return env->pstate & PSTATE_TCO;
}

static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
{
    env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
}

static const ARMCPRegInfo mte_reginfo[] = {
    { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_mte,
      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
    { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_mte,
      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
    { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
      .access = PL2_RW, .accessfn = access_mte,
      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
    { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
    { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
      .access = PL1_RW, .accessfn = access_mte,
      .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
    { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
      .access = PL1_RW, .accessfn = access_mte,
      .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
    { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
      .access = PL1_R, .accessfn = access_aa64_tid5,
      .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
    { .name = "TCO", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
      .type = ARM_CP_NO_RAW,
      .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
    { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
      .type = ARM_CP_NOP, .access = PL1_W,
      .accessfn = aa64_cacheop_poc_access },
    { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
    { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
      .type = ARM_CP_NOP, .access = PL1_W,
      .accessfn = aa64_cacheop_poc_access },
    { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
    { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
    { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
    { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
    { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
    { .name = "TCO", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
      .type = ARM_CP_CONST, .access = PL0_RW, },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
    { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
      .type = ARM_CP_NOP, .access = PL0_W,
      .accessfn = aa64_cacheop_poc_access },
    { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
      .type = ARM_CP_NOP, .access = PL0_W,
      .accessfn = aa64_cacheop_poc_access },
    { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
      .type = ARM_CP_NOP, .access = PL0_W,
      .accessfn = aa64_cacheop_poc_access },
    { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
      .type = ARM_CP_NOP, .access = PL0_W,
      .accessfn = aa64_cacheop_poc_access },
    { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
      .type = ARM_CP_NOP, .access = PL0_W,
      .accessfn = aa64_cacheop_poc_access },
    { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
      .type = ARM_CP_NOP, .access = PL0_W,
      .accessfn = aa64_cacheop_poc_access },
    { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
      .type = ARM_CP_NOP, .access = PL0_W,
      .accessfn = aa64_cacheop_poc_access },
    { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
      .type = ARM_CP_NOP, .access = PL0_W,
      .accessfn = aa64_cacheop_poc_access },
    { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
      .access = PL0_W, .type = ARM_CP_DC_GVA,
#ifndef CONFIG_USER_ONLY
      /* Avoid overhead of an access check that always passes in user-mode */
      .accessfn = aa64_zva_access,
#endif
    },
    { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
      .access = PL0_W, .type = ARM_CP_DC_GZVA,
#ifndef CONFIG_USER_ONLY
      /* Avoid overhead of an access check that always passes in user-mode */
      .accessfn = aa64_zva_access,
#endif
    },
    REGINFO_SENTINEL
};

#endif

static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
{
    int el = arm_current_el(env);

    if (el == 0) {
        uint64_t sctlr = arm_sctlr(env, el);
        if (!(sctlr & SCTLR_EnRCTX)) {
            return CP_ACCESS_TRAP;
        }
    } else if (el == 1) {
        uint64_t hcr = arm_hcr_el2_eff(env);
        if (hcr & HCR_NV) {
            return CP_ACCESS_TRAP_EL2;
        }
    }
    return CP_ACCESS_OK;
}

static const ARMCPRegInfo predinv_reginfo[] = {
    { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
    { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
    { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
    /*
     * Note the AArch32 opcodes have a different OPC1.
     */
    { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
    { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
    { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
      .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
    REGINFO_SENTINEL
};

static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Read the high 32 bits of the current CCSIDR */
    return extract64(ccsidr_read(env, ri), 32, 32);
}

static const ARMCPRegInfo ccsidr2_reginfo[] = {
    { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
      .access = PL1_R,
      .accessfn = access_aa64_tid2,
      .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
    REGINFO_SENTINEL
};

static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
{
    if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
        return CP_ACCESS_TRAP_EL2;
    }

    return CP_ACCESS_OK;
}

static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
{
    if (arm_feature(env, ARM_FEATURE_V8)) {
        return access_aa64_tid3(env, ri, isread);
    }

    return CP_ACCESS_OK;
}

static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
{
    if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
        return CP_ACCESS_TRAP_EL2;
    }

    return CP_ACCESS_OK;
}

static const ARMCPRegInfo jazelle_regs[] = {
    { .name = "JIDR",
      .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
      .access = PL1_R, .accessfn = access_jazelle,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "JOSCR",
      .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "JMCR",
      .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo vhe_reginfo[] = {
    { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
    { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
      .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
#ifndef CONFIG_USER_ONLY
    { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
      .fieldoffset =
        offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
      .type = ARM_CP_IO, .access = PL2_RW,
      .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
    { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
      .resetfn = gt_hv_timer_reset,
      .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
    { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
      .type = ARM_CP_IO,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
      .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
    { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
      .type = ARM_CP_IO | ARM_CP_ALIAS,
      .access = PL2_RW, .accessfn = e2h_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
    { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
      .type = ARM_CP_IO | ARM_CP_ALIAS,
      .access = PL2_RW, .accessfn = e2h_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
    { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
      .access = PL2_RW, .accessfn = e2h_access,
      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
    { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
      .access = PL2_RW, .accessfn = e2h_access,
      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
    { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
      .type = ARM_CP_IO | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
      .access = PL2_RW, .accessfn = e2h_access,
      .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
    { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
      .type = ARM_CP_IO | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .access = PL2_RW, .accessfn = e2h_access,
      .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
#endif
    REGINFO_SENTINEL
};

#ifndef CONFIG_USER_ONLY
static const ARMCPRegInfo ats1e1_reginfo[] = {
    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
      .writefn = ats_write64 },
    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
      .writefn = ats_write64 },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo ats1cp_reginfo[] = {
    { .name = "ATS1CPRP",
      .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
      .writefn = ats_write },
    { .name = "ATS1CPWP",
      .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
      .writefn = ats_write },
    REGINFO_SENTINEL
};
#endif

/*
 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
 * is non-zero, which is never for ARMv7, optionally in ARMv8
 * and mandatorily for ARMv8.2 and up.
 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
 * implementation is RAZ/WI we can ignore this detail, as we
 * do for ACTLR.
 */
static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
    { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
      .access = PL1_RW, .accessfn = access_tacr,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    REGINFO_SENTINEL
};

void register_cp_regs_for_features(ARMCPU *cpu)
{
    /* Register all the coprocessor registers based on feature bits */
    CPUARMState *env = &cpu->env;
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile has no coprocessor registers */
        return;
    }

    define_arm_cp_regs(cpu, cp_reginfo);
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* Must go early as it is full of wildcards that may be
         * overridden by later definitions.
         */
        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
    }

    if (arm_feature(env, ARM_FEATURE_V6)) {
        /* The ID registers all have impdef reset values */
        ARMCPRegInfo v6_idregs[] = {
            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa32_tid3,
              .resetvalue = cpu->id_pfr0 },
            /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
             * the value of the GIC field until after we define these regs.
             */
            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_NO_RAW,
              .accessfn = access_aa32_tid3,
              .readfn = id_pfr1_read,
              .writefn = arm_cp_write_ignore },
            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa32_tid3,
              .resetvalue = cpu->isar.id_dfr0 },
            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa32_tid3,
              .resetvalue = cpu->id_afr0 },
            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa32_tid3,
              .resetvalue = cpu->isar.id_mmfr0 },
            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa32_tid3,
              .resetvalue = cpu->isar.id_mmfr1 },
            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa32_tid3,
              .resetvalue = cpu->isar.id_mmfr2 },
            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa32_tid3,
              .resetvalue = cpu->isar.id_mmfr3 },
            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa32_tid3,
              .resetvalue = cpu->isar.id_isar0 },
            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa32_tid3,
              .resetvalue = cpu->isar.id_isar1 },
            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa32_tid3,
              .resetvalue = cpu->isar.id_isar2 },
            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa32_tid3,
              .resetvalue = cpu->isar.id_isar3 },
            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa32_tid3,
              .resetvalue = cpu->isar.id_isar4 },
            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa32_tid3,
              .resetvalue = cpu->isar.id_isar5 },
            { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa32_tid3,
              .resetvalue = cpu->isar.id_mmfr4 },
            { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa32_tid3,
              .resetvalue = cpu->isar.id_isar6 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v6_idregs);
        define_arm_cp_regs(cpu, v6_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_V6K)) {
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_V7MP) &&
        !arm_feature(env, ARM_FEATURE_PMSA)) {
        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_V7VE)) {
        define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_V7)) {
        ARMCPRegInfo clidr = {
            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
            .access = PL1_R, .type = ARM_CP_CONST,
            .accessfn = access_aa64_tid2,
            .resetvalue = cpu->clidr
        };
        define_one_arm_cp_reg(cpu, &clidr);
        define_arm_cp_regs(cpu, v7_cp_reginfo);
        define_debug_regs(cpu);
        define_pmu_regs(cpu);
    } else {
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_V8)) {
        /* AArch64 ID registers, which all have impdef reset values.
         * Note that within the ID register ranges the unused slots
         * must all RAZ, not UNDEF; future architecture versions may
         * define new registers here.
         */
        ARMCPRegInfo v8_idregs[] = {
            /*
             * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
             * emulation because we don't know the right value for the
             * GIC field until after we define these regs.
             */
            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
              .access = PL1_R,
#ifdef CONFIG_USER_ONLY
              .type = ARM_CP_CONST,
              .resetvalue = cpu->isar.id_aa64pfr0
#else
              .type = ARM_CP_NO_RAW,
              .accessfn = access_aa64_tid3,
              .readfn = id_aa64pfr0_read,
              .writefn = arm_cp_write_ignore
#endif
            },
            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = cpu->isar.id_aa64pfr1},
            { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              /* At present, only SVEver == 0 is defined anyway.  */
              .resetvalue = 0 },
            { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = cpu->isar.id_aa64dfr0 },
            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = cpu->isar.id_aa64dfr1 },
            { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = cpu->id_aa64afr0 },
            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = cpu->id_aa64afr1 },
            { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = cpu->isar.id_aa64isar0 },
            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = cpu->isar.id_aa64isar1 },
            { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = cpu->isar.id_aa64mmfr0 },
            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = cpu->isar.id_aa64mmfr1 },
            { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = cpu->isar.id_aa64mmfr2 },
            { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = cpu->isar.mvfr0 },
            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = cpu->isar.mvfr1 },
            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = cpu->isar.mvfr2 },
            { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .accessfn = access_aa64_tid3,
              .resetvalue = 0 },
            { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = extract64(cpu->pmceid0, 0, 32) },
            { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid0 },
            { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = extract64(cpu->pmceid1, 0, 32) },
            { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid1 },
            REGINFO_SENTINEL
        };
#ifdef CONFIG_USER_ONLY
        ARMCPRegUserSpaceInfo v8_user_idregs[] = {
            { .name = "ID_AA64PFR0_EL1",
              .exported_bits = 0x000f000f00ff0000,
              .fixed_bits    = 0x0000000000000011 },
            { .name = "ID_AA64PFR1_EL1",
              .exported_bits = 0x00000000000000f0 },
            { .name = "ID_AA64PFR*_EL1_RESERVED",
              .is_glob = true                     },
            { .name = "ID_AA64ZFR0_EL1"           },
            { .name = "ID_AA64MMFR0_EL1",
              .fixed_bits    = 0x00000000ff000000 },
            { .name = "ID_AA64MMFR1_EL1"          },
            { .name = "ID_AA64MMFR*_EL1_RESERVED",
              .is_glob = true                     },
            { .name = "ID_AA64DFR0_EL1",
              .fixed_bits    = 0x0000000000000006 },
            { .name = "ID_AA64DFR1_EL1"           },
            { .name = "ID_AA64DFR*_EL1_RESERVED",
              .is_glob = true                     },
            { .name = "ID_AA64AFR*",
              .is_glob = true                     },
            { .name = "ID_AA64ISAR0_EL1",
              .exported_bits = 0x00fffffff0fffff0 },
            { .name = "ID_AA64ISAR1_EL1",
              .exported_bits = 0x000000f0ffffffff },
            { .name = "ID_AA64ISAR*_EL1_RESERVED",
              .is_glob = true                     },
            REGUSERINFO_SENTINEL
        };
        modify_arm_cp_regs(v8_idregs, v8_user_idregs);
#endif
        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3) &&
            !arm_feature(env, ARM_FEATURE_EL2)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
        define_arm_cp_regs(cpu, v8_idregs);
        define_arm_cp_regs(cpu, v8_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_EL2)) {
        uint64_t vmpidr_def = mpidr_read_val(env);
        ARMCPRegInfo vpidr_regs[] = {
            { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL2_RW, .accessfn = access_el3_aa32ns,
              .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
              .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
            { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL2_RW, .resetvalue = cpu->midr,
              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
            { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
              .access = PL2_RW, .accessfn = access_el3_aa32ns,
              .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
              .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
            { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
              .access = PL2_RW,
              .resetvalue = vmpidr_def,
              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, vpidr_regs);
        define_arm_cp_regs(cpu, el2_cp_reginfo);
        if (arm_feature(env, ARM_FEATURE_V8)) {
            define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
        }
        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
    } else {
        /* If EL2 is missing but higher ELs are enabled, we need to
         * register the no_el2 reginfos.
         */
        if (arm_feature(env, ARM_FEATURE_EL3)) {
            /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
             * of MIDR_EL1 and MPIDR_EL1.
             */
            ARMCPRegInfo vpidr_regs[] = {
                { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
                  .access = PL2_RW, .accessfn = access_el3_aa32ns,
                  .type = ARM_CP_CONST, .resetvalue = cpu->midr,
                  .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
                { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
                  .access = PL2_RW, .accessfn = access_el3_aa32ns,
                  .type = ARM_CP_NO_RAW,
                  .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
                REGINFO_SENTINEL
            };
            define_arm_cp_regs(cpu, vpidr_regs);
            define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
            if (arm_feature(env, ARM_FEATURE_V8)) {
                define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
            }
        }
    }
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        define_arm_cp_regs(cpu, el3_cp_reginfo);
        ARMCPRegInfo el3_regs[] = {
            { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
              .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
            { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
              .access = PL3_RW,
              .raw_writefn = raw_write, .writefn = sctlr_write,
              .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
              .resetvalue = cpu->reset_sctlr },
            REGINFO_SENTINEL
        };

        define_arm_cp_regs(cpu, el3_regs);
    }
    /* The behaviour of NSACR is sufficiently various that we don't
     * try to describe it in a single reginfo:
     *  if EL3 is 64 bit, then trap to EL3 from S EL1,
     *     reads as constant 0xc00 from NS EL1 and NS EL2
     *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
     *  if v7 without EL3, register doesn't exist
     *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
     */
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            ARMCPRegInfo nsacr = {
                .name = "NSACR", .type = ARM_CP_CONST,
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL1_RW, .accessfn = nsacr_access,
                .resetvalue = 0xc00
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        } else {
            ARMCPRegInfo nsacr = {
                .name = "NSACR",
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL3_RW | PL1_R,
                .resetvalue = 0,
                .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        }
    } else {
        if (arm_feature(env, ARM_FEATURE_V8)) {
            ARMCPRegInfo nsacr = {
                .name = "NSACR", .type = ARM_CP_CONST,
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL1_R,
                .resetvalue = 0xc00
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        }
    }

    if (arm_feature(env, ARM_FEATURE_PMSA)) {
        if (arm_feature(env, ARM_FEATURE_V6)) {
            /* PMSAv6 not implemented */
            assert(arm_feature(env, ARM_FEATURE_V7));
            define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
            define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
        }
    } else {
        define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
        /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
        if (cpu_isar_feature(aa32_hpd, cpu)) {
            define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
        }
    }
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
        define_arm_cp_regs(cpu, omap_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
    }
    if (cpu_isar_feature(aa32_jazelle, cpu)) {
        define_arm_cp_regs(cpu, jazelle_regs);
    }
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
     * be read-only (ie write causes UNDEF exception).
     */
    {
        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
            /* Pre-v8 MIDR space.
             * Note that the MIDR isn't a simple constant register because
             * of the TI925 behaviour where writes to another register can
             * cause the MIDR value to change.
             *
             * Unimplemented registers in the c15 0 0 0 space default to
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
             * and friends override accordingly.
             */
            { .name = "MIDR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .resetvalue = cpu->midr,
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
              .readfn = midr_read,
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .type = ARM_CP_OVERRIDE },
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .readfn = midr_read },
            /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .resetvalue = cpu->midr },
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
              .access = PL1_R, .resetvalue = cpu->midr },
            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
              .access = PL1_R,
              .accessfn = access_aa64_tid1,
              .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
            REGINFO_SENTINEL
        };
        ARMCPRegInfo id_cp_reginfo[] = {
            /* These are common to v8 and pre-v8 */
            { .name = "CTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
              .access = PL1_R, .accessfn = ctr_el0_access,
              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
              .access = PL0_R, .accessfn = ctr_el0_access,
              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
            { .name = "TCMTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
              .access = PL1_R,
              .accessfn = access_aa32_tid1,
              .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        /* TLBTR is specific to VMSA */
        ARMCPRegInfo id_tlbtr_reginfo = {
              .name = "TLBTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
              .access = PL1_R,
              .accessfn = access_aa32_tid1,
              .type = ARM_CP_CONST, .resetvalue = 0,
        };
        /* MPUIR is specific to PMSA V6+ */
        ARMCPRegInfo id_mpuir_reginfo = {
              .name = "MPUIR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmsav7_dregion << 8
        };
        ARMCPRegInfo crn0_wi_reginfo = {
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
        };
#ifdef CONFIG_USER_ONLY
        ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
            { .name = "MIDR_EL1",
              .exported_bits = 0x00000000ffffffff },
            { .name = "REVIDR_EL1"                },
            REGUSERINFO_SENTINEL
        };
        modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
#endif
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
            ARMCPRegInfo *r;
            /* Register the blanket "writes ignored" value first to cover the
             * whole space. Then update the specific ID registers to allow write
             * access, so that they ignore writes rather than causing them to
             * UNDEF.
             */
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
            for (r = id_pre_v8_midr_cp_reginfo;
                 r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
            id_mpuir_reginfo.access = PL1_RW;
            id_tlbtr_reginfo.access = PL1_RW;
        }
        if (arm_feature(env, ARM_FEATURE_V8)) {
            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
        }
        define_arm_cp_regs(cpu, id_cp_reginfo);
        if (!arm_feature(env, ARM_FEATURE_PMSA)) {
            define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
        } else if (arm_feature(env, ARM_FEATURE_V7)) {
            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
        }
    }

    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
        ARMCPRegInfo mpidr_cp_reginfo[] = {
            { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
              .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
            REGINFO_SENTINEL
        };
#ifdef CONFIG_USER_ONLY
        ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
            { .name = "MPIDR_EL1",
              .fixed_bits = 0x0000000080000000 },
            REGUSERINFO_SENTINEL
        };
        modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
#endif
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
    }

    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
        ARMCPRegInfo auxcr_reginfo[] = {
            { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL1_RW, .accessfn = access_tacr,
              .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
            { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL2_RW, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL3_RW, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, auxcr_reginfo);
        if (cpu_isar_feature(aa32_ac2, cpu)) {
            define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
        }
    }

    if (arm_feature(env, ARM_FEATURE_CBAR)) {
        /*
         * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
         * There are two flavours:
         *  (1) older 32-bit only cores have a simple 32-bit CBAR
         *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
         *      32-bit register visible to AArch32 at a different encoding
         *      to the "flavour 1" register and with the bits rearranged to
         *      be able to squash a 64-bit address into the 32-bit view.
         * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
         * in future if we support AArch32-only configs of some of the
         * AArch64 cores we might need to add a specific feature flag
         * to indicate cores with "flavour 2" CBAR.
         */
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            /* 32 bit view is [31:18] 0...0 [43:32]. */
            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
                | extract64(cpu->reset_cbar, 32, 12);
            ARMCPRegInfo cbar_reginfo[] = {
                { .name = "CBAR",
                  .type = ARM_CP_CONST,
                  .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cbar32 },
                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
                  .type = ARM_CP_CONST,
                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
                REGINFO_SENTINEL
            };
            /* We don't implement a r/w 64 bit CBAR currently */
            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
            define_arm_cp_regs(cpu, cbar_reginfo);
        } else {
            ARMCPRegInfo cbar = {
                .name = "CBAR",
                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
                .fieldoffset = offsetof(CPUARMState,
                                        cp15.c15_config_base_address)
            };
            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
                cbar.access = PL1_R;
                cbar.fieldoffset = 0;
                cbar.type = ARM_CP_CONST;
            }
            define_one_arm_cp_reg(cpu, &cbar);
        }
    }

    if (arm_feature(env, ARM_FEATURE_VBAR)) {
        ARMCPRegInfo vbar_cp_reginfo[] = {
            { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
              .access = PL1_RW, .writefn = vbar_write,
              .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
                                     offsetof(CPUARMState, cp15.vbar_ns) },
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, vbar_cp_reginfo);
    }

    /* Generic registers whose values depend on the implementation */
    {
        ARMCPRegInfo sctlr = {
            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
            .access = PL1_RW, .accessfn = access_tvm_trvm,
            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
                                   offsetof(CPUARMState, cp15.sctlr_ns) },
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
            .raw_writefn = raw_write,
        };
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
            /* Normally we would always end the TB on an SCTLR write, but Linux
             * arch/arm/mach-pxa/sleep.S expects two instructions following
             * an MMU enable to execute from cache.  Imitate this behaviour.
             */
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
        }
        define_one_arm_cp_reg(cpu, &sctlr);
    }

    if (cpu_isar_feature(aa64_lor, cpu)) {
        define_arm_cp_regs(cpu, lor_reginfo);
    }
    if (cpu_isar_feature(aa64_pan, cpu)) {
        define_one_arm_cp_reg(cpu, &pan_reginfo);
    }
#ifndef CONFIG_USER_ONLY
    if (cpu_isar_feature(aa64_ats1e1, cpu)) {
        define_arm_cp_regs(cpu, ats1e1_reginfo);
    }
    if (cpu_isar_feature(aa32_ats1e1, cpu)) {
        define_arm_cp_regs(cpu, ats1cp_reginfo);
    }
#endif
    if (cpu_isar_feature(aa64_uao, cpu)) {
        define_one_arm_cp_reg(cpu, &uao_reginfo);
    }

    if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
        define_arm_cp_regs(cpu, vhe_reginfo);
    }

    if (cpu_isar_feature(aa64_sve, cpu)) {
        define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
        if (arm_feature(env, ARM_FEATURE_EL2)) {
            define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
        } else {
            define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
        }
        if (arm_feature(env, ARM_FEATURE_EL3)) {
            define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
        }
    }

#ifdef TARGET_AARCH64
    if (cpu_isar_feature(aa64_pauth, cpu)) {
        define_arm_cp_regs(cpu, pauth_reginfo);
    }
    if (cpu_isar_feature(aa64_rndr, cpu)) {
        define_arm_cp_regs(cpu, rndr_reginfo);
    }
#ifndef CONFIG_USER_ONLY
    /* Data Cache clean instructions up to PoP */
    if (cpu_isar_feature(aa64_dcpop, cpu)) {
        define_one_arm_cp_reg(cpu, dcpop_reg);

        if (cpu_isar_feature(aa64_dcpodp, cpu)) {
            define_one_arm_cp_reg(cpu, dcpodp_reg);
        }
    }
#endif /*CONFIG_USER_ONLY*/

    /*
     * If full MTE is enabled, add all of the system registers.
     * If only "instructions available at EL0" are enabled,
     * then define only a RAZ/WI version of PSTATE.TCO.
     */
    if (cpu_isar_feature(aa64_mte, cpu)) {
        define_arm_cp_regs(cpu, mte_reginfo);
        define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
    } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
        define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
        define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
    }
#endif

    if (cpu_isar_feature(any_predinv, cpu)) {
        define_arm_cp_regs(cpu, predinv_reginfo);
    }

    if (cpu_isar_feature(any_ccidx, cpu)) {
        define_arm_cp_regs(cpu, ccsidr2_reginfo);
    }

#ifndef CONFIG_USER_ONLY
    /*
     * Register redirections and aliases must be done last,
     * after the registers from the other extensions have been defined.
     */
    if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
        define_arm_vh_e2h_redirects_aliases(cpu);
    }
#endif
}

void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    CPUARMState *env = &cpu->env;

    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
        /*
         * The lower part of each SVE register aliases to the FPU
         * registers so we don't need to include both.
         */
#ifdef TARGET_AARCH64
        if (isar_feature_aa64_sve(&cpu->isar)) {
            gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
                                     arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
                                     "sve-registers.xml", 0);
        } else
#endif
        {
            gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
                                     aarch64_fpu_gdb_set_reg,
                                     34, "aarch64-fpu.xml", 0);
        }
    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
                                 51, "arm-neon.xml", 0);
    } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
                                 35, "arm-vfp3.xml", 0);
    } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
                                 19, "arm-vfp.xml", 0);
    }
    gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
                             arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
                             "system-registers.xml", 0);

}

/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
{
    ObjectClass *class_a = (ObjectClass *)a;
    ObjectClass *class_b = (ObjectClass *)b;
    const char *name_a, *name_b;

    name_a = object_class_get_name(class_a);
    name_b = object_class_get_name(class_b);
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
        return 1;
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
        return -1;
    } else {
        return strcmp(name_a, name_b);
    }
}

static void arm_cpu_list_entry(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    const char *typename;
    char *name;

    typename = object_class_get_name(oc);
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
    qemu_printf("  %s\n", name);
    g_free(name);
}

void arm_cpu_list(void)
{
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    list = g_slist_sort(list, arm_cpu_list_compare);
    qemu_printf("Available CPUs:\n");
    g_slist_foreach(list, arm_cpu_list_entry, NULL);
    g_slist_free(list);
}

static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CpuDefinitionInfoList **cpu_list = user_data;
    CpuDefinitionInfoList *entry;
    CpuDefinitionInfo *info;
    const char *typename;

    typename = object_class_get_name(oc);
    info = g_malloc0(sizeof(*info));
    info->name = g_strndup(typename,
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));
    info->q_typename = g_strdup(typename);

    entry = g_malloc0(sizeof(*entry));
    entry->value = info;
    entry->next = *cpu_list;
    *cpu_list = entry;
}

CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
{
    CpuDefinitionInfoList *cpu_list = NULL;
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
    g_slist_free(list);

    return cpu_list;
}

static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
                                   void *opaque, int state, int secstate,
                                   int crm, int opc1, int opc2,
                                   const char *name)
{
    /* Private utility function for define_one_arm_cp_reg_with_opaque():
     * add a single reginfo struct to the hash table.
     */
    uint32_t *key = g_new(uint32_t, 1);
    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
    int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;

    r2->name = g_strdup(name);
    /* Reset the secure state to the specific incoming state.  This is
     * necessary as the register may have been defined with both states.
     */
    r2->secure = secstate;

    if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
        /* Register is banked (using both entries in array).
         * Overwriting fieldoffset as the array is only used to define
         * banked registers but later only fieldoffset is used.
         */
        r2->fieldoffset = r->bank_fieldoffsets[ns];
    }

    if (state == ARM_CP_STATE_AA32) {
        if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
            /* If the register is banked then we don't need to migrate or
             * reset the 32-bit instance in certain cases:
             *
             * 1) If the register has both 32-bit and 64-bit instances then we
             *    can count on the 64-bit instance taking care of the
             *    non-secure bank.
             * 2) If ARMv8 is enabled then we can count on a 64-bit version
             *    taking care of the secure bank.  This requires that separate
             *    32 and 64-bit definitions are provided.
             */
            if ((r->state == ARM_CP_STATE_BOTH && ns) ||
                (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
                r2->type |= ARM_CP_ALIAS;
            }
        } else if ((secstate != r->secure) && !ns) {
            /* The register is not banked so we only want to allow migration of
             * the non-secure instance.
             */
            r2->type |= ARM_CP_ALIAS;
        }

        if (r->state == ARM_CP_STATE_BOTH) {
            /* We assume it is a cp15 register if the .cp field is left unset.
             */
            if (r2->cp == 0) {
                r2->cp = 15;
            }

#ifdef HOST_WORDS_BIGENDIAN
            if (r2->fieldoffset) {
                r2->fieldoffset += sizeof(uint32_t);
            }
#endif
        }
    }
    if (state == ARM_CP_STATE_AA64) {
        /* To allow abbreviation of ARMCPRegInfo
         * definitions, we treat cp == 0 as equivalent to
         * the value for "standard guest-visible sysreg".
         * STATE_BOTH definitions are also always "standard
         * sysreg" in their AArch64 view (the .cp value may
         * be non-zero for the benefit of the AArch32 view).
         */
        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
            r2->cp = CP_REG_ARM64_SYSREG_CP;
        }
        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
                                  r2->opc0, opc1, opc2);
    } else {
        *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
    }
    if (opaque) {
        r2->opaque = opaque;
    }
    /* reginfo passed to helpers is correct for the actual access,
     * and is never ARM_CP_STATE_BOTH:
     */
    r2->state = state;
    /* Make sure reginfo passed to helpers for wildcarded regs
     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
     */
    r2->crm = crm;
    r2->opc1 = opc1;
    r2->opc2 = opc2;
    /* By convention, for wildcarded registers only the first
     * entry is used for migration; the others are marked as
     * ALIAS so we don't try to transfer the register
     * multiple times. Special registers (ie NOP/WFI) are
     * never migratable and not even raw-accessible.
     */
    if ((r->type & ARM_CP_SPECIAL)) {
        r2->type |= ARM_CP_NO_RAW;
    }
    if (((r->crm == CP_ANY) && crm != 0) ||
        ((r->opc1 == CP_ANY) && opc1 != 0) ||
        ((r->opc2 == CP_ANY) && opc2 != 0)) {
        r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
    }

    /* Check that raw accesses are either forbidden or handled. Note that
     * we can't assert this earlier because the setup of fieldoffset for
     * banked registers has to be done first.
     */
    if (!(r2->type & ARM_CP_NO_RAW)) {
        assert(!raw_accessors_invalid(r2));
    }

    /* Overriding of an existing definition must be explicitly
     * requested.
     */
    if (!(r->type & ARM_CP_OVERRIDE)) {
        ARMCPRegInfo *oldreg;
        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
            fprintf(stderr, "Register redefined: cp=%d %d bit "
                    "crn=%d crm=%d opc1=%d opc2=%d, "
                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
                    r2->crn, r2->crm, r2->opc1, r2->opc2,
                    oldreg->name, r2->name);
            g_assert_not_reached();
        }
    }
    g_hash_table_insert(cpu->cp_regs, key, r2);
}


void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *r, void *opaque)
{
    /* Define implementations of coprocessor registers.
     * We store these in a hashtable because typically
     * there are less than 150 registers in a space which
     * is 16*16*16*8*8 = 262144 in size.
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
     * If a register is defined twice then the second definition is
     * used, so this can be used to define some generic registers and
     * then override them with implementation specific variations.
     * At least one of the original and the second definition should
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
     * against accidental use.
     *
     * The state field defines whether the register is to be
     * visible in the AArch32 or AArch64 execution state. If the
     * state is set to ARM_CP_STATE_BOTH then we synthesise a
     * reginfo structure for the AArch32 view, which sees the lower
     * 32 bits of the 64 bit register.
     *
     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
     * be wildcarded. AArch64 registers are always considered to be 64
     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
     * the register, if any.
     */
    int crm, opc1, opc2, state;
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
    /* 64 bit registers have only CRm and Opc1 fields */
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
    /* op0 only exists in the AArch64 encodings */
    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
    /*
     * This API is only for Arm's system coprocessors (14 and 15) or
     * (M-profile or v7A-and-earlier only) for implementation defined
     * coprocessors in the range 0..7.  Our decode assumes this, since
     * 8..13 can be used for other insns including VFP and Neon. See
     * valid_cp() in translate.c.  Assert here that we haven't tried
     * to use an invalid coprocessor number.
     */
    switch (r->state) {
    case ARM_CP_STATE_BOTH:
        /* 0 has a special meaning, but otherwise the same rules as AA32. */
        if (r->cp == 0) {
            break;
        }
        /* fall through */
    case ARM_CP_STATE_AA32:
        if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
            !arm_feature(&cpu->env, ARM_FEATURE_M)) {
            assert(r->cp >= 14 && r->cp <= 15);
        } else {
            assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
        }
        break;
    case ARM_CP_STATE_AA64:
        assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
        break;
    default:
        g_assert_not_reached();
    }
    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
     * encodes a minimum access level for the register. We roll this
     * runtime check into our general permission check code, so check
     * here that the reginfo's specified permissions are strict enough
     * to encompass the generic architectural permission check.
     */
    if (r->state != ARM_CP_STATE_AA32) {
        int mask = 0;
        switch (r->opc1) {
        case 0:
            /* min_EL EL1, but some accessible to EL0 via kernel ABI */
            mask = PL0U_R | PL1_RW;
            break;
        case 1: case 2:
            /* min_EL EL1 */
            mask = PL1_RW;
            break;
        case 3:
            /* min_EL EL0 */
            mask = PL0_RW;
            break;
        case 4:
        case 5:
            /* min_EL EL2 */
            mask = PL2_RW;
            break;
        case 6:
            /* min_EL EL3 */
            mask = PL3_RW;
            break;
        case 7:
            /* min_EL EL1, secure mode only (we don't check the latter) */
            mask = PL1_RW;
            break;
        default:
            /* broken reginfo with out-of-range opc1 */
            assert(false);
            break;
        }
        /* assert our permissions are not too lax (stricter is fine) */
        assert((r->access & ~mask) == 0);
    }

    /* Check that the register definition has enough info to handle
     * reads and writes if they are permitted.
     */
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
        if (r->access & PL3_R) {
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->readfn);
        }
        if (r->access & PL3_W) {
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->writefn);
        }
    }
    /* Bad type field probably means missing sentinel at end of reg list */
    assert(cptype_valid(r->type));
    for (crm = crmmin; crm <= crmmax; crm++) {
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
                for (state = ARM_CP_STATE_AA32;
                     state <= ARM_CP_STATE_AA64; state++) {
                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
                        continue;
                    }
                    if (state == ARM_CP_STATE_AA32) {
                        /* Under AArch32 CP registers can be common
                         * (same for secure and non-secure world) or banked.
                         */
                        char *name;

                        switch (r->secure) {
                        case ARM_CP_SECSTATE_S:
                        case ARM_CP_SECSTATE_NS:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   r->secure, crm, opc1, opc2,
                                                   r->name);
                            break;
                        default:
                            name = g_strdup_printf("%s_S", r->name);
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_S,
                                                   crm, opc1, opc2, name);
                            g_free(name);
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_NS,
                                                   crm, opc1, opc2, r->name);
                            break;
                        }
                    } else {
                        /* AArch64 registers get mapped to non-secure instance
                         * of AArch32 */
                        add_cpreg_to_hashtable(cpu, r, opaque, state,
                                               ARM_CP_SECSTATE_NS,
                                               crm, opc1, opc2, r->name);
                    }
                }
            }
        }
    }
}

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque)
{
    /* Define a whole list of registers */
    const ARMCPRegInfo *r;
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
    }
}

/*
 * Modify ARMCPRegInfo for access from userspace.
 *
 * This is a data driven modification directed by
 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
 * user-space cannot alter any values and dynamic values pertaining to
 * execution state are hidden from user space view anyway.
 */
void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
{
    const ARMCPRegUserSpaceInfo *m;
    ARMCPRegInfo *r;

    for (m = mods; m->name; m++) {
        GPatternSpec *pat = NULL;
        if (m->is_glob) {
            pat = g_pattern_spec_new(m->name);
        }
        for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
            if (pat && g_pattern_match_string(pat, r->name)) {
                r->type = ARM_CP_CONST;
                r->access = PL0U_R;
                r->resetvalue = 0;
                /* continue */
            } else if (strcmp(r->name, m->name) == 0) {
                r->type = ARM_CP_CONST;
                r->access = PL0U_R;
                r->resetvalue &= m->exported_bits;
                r->resetvalue |= m->fixed_bits;
                break;
            }
        }
        if (pat) {
            g_pattern_spec_free(pat);
        }
    }
}

const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
{
    return g_hash_table_lookup(cpregs, &encoded_cp);
}

void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    /* Helper coprocessor write function for write-ignore registers */
}

uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* Helper coprocessor write function for read-as-zero registers */
    return 0;
}

void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
    /* Helper coprocessor reset function for do-nothing-on-reset registers */
}

static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
{
    /* Return true if it is not valid for us to switch to
     * this CPU mode (ie all the UNPREDICTABLE cases in
     * the ARM ARM CPSRWriteByInstr pseudocode).
     */

    /* Changes to or from Hyp via MSR and CPS are illegal. */
    if (write_type == CPSRWriteByInstr &&
        ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
         mode == ARM_CPU_MODE_HYP)) {
        return 1;
    }

    switch (mode) {
    case ARM_CPU_MODE_USR:
        return 0;
    case ARM_CPU_MODE_SYS:
    case ARM_CPU_MODE_SVC:
    case ARM_CPU_MODE_ABT:
    case ARM_CPU_MODE_UND:
    case ARM_CPU_MODE_IRQ:
    case ARM_CPU_MODE_FIQ:
        /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
         * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
         */
        /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
         * and CPS are treated as illegal mode changes.
         */
        if (write_type == CPSRWriteByInstr &&
            (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
            (arm_hcr_el2_eff(env) & HCR_TGE)) {
            return 1;
        }
        return 0;
    case ARM_CPU_MODE_HYP:
        return !arm_feature(env, ARM_FEATURE_EL2)
            || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
    case ARM_CPU_MODE_MON:
        return arm_current_el(env) < 3;
    default:
        return 1;
    }
}

uint32_t cpsr_read(CPUARMState *env)
{
    int ZF;
    ZF = (env->ZF == 0);
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
        | (env->GE << 16) | (env->daif & CPSR_AIF);
}

void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
                CPSRWriteType write_type)
{
    uint32_t changed_daif;

    if (mask & CPSR_NZCV) {
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & CPSR_T)
        env->thumb = ((val & CPSR_T) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & CPSR_GE) {
        env->GE = (val >> 16) & 0xf;
    }

    /* In a V7 implementation that includes the security extensions but does
     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
     * bits respectively.
     *
     * In a V8 implementation, it is permitted for privileged software to
     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
     */
    if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
        arm_feature(env, ARM_FEATURE_EL3) &&
        !arm_feature(env, ARM_FEATURE_EL2) &&
        !arm_is_secure(env)) {

        changed_daif = (env->daif ^ val) & mask;

        if (changed_daif & CPSR_A) {
            /* Check to see if we are allowed to change the masking of async
             * abort exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_AW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_A flag from "
                              "non-secure world with SCR.AW bit clear\n");
                mask &= ~CPSR_A;
            }
        }

        if (changed_daif & CPSR_F) {
            /* Check to see if we are allowed to change the masking of FIQ
             * exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_FW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_F flag from "
                              "non-secure world with SCR.FW bit clear\n");
                mask &= ~CPSR_F;
            }

            /* Check whether non-maskable FIQ (NMFI) support is enabled.
             * If this bit is set software is not allowed to mask
             * FIQs, but is allowed to set CPSR_F to 0.
             */
            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
                (val & CPSR_F)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to enable CPSR_F flag "
                              "(non-maskable FIQ [NMFI] support enabled)\n");
                mask &= ~CPSR_F;
            }
        }
    }

    env->daif &= ~(CPSR_AIF & mask);
    env->daif |= val & CPSR_AIF & mask;

    if (write_type != CPSRWriteRaw &&
        ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
        if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
            /* Note that we can only get here in USR mode if this is a
             * gdb stub write; for this case we follow the architectural
             * behaviour for guest writes in USR mode of ignoring an attempt
             * to switch mode. (Those are caught by translate.c for writes
             * triggered by guest instructions.)
             */
            mask &= ~CPSR_M;
        } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
             * v7, and has defined behaviour in v8:
             *  + leave CPSR.M untouched
             *  + allow changes to the other CPSR fields
             *  + set PSTATE.IL
             * For user changes via the GDB stub, we don't set PSTATE.IL,
             * as this would be unnecessarily harsh for a user error.
             */
            mask &= ~CPSR_M;
            if (write_type != CPSRWriteByGDBStub &&
                arm_feature(env, ARM_FEATURE_V8)) {
                mask |= CPSR_IL;
                val |= CPSR_IL;
            }
            qemu_log_mask(LOG_GUEST_ERROR,
                          "Illegal AArch32 mode switch attempt from %s to %s\n",
                          aarch32_mode_name(env->uncached_cpsr),
                          aarch32_mode_name(val));
        } else {
            qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
                          write_type == CPSRWriteExceptionReturn ?
                          "Exception return from AArch32" :
                          "AArch32 mode switch from",
                          aarch32_mode_name(env->uncached_cpsr),
                          aarch32_mode_name(val), env->regs[15]);
            switch_mode(env, val & CPSR_M);
        }
    }
    mask &= ~CACHED_CPSR_BITS;
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}

/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(int8_t)x;
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
    return res;
}

uint32_t HELPER(uxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(uint8_t)x;
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    return res;
}

int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
    if (den == 0)
      return 0;
    if (num == INT_MIN && den == -1)
      return INT_MIN;
    return num / den;
}

uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
    if (den == 0)
      return 0;
    return num / den;
}

uint32_t HELPER(rbit)(uint32_t x)
{
    return revbit32(x);
}

#ifdef CONFIG_USER_ONLY

static void switch_mode(CPUARMState *env, int mode)
{
    ARMCPU *cpu = env_archcpu(env);

    if (mode != ARM_CPU_MODE_USR) {
        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
    }
}

uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
{
    return 1;
}

void aarch64_sync_64_to_32(CPUARMState *env)
{
    g_assert_not_reached();
}

#else

static void switch_mode(CPUARMState *env, int mode)
{
    int old_mode;
    int i;

    old_mode = env->uncached_cpsr & CPSR_M;
    if (mode == old_mode)
        return;

    if (old_mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
    } else if (mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
    }

    i = bank_number(old_mode);
    env->banked_r13[i] = env->regs[13];
    env->banked_spsr[i] = env->spsr;

    i = bank_number(mode);
    env->regs[13] = env->banked_r13[i];
    env->spsr = env->banked_spsr[i];

    env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
    env->regs[14] = env->banked_r14[r14_bank_number(mode)];
}

/* Physical Interrupt Target EL Lookup Table
 *
 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
 *
 * The below multi-dimensional table is used for looking up the target
 * exception level given numerous condition criteria.  Specifically, the
 * target EL is based on SCR and HCR routing controls as well as the
 * currently executing EL and secure state.
 *
 *    Dimensions:
 *    target_el_table[2][2][2][2][2][4]
 *                    |  |  |  |  |  +--- Current EL
 *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
 *                    |  |  |  +--------- HCR mask override
 *                    |  |  +------------ SCR exec state control
 *                    |  +--------------- SCR mask override
 *                    +------------------ 32-bit(0)/64-bit(1) EL3
 *
 *    The table values are as such:
 *    0-3 = EL0-EL3
 *     -1 = Cannot occur
 *
 * The ARM ARM target EL table includes entries indicating that an "exception
 * is not taken".  The two cases where this is applicable are:
 *    1) An exception is taken from EL3 but the SCR does not have the exception
 *    routed to EL3.
 *    2) An exception is taken from EL2 but the HCR does not have the exception
 *    routed to EL2.
 * In these two cases, the below table contain a target of EL1.  This value is
 * returned as it is expected that the consumer of the table data will check
 * for "target EL >= current EL" to ensure the exception is not taken.
 *
 *            SCR     HCR
 *         64  EA     AMO                 From
 *        BIT IRQ     IMO      Non-secure         Secure
 *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
 */
static const int8_t target_el_table[2][2][2][2][2][4] = {
    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
};

/*
 * Determine the target EL for physical exceptions
 */
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
{
    CPUARMState *env = cs->env_ptr;
    bool rw;
    bool scr;
    bool hcr;
    int target_el;
    /* Is the highest EL AArch64? */
    bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
    uint64_t hcr_el2;

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
    } else {
        /* Either EL2 is the highest EL (and so the EL2 register width
         * is given by is64); or there is no EL2 or EL3, in which case
         * the value of 'rw' does not affect the table lookup anyway.
         */
        rw = is64;
    }

    hcr_el2 = arm_hcr_el2_eff(env);
    switch (excp_idx) {
    case EXCP_IRQ:
        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
        hcr = hcr_el2 & HCR_IMO;
        break;
    case EXCP_FIQ:
        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
        hcr = hcr_el2 & HCR_FMO;
        break;
    default:
        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
        hcr = hcr_el2 & HCR_AMO;
        break;
    };

    /*
     * For these purposes, TGE and AMO/IMO/FMO both force the
     * interrupt to EL2.  Fold TGE into the bit extracted above.
     */
    hcr |= (hcr_el2 & HCR_TGE) != 0;

    /* Perform a table-lookup for the target EL given the current state */
    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];

    assert(target_el > 0);

    return target_el;
}

void arm_log_exception(int idx)
{
    if (qemu_loglevel_mask(CPU_LOG_INT)) {
        const char *exc = NULL;
        static const char * const excnames[] = {
            [EXCP_UDEF] = "Undefined Instruction",
            [EXCP_SWI] = "SVC",
            [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
            [EXCP_DATA_ABORT] = "Data Abort",
            [EXCP_IRQ] = "IRQ",
            [EXCP_FIQ] = "FIQ",
            [EXCP_BKPT] = "Breakpoint",
            [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
            [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
            [EXCP_HVC] = "Hypervisor Call",
            [EXCP_HYP_TRAP] = "Hypervisor Trap",
            [EXCP_SMC] = "Secure Monitor Call",
            [EXCP_VIRQ] = "Virtual IRQ",
            [EXCP_VFIQ] = "Virtual FIQ",
            [EXCP_SEMIHOST] = "Semihosting call",
            [EXCP_NOCP] = "v7M NOCP UsageFault",
            [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
            [EXCP_STKOF] = "v8M STKOF UsageFault",
            [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
            [EXCP_LSERR] = "v8M LSERR UsageFault",
            [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
        };

        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
            exc = excnames[idx];
        }
        if (!exc) {
            exc = "unknown";
        }
        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
    }
}

/*
 * Function used to synchronize QEMU's AArch64 register set with AArch32
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_32_to_64(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy R[0:7] to X[0:7] */
    for (i = 0; i < 8; i++) {
        env->xregs[i] = env->regs[i];
    }

    /*
     * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
     * Otherwise, they come from the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->usr_regs[i - 8];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->regs[i];
        }
    }

    /*
     * Registers x13-x23 are the various mode SP and FP registers. Registers
     * r13 and r14 are only copied if we are in that mode, otherwise we copy
     * from the mode banked register.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->xregs[13] = env->regs[13];
        env->xregs[14] = env->regs[14];
    } else {
        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
        /* HYP is an exception in that it is copied from r14 */
        if (mode == ARM_CPU_MODE_HYP) {
            env->xregs[14] = env->regs[14];
        } else {
            env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->xregs[15] = env->regs[13];
    } else {
        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
        env->xregs[16] = env->regs[14];
        env->xregs[17] = env->regs[13];
    } else {
        env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
        env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
    }

    if (mode == ARM_CPU_MODE_SVC) {
        env->xregs[18] = env->regs[14];
        env->xregs[19] = env->regs[13];
    } else {
        env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
        env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
    }

    if (mode == ARM_CPU_MODE_ABT) {
        env->xregs[20] = env->regs[14];
        env->xregs[21] = env->regs[13];
    } else {
        env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
        env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
    }

    if (mode == ARM_CPU_MODE_UND) {
        env->xregs[22] = env->regs[14];
        env->xregs[23] = env->regs[13];
    } else {
        env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
        env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
    }

    /*
     * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->xregs[i] = env->fiq_regs[i - 24];
        }
        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
        env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
    }

    env->pc = env->regs[15];
}

/*
 * Function used to synchronize QEMU's AArch32 register set with AArch64
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_64_to_32(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy X[0:7] to R[0:7] */
    for (i = 0; i < 8; i++) {
        env->regs[i] = env->xregs[i];
    }

    /*
     * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
     * Otherwise, we copy x8-x12 into the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->usr_regs[i - 8] = env->xregs[i];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->regs[i] = env->xregs[i];
        }
    }

    /*
     * Registers r13 & r14 depend on the current mode.
     * If we are in a given mode, we copy the corresponding x registers to r13
     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
     * for the mode.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->regs[13] = env->xregs[13];
        env->regs[14] = env->xregs[14];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];

        /*
         * HYP is an exception in that it does not have its own banked r14 but
         * shares the USR r14
         */
        if (mode == ARM_CPU_MODE_HYP) {
            env->regs[14] = env->xregs[14];
        } else {
            env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->regs[13] = env->xregs[15];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
        env->regs[14] = env->xregs[16];
        env->regs[13] = env->xregs[17];
    } else {
        env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
    }

    if (mode == ARM_CPU_MODE_SVC) {
        env->regs[14] = env->xregs[18];
        env->regs[13] = env->xregs[19];
    } else {
        env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
    }

    if (mode == ARM_CPU_MODE_ABT) {
        env->regs[14] = env->xregs[20];
        env->regs[13] = env->xregs[21];
    } else {
        env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
    }

    if (mode == ARM_CPU_MODE_UND) {
        env->regs[14] = env->xregs[22];
        env->regs[13] = env->xregs[23];
    } else {
        env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->fiq_regs[i - 24] = env->xregs[i];
        }
        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
        env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
    }

    env->regs[15] = env->pc;
}

static void take_aarch32_exception(CPUARMState *env, int new_mode,
                                   uint32_t mask, uint32_t offset,
                                   uint32_t newpc)
{
    int new_el;

    /* Change the CPU state so as to actually take the exception. */
    switch_mode(env, new_mode);

    /*
     * For exceptions taken to AArch32 we must clear the SS bit in both
     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
     */
    env->uncached_cpsr &= ~PSTATE_SS;
    env->spsr = cpsr_read(env);
    /* Clear IT bits.  */
    env->condexec_bits = 0;
    /* Switch to the new mode, and to the correct instruction set.  */
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;

    /* This must be after mode switching. */
    new_el = arm_current_el(env);

    /* Set new mode endianness */
    env->uncached_cpsr &= ~CPSR_E;
    if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
        env->uncached_cpsr |= CPSR_E;
    }
    /* J and IL must always be cleared for exception entry */
    env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
    env->daif |= mask;

    if (new_mode == ARM_CPU_MODE_HYP) {
        env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
        env->elr_el[2] = env->regs[15];
    } else {
        /* CPSR.PAN is normally preserved preserved unless...  */
        if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
            switch (new_el) {
            case 3:
                if (!arm_is_secure_below_el3(env)) {
                    /* ... the target is EL3, from non-secure state.  */
                    env->uncached_cpsr &= ~CPSR_PAN;
                    break;
                }
                /* ... the target is EL3, from secure state ... */
                /* fall through */
            case 1:
                /* ... the target is EL1 and SCTLR.SPAN is 0.  */
                if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
                    env->uncached_cpsr |= CPSR_PAN;
                }
                break;
            }
        }
        /*
         * this is a lie, as there was no c1_sys on V4T/V5, but who cares
         * and we should just guard the thumb mode on V4
         */
        if (arm_feature(env, ARM_FEATURE_V4T)) {
            env->thumb =
                (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
        }
        env->regs[14] = env->regs[15] + offset;
    }
    env->regs[15] = newpc;
    arm_rebuild_hflags(env);
}

static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
{
    /*
     * Handle exception entry to Hyp mode; this is sufficiently
     * different to entry to other AArch32 modes that we handle it
     * separately here.
     *
     * The vector table entry used is always the 0x14 Hyp mode entry point,
     * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
     * The offset applied to the preferred return address is always zero
     * (see DDI0487C.a section G1.12.3).
     * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
     */
    uint32_t addr, mask;
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    switch (cs->exception_index) {
    case EXCP_UDEF:
        addr = 0x04;
        break;
    case EXCP_SWI:
        addr = 0x14;
        break;
    case EXCP_BKPT:
        /* Fall through to prefetch abort.  */
    case EXCP_PREFETCH_ABORT:
        env->cp15.ifar_s = env->exception.vaddress;
        qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
                      (uint32_t)env->exception.vaddress);
        addr = 0x0c;
        break;
    case EXCP_DATA_ABORT:
        env->cp15.dfar_s = env->exception.vaddress;
        qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
                      (uint32_t)env->exception.vaddress);
        addr = 0x10;
        break;
    case EXCP_IRQ:
        addr = 0x18;
        break;
    case EXCP_FIQ:
        addr = 0x1c;
        break;
    case EXCP_HVC:
        addr = 0x08;
        break;
    case EXCP_HYP_TRAP:
        addr = 0x14;
        break;
    default:
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
    }

    if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
        if (!arm_feature(env, ARM_FEATURE_V8)) {
            /*
             * QEMU syndrome values are v8-style. v7 has the IL bit
             * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
             * If this is a v7 CPU, squash the IL bit in those cases.
             */
            if (cs->exception_index == EXCP_PREFETCH_ABORT ||
                (cs->exception_index == EXCP_DATA_ABORT &&
                 !(env->exception.syndrome & ARM_EL_ISV)) ||
                syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
                env->exception.syndrome &= ~ARM_EL_IL;
            }
        }
        env->cp15.esr_el[2] = env->exception.syndrome;
    }

    if (arm_current_el(env) != 2 && addr < 0x14) {
        addr = 0x14;
    }

    mask = 0;
    if (!(env->cp15.scr_el3 & SCR_EA)) {
        mask |= CPSR_A;
    }
    if (!(env->cp15.scr_el3 & SCR_IRQ)) {
        mask |= CPSR_I;
    }
    if (!(env->cp15.scr_el3 & SCR_FIQ)) {
        mask |= CPSR_F;
    }

    addr += env->cp15.hvbar;

    take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
}

static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    uint32_t addr;
    uint32_t mask;
    int new_mode;
    uint32_t offset;
    uint32_t moe;

    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
    switch (syn_get_ec(env->exception.syndrome)) {
    case EC_BREAKPOINT:
    case EC_BREAKPOINT_SAME_EL:
        moe = 1;
        break;
    case EC_WATCHPOINT:
    case EC_WATCHPOINT_SAME_EL:
        moe = 10;
        break;
    case EC_AA32_BKPT:
        moe = 3;
        break;
    case EC_VECTORCATCH:
        moe = 5;
        break;
    default:
        moe = 0;
        break;
    }

    if (moe) {
        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
    }

    if (env->exception.target_el == 2) {
        arm_cpu_do_interrupt_aarch32_hyp(cs);
        return;
    }

    switch (cs->exception_index) {
    case EXCP_UDEF:
        new_mode = ARM_CPU_MODE_UND;
        addr = 0x04;
        mask = CPSR_I;
        if (env->thumb)
            offset = 2;
        else
            offset = 4;
        break;
    case EXCP_SWI:
        new_mode = ARM_CPU_MODE_SVC;
        addr = 0x08;
        mask = CPSR_I;
        /* The PC already points to the next instruction.  */
        offset = 0;
        break;
    case EXCP_BKPT:
        /* Fall through to prefetch abort.  */
    case EXCP_PREFETCH_ABORT:
        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
                      env->exception.fsr, (uint32_t)env->exception.vaddress);
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x0c;
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_DATA_ABORT:
        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
                      env->exception.fsr,
                      (uint32_t)env->exception.vaddress);
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x10;
        mask = CPSR_A | CPSR_I;
        offset = 8;
        break;
    case EXCP_IRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
        if (env->cp15.scr_el3 & SCR_IRQ) {
            /* IRQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
            mask |= CPSR_F;
        }
        break;
    case EXCP_FIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
        if (env->cp15.scr_el3 & SCR_FIQ) {
            /* FIQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
        }
        offset = 4;
        break;
    case EXCP_VIRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_VFIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 4;
        break;
    case EXCP_SMC:
        new_mode = ARM_CPU_MODE_MON;
        addr = 0x08;
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 0;
        break;
    default:
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
        return; /* Never happens.  Keep compiler happy.  */
    }

    if (new_mode == ARM_CPU_MODE_MON) {
        addr += env->cp15.mvbar;
    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
        /* High vectors. When enabled, base address cannot be remapped. */
        addr += 0xffff0000;
    } else {
        /* ARM v7 architectures provide a vector base address register to remap
         * the interrupt vector table.
         * This register is only followed in non-monitor mode, and is banked.
         * Note: only bits 31:5 are valid.
         */
        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
    }

    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
        env->cp15.scr_el3 &= ~SCR_NS;
    }

    take_aarch32_exception(env, new_mode, mask, offset, addr);
}

static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
{
    /*
     * Return the register number of the AArch64 view of the AArch32
     * register @aarch32_reg. The CPUARMState CPSR is assumed to still
     * be that of the AArch32 mode the exception came from.
     */
    int mode = env->uncached_cpsr & CPSR_M;

    switch (aarch32_reg) {
    case 0 ... 7:
        return aarch32_reg;
    case 8 ... 12:
        return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
    case 13:
        switch (mode) {
        case ARM_CPU_MODE_USR:
        case ARM_CPU_MODE_SYS:
            return 13;
        case ARM_CPU_MODE_HYP:
            return 15;
        case ARM_CPU_MODE_IRQ:
            return 17;
        case ARM_CPU_MODE_SVC:
            return 19;
        case ARM_CPU_MODE_ABT:
            return 21;
        case ARM_CPU_MODE_UND:
            return 23;
        case ARM_CPU_MODE_FIQ:
            return 29;
        default:
            g_assert_not_reached();
        }
    case 14:
        switch (mode) {
        case ARM_CPU_MODE_USR:
        case ARM_CPU_MODE_SYS:
        case ARM_CPU_MODE_HYP:
            return 14;
        case ARM_CPU_MODE_IRQ:
            return 16;
        case ARM_CPU_MODE_SVC:
            return 18;
        case ARM_CPU_MODE_ABT:
            return 20;
        case ARM_CPU_MODE_UND:
            return 22;
        case ARM_CPU_MODE_FIQ:
            return 30;
        default:
            g_assert_not_reached();
        }
    case 15:
        return 31;
    default:
        g_assert_not_reached();
    }
}

/* Handle exception entry to a target EL which is using AArch64 */
static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    unsigned int new_el = env->exception.target_el;
    target_ulong addr = env->cp15.vbar_el[new_el];
    unsigned int new_mode = aarch64_pstate_mode(new_el, true);
    unsigned int old_mode;
    unsigned int cur_el = arm_current_el(env);
    int rt;

    /*
     * Note that new_el can never be 0.  If cur_el is 0, then
     * el0_a64 is is_a64(), else el0_a64 is ignored.
     */
    aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));

    if (cur_el < new_el) {
        /* Entry vector offset depends on whether the implemented EL
         * immediately lower than the target level is using AArch32 or AArch64
         */
        bool is_aa64;
        uint64_t hcr;

        switch (new_el) {
        case 3:
            is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
            break;
        case 2:
            hcr = arm_hcr_el2_eff(env);
            if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
                is_aa64 = (hcr & HCR_RW) != 0;
                break;
            }
            /* fall through */
        case 1:
            is_aa64 = is_a64(env);
            break;
        default:
            g_assert_not_reached();
        }

        if (is_aa64) {
            addr += 0x400;
        } else {
            addr += 0x600;
        }
    } else if (pstate_read(env) & PSTATE_SP) {
        addr += 0x200;
    }

    switch (cs->exception_index) {
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
        env->cp15.far_el[new_el] = env->exception.vaddress;
        qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
                      env->cp15.far_el[new_el]);
        /* fall through */
    case EXCP_BKPT:
    case EXCP_UDEF:
    case EXCP_SWI:
    case EXCP_HVC:
    case EXCP_HYP_TRAP:
    case EXCP_SMC:
        switch (syn_get_ec(env->exception.syndrome)) {
        case EC_ADVSIMDFPACCESSTRAP:
            /*
             * QEMU internal FP/SIMD syndromes from AArch32 include the
             * TA and coproc fields which are only exposed if the exception
             * is taken to AArch32 Hyp mode. Mask them out to get a valid
             * AArch64 format syndrome.
             */
            env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
            break;
        case EC_CP14RTTRAP:
        case EC_CP15RTTRAP:
        case EC_CP14DTTRAP:
            /*
             * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
             * the raw register field from the insn; when taking this to
             * AArch64 we must convert it to the AArch64 view of the register
             * number. Notice that we read a 4-bit AArch32 register number and
             * write back a 5-bit AArch64 one.
             */
            rt = extract32(env->exception.syndrome, 5, 4);
            rt = aarch64_regnum(env, rt);
            env->exception.syndrome = deposit32(env->exception.syndrome,
                                                5, 5, rt);
            break;
        case EC_CP15RRTTRAP:
        case EC_CP14RRTTRAP:
            /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
            rt = extract32(env->exception.syndrome, 5, 4);
            rt = aarch64_regnum(env, rt);
            env->exception.syndrome = deposit32(env->exception.syndrome,
                                                5, 5, rt);
            rt = extract32(env->exception.syndrome, 10, 4);
            rt = aarch64_regnum(env, rt);
            env->exception.syndrome = deposit32(env->exception.syndrome,
                                                10, 5, rt);
            break;
        }
        env->cp15.esr_el[new_el] = env->exception.syndrome;
        break;
    case EXCP_IRQ:
    case EXCP_VIRQ:
        addr += 0x80;
        break;
    case EXCP_FIQ:
    case EXCP_VFIQ:
        addr += 0x100;
        break;
    default:
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
    }

    if (is_a64(env)) {
        old_mode = pstate_read(env);
        aarch64_save_sp(env, arm_current_el(env));
        env->elr_el[new_el] = env->pc;
    } else {
        old_mode = cpsr_read(env);
        env->elr_el[new_el] = env->regs[15];

        aarch64_sync_32_to_64(env);

        env->condexec_bits = 0;
    }
    env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;

    qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
                  env->elr_el[new_el]);

    if (cpu_isar_feature(aa64_pan, cpu)) {
        /* The value of PSTATE.PAN is normally preserved, except when ... */
        new_mode |= old_mode & PSTATE_PAN;
        switch (new_el) {
        case 2:
            /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
            if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
                != (HCR_E2H | HCR_TGE)) {
                break;
            }
            /* fall through */
        case 1:
            /* ... the target is EL1 ... */
            /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
            if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
                new_mode |= PSTATE_PAN;
            }
            break;
        }
    }
    if (cpu_isar_feature(aa64_mte, cpu)) {
        new_mode |= PSTATE_TCO;
    }

    pstate_write(env, PSTATE_DAIF | new_mode);
    env->aarch64 = 1;
    aarch64_restore_sp(env, new_el);
    helper_rebuild_hflags_a64(env, new_el);

    env->pc = addr;

    qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
                  new_el, env->pc, pstate_read(env));
}

/*
 * Do semihosting call and set the appropriate return value. All the
 * permission and validity checks have been done at translate time.
 *
 * We only see semihosting exceptions in TCG only as they are not
 * trapped to the hypervisor in KVM.
 */
#ifdef CONFIG_TCG
static void handle_semihosting(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    if (is_a64(env)) {
        qemu_log_mask(CPU_LOG_INT,
                      "...handling as semihosting call 0x%" PRIx64 "\n",
                      env->xregs[0]);
        env->xregs[0] = do_arm_semihosting(env);
        env->pc += 4;
    } else {
        qemu_log_mask(CPU_LOG_INT,
                      "...handling as semihosting call 0x%x\n",
                      env->regs[0]);
        env->regs[0] = do_arm_semihosting(env);
        env->regs[15] += env->thumb ? 2 : 4;
    }
}
#endif

/* Handle a CPU exception for A and R profile CPUs.
 * Do any appropriate logging, handle PSCI calls, and then hand off
 * to the AArch64-entry or AArch32-entry function depending on the
 * target exception level's register width.
 */
void arm_cpu_do_interrupt(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    unsigned int new_el = env->exception.target_el;

    assert(!arm_feature(env, ARM_FEATURE_M));

    arm_log_exception(cs->exception_index);
    qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
                  new_el);
    if (qemu_loglevel_mask(CPU_LOG_INT)
        && !excp_is_internal(cs->exception_index)) {
        qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
                      syn_get_ec(env->exception.syndrome),
                      env->exception.syndrome);
    }

    if (arm_is_psci_call(cpu, cs->exception_index)) {
        arm_handle_psci_call(cpu);
        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
        return;
    }

    /*
     * Semihosting semantics depend on the register width of the code
     * that caused the exception, not the target exception level, so
     * must be handled here.
     */
#ifdef CONFIG_TCG
    if (cs->exception_index == EXCP_SEMIHOST) {
        handle_semihosting(cs);
        return;
    }
#endif

    /* Hooks may change global state so BQL should be held, also the
     * BQL needs to be held for any modification of
     * cs->interrupt_request.
     */
    g_assert(qemu_mutex_iothread_locked());

    arm_call_pre_el_change_hook(cpu);

    assert(!excp_is_internal(cs->exception_index));
    if (arm_el_is_aa64(env, new_el)) {
        arm_cpu_do_interrupt_aarch64(cs);
    } else {
        arm_cpu_do_interrupt_aarch32(cs);
    }

    arm_call_el_change_hook(cpu);

    if (!kvm_enabled()) {
        cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
    }
}
#endif /* !CONFIG_USER_ONLY */

uint64_t arm_sctlr(CPUARMState *env, int el)
{
    /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
    if (el == 0) {
        ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
        el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1);
    }
    return env->cp15.sctlr_el[el];
}

/* Return the SCTLR value which controls this address translation regime */
static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
}

#ifndef CONFIG_USER_ONLY

/* Return true if the specified stage of address translation is disabled */
static inline bool regime_translation_disabled(CPUARMState *env,
                                               ARMMMUIdx mmu_idx)
{
    if (arm_feature(env, ARM_FEATURE_M)) {
        switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
                (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
        case R_V7M_MPU_CTRL_ENABLE_MASK:
            /* Enabled, but not for HardFault and NMI */
            return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
        case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
            /* Enabled for all cases */
            return false;
        case 0:
        default:
            /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
             * we warned about that in armv7m_nvic.c when the guest set it.
             */
            return true;
        }
    }

    if (mmu_idx == ARMMMUIdx_Stage2) {
        /* HCR.DC means HCR.VM behaves as 1 */
        return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
    }

    if (env->cp15.hcr_el2 & HCR_TGE) {
        /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
        if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
            return true;
        }
    }

    if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
        /* HCR.DC means SCTLR_EL1.M behaves as 0 */
        return true;
    }

    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
}

static inline bool regime_translation_big_endian(CPUARMState *env,
                                                 ARMMMUIdx mmu_idx)
{
    return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
}

/* Return the TTBR associated with this translation regime */
static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
                                   int ttbrn)
{
    if (mmu_idx == ARMMMUIdx_Stage2) {
        return env->cp15.vttbr_el2;
    }
    if (ttbrn == 0) {
        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
    } else {
        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
    }
}

#endif /* !CONFIG_USER_ONLY */

/* Convert a possible stage1+2 MMU index into the appropriate
 * stage 1 MMU index
 */
static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_E10_0:
        return ARMMMUIdx_Stage1_E0;
    case ARMMMUIdx_E10_1:
        return ARMMMUIdx_Stage1_E1;
    case ARMMMUIdx_E10_1_PAN:
        return ARMMMUIdx_Stage1_E1_PAN;
    default:
        return mmu_idx;
    }
}

/* Return true if the translation regime is using LPAE format page tables */
static inline bool regime_using_lpae_format(CPUARMState *env,
                                            ARMMMUIdx mmu_idx)
{
    int el = regime_el(env, mmu_idx);
    if (el == 2 || arm_el_is_aa64(env, el)) {
        return true;
    }
    if (arm_feature(env, ARM_FEATURE_LPAE)
        && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
        return true;
    }
    return false;
}

/* Returns true if the stage 1 translation regime is using LPAE format page
 * tables. Used when raising alignment exceptions, whose FSR changes depending
 * on whether the long or short descriptor format is in use. */
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    mmu_idx = stage_1_mmu_idx(mmu_idx);

    return regime_using_lpae_format(env, mmu_idx);
}

#ifndef CONFIG_USER_ONLY
static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_SE10_0:
    case ARMMMUIdx_E20_0:
    case ARMMMUIdx_Stage1_E0:
    case ARMMMUIdx_MUser:
    case ARMMMUIdx_MSUser:
    case ARMMMUIdx_MUserNegPri:
    case ARMMMUIdx_MSUserNegPri:
        return true;
    default:
        return false;
    case ARMMMUIdx_E10_0:
    case ARMMMUIdx_E10_1:
    case ARMMMUIdx_E10_1_PAN:
        g_assert_not_reached();
    }
}

/* Translate section/page access permissions to page
 * R/W protection flags
 *
 * @env:         CPUARMState
 * @mmu_idx:     MMU index indicating required translation regime
 * @ap:          The 3-bit access permissions (AP[2:0])
 * @domain_prot: The 2-bit domain access permissions
 */
static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
                                int ap, int domain_prot)
{
    bool is_user = regime_is_user(env, mmu_idx);

    if (domain_prot == 3) {
        return PAGE_READ | PAGE_WRITE;
    }

    switch (ap) {
    case 0:
        if (arm_feature(env, ARM_FEATURE_V7)) {
            return 0;
        }
        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
        case SCTLR_S:
            return is_user ? 0 : PAGE_READ;
        case SCTLR_R:
            return PAGE_READ;
        default:
            return 0;
        }
    case 1:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 2:
        if (is_user) {
            return PAGE_READ;
        } else {
            return PAGE_READ | PAGE_WRITE;
        }
    case 3:
        return PAGE_READ | PAGE_WRITE;
    case 4: /* Reserved.  */
        return 0;
    case 5:
        return is_user ? 0 : PAGE_READ;
    case 6:
        return PAGE_READ;
    case 7:
        if (!arm_feature(env, ARM_FEATURE_V6K)) {
            return 0;
        }
        return PAGE_READ;
    default:
        g_assert_not_reached();
    }
}

/* Translate section/page access permissions to page
 * R/W protection flags.
 *
 * @ap:      The 2-bit simple AP (AP[2:1])
 * @is_user: TRUE if accessing from PL0
 */
static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
{
    switch (ap) {
    case 0:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 1:
        return PAGE_READ | PAGE_WRITE;
    case 2:
        return is_user ? 0 : PAGE_READ;
    case 3:
        return PAGE_READ;
    default:
        g_assert_not_reached();
    }
}

static inline int
simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
{
    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
}

/* Translate S2 section/page access permissions to protection flags
 *
 * @env:     CPUARMState
 * @s2ap:    The 2-bit stage2 access permissions (S2AP)
 * @xn:      XN (execute-never) bits
 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
 */
static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
{
    int prot = 0;

    if (s2ap & 1) {
        prot |= PAGE_READ;
    }
    if (s2ap & 2) {
        prot |= PAGE_WRITE;
    }

    if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
        switch (xn) {
        case 0:
            prot |= PAGE_EXEC;
            break;
        case 1:
            if (s1_is_el0) {
                prot |= PAGE_EXEC;
            }
            break;
        case 2:
            break;
        case 3:
            if (!s1_is_el0) {
                prot |= PAGE_EXEC;
            }
            break;
        default:
            g_assert_not_reached();
        }
    } else {
        if (!extract32(xn, 1, 1)) {
            if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
                prot |= PAGE_EXEC;
            }
        }
    }
    return prot;
}

/* Translate section/page access permissions to protection flags
 *
 * @env:     CPUARMState
 * @mmu_idx: MMU index indicating required translation regime
 * @is_aa64: TRUE if AArch64
 * @ap:      The 2-bit simple AP (AP[2:1])
 * @ns:      NS (non-secure) bit
 * @xn:      XN (execute-never) bit
 * @pxn:     PXN (privileged execute-never) bit
 */
static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
                      int ap, int ns, int xn, int pxn)
{
    bool is_user = regime_is_user(env, mmu_idx);
    int prot_rw, user_rw;
    bool have_wxn;
    int wxn = 0;

    assert(mmu_idx != ARMMMUIdx_Stage2);

    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
    if (is_user) {
        prot_rw = user_rw;
    } else {
        if (user_rw && regime_is_pan(env, mmu_idx)) {
            /* PAN forbids data accesses but doesn't affect insn fetch */
            prot_rw = 0;
        } else {
            prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
        }
    }

    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
        return prot_rw;
    }

    /* TODO have_wxn should be replaced with
     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
     * compatible processors have EL2, which is required for [U]WXN.
     */
    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);

    if (have_wxn) {
        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
    }

    if (is_aa64) {
        if (regime_has_2_ranges(mmu_idx) && !is_user) {
            xn = pxn || (user_rw & PAGE_WRITE);
        }
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
        case 3:
            if (is_user) {
                xn = xn || !(user_rw & PAGE_READ);
            } else {
                int uwxn = 0;
                if (have_wxn) {
                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
                }
                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
                     (uwxn && (user_rw & PAGE_WRITE));
            }
            break;
        case 2:
            break;
        }
    } else {
        xn = wxn = 0;
    }

    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
        return prot_rw;
    }
    return prot_rw | PAGE_EXEC;
}

static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
                                     uint32_t *table, uint32_t address)
{
    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
    TCR *tcr = regime_tcr(env, mmu_idx);

    if (address & tcr->mask) {
        if (tcr->raw_tcr & TTBCR_PD1) {
            /* Translation table walk disabled for TTBR1 */
            return false;
        }
        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
    } else {
        if (tcr->raw_tcr & TTBCR_PD0) {
            /* Translation table walk disabled for TTBR0 */
            return false;
        }
        *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
    }
    *table |= (address >> 18) & 0x3ffc;
    return true;
}

/* Translate a S1 pagetable walk through S2 if needed.  */
static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
                               hwaddr addr, MemTxAttrs txattrs,
                               ARMMMUFaultInfo *fi)
{
    if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
        !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
        target_ulong s2size;
        hwaddr s2pa;
        int s2prot;
        int ret;
        ARMCacheAttrs cacheattrs = {};

        ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2,
                                 false,
                                 &s2pa, &txattrs, &s2prot, &s2size, fi,
                                 &cacheattrs);
        if (ret) {
            assert(fi->type != ARMFault_None);
            fi->s2addr = addr;
            fi->stage2 = true;
            fi->s1ptw = true;
            return ~0;
        }
        if ((env->cp15.hcr_el2 & HCR_PTW) && (cacheattrs.attrs & 0xf0) == 0) {
            /*
             * PTW set and S1 walk touched S2 Device memory:
             * generate Permission fault.
             */
            fi->type = ARMFault_Permission;
            fi->s2addr = addr;
            fi->stage2 = true;
            fi->s1ptw = true;
            return ~0;
        }
        addr = s2pa;
    }
    return addr;
}

/* All loads done in the course of a page table walk go through here. */
static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    MemTxAttrs attrs = {};
    MemTxResult result = MEMTX_OK;
    AddressSpace *as;
    uint32_t data;

    attrs.secure = is_secure;
    as = arm_addressspace(cs, attrs);
    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
    if (fi->s1ptw) {
        return 0;
    }
    if (regime_translation_big_endian(env, mmu_idx)) {
        data = address_space_ldl_be(as, addr, attrs, &result);
    } else {
        data = address_space_ldl_le(as, addr, attrs, &result);
    }
    if (result == MEMTX_OK) {
        return data;
    }
    fi->type = ARMFault_SyncExternalOnWalk;
    fi->ea = arm_extabort_type(result);
    return 0;
}

static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    MemTxAttrs attrs = {};
    MemTxResult result = MEMTX_OK;
    AddressSpace *as;
    uint64_t data;

    attrs.secure = is_secure;
    as = arm_addressspace(cs, attrs);
    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
    if (fi->s1ptw) {
        return 0;
    }
    if (regime_translation_big_endian(env, mmu_idx)) {
        data = address_space_ldq_be(as, addr, attrs, &result);
    } else {
        data = address_space_ldq_le(as, addr, attrs, &result);
    }
    if (result == MEMTX_OK) {
        return data;
    }
    fi->type = ARMFault_SyncExternalOnWalk;
    fi->ea = arm_extabort_type(result);
    return 0;
}

static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
                             hwaddr *phys_ptr, int *prot,
                             target_ulong *page_size,
                             ARMMMUFaultInfo *fi)
{
    CPUState *cs = env_cpu(env);
    int level = 1;
    uint32_t table;
    uint32_t desc;
    int type;
    int ap;
    int domain = 0;
    int domain_prot;
    hwaddr phys_addr;
    uint32_t dacr;

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        fi->type = ARMFault_Translation;
        goto do_fault;
    }
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
                       mmu_idx, fi);
    if (fi->type != ARMFault_None) {
        goto do_fault;
    }
    type = (desc & 3);
    domain = (desc >> 5) & 0x0f;
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
    if (type == 0) {
        /* Section translation fault.  */
        fi->type = ARMFault_Translation;
        goto do_fault;
    }
    if (type != 2) {
        level = 2;
    }
    if (domain_prot == 0 || domain_prot == 2) {
        fi->type = ARMFault_Domain;
        goto do_fault;
    }
    if (type == 2) {
        /* 1Mb section.  */
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
        ap = (desc >> 10) & 3;
        *page_size = 1024 * 1024;
    } else {
        /* Lookup l2 entry.  */
        if (type == 1) {
            /* Coarse pagetable.  */
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
        } else {
            /* Fine pagetable.  */
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
        }
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
                           mmu_idx, fi);
        if (fi->type != ARMFault_None) {
            goto do_fault;
        }
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            fi->type = ARMFault_Translation;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
            *page_size = 0x10000;
            break;
        case 2: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
            *page_size = 0x1000;
            break;
        case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
            if (type == 1) {
                /* ARMv6/XScale extended small page format */
                if (arm_feature(env, ARM_FEATURE_XSCALE)
                    || arm_feature(env, ARM_FEATURE_V6)) {
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
                    *page_size = 0x1000;
                } else {
                    /* UNPREDICTABLE in ARMv5; we choose to take a
                     * page translation fault.
                     */
                    fi->type = ARMFault_Translation;
                    goto do_fault;
                }
            } else {
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
                *page_size = 0x400;
            }
            ap = (desc >> 4) & 3;
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
        }
    }
    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
    *prot |= *prot ? PAGE_EXEC : 0;
    if (!(*prot & (1 << access_type))) {
        /* Access permission fault.  */
        fi->type = ARMFault_Permission;
        goto do_fault;
    }
    *phys_ptr = phys_addr;
    return false;
do_fault:
    fi->domain = domain;
    fi->level = level;
    return true;
}

static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
                             hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
                             target_ulong *page_size, ARMMMUFaultInfo *fi)
{
    CPUState *cs = env_cpu(env);
    int level = 1;
    uint32_t table;
    uint32_t desc;
    uint32_t xn;
    uint32_t pxn = 0;
    int type;
    int ap;
    int domain = 0;
    int domain_prot;
    hwaddr phys_addr;
    uint32_t dacr;
    bool ns;

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        fi->type = ARMFault_Translation;
        goto do_fault;
    }
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
                       mmu_idx, fi);
    if (fi->type != ARMFault_None) {
        goto do_fault;
    }
    type = (desc & 3);
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
        /* Section translation fault, or attempt to use the encoding
         * which is Reserved on implementations without PXN.
         */
        fi->type = ARMFault_Translation;
        goto do_fault;
    }
    if ((type == 1) || !(desc & (1 << 18))) {
        /* Page or Section.  */
        domain = (desc >> 5) & 0x0f;
    }
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    if (type == 1) {
        level = 2;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
    if (domain_prot == 0 || domain_prot == 2) {
        /* Section or Page domain fault */
        fi->type = ARMFault_Domain;
        goto do_fault;
    }
    if (type != 1) {
        if (desc & (1 << 18)) {
            /* Supersection.  */
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
            phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
            phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
            *page_size = 0x1000000;
        } else {
            /* Section.  */
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
            *page_size = 0x100000;
        }
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
        xn = desc & (1 << 4);
        pxn = desc & 1;
        ns = extract32(desc, 19, 1);
    } else {
        if (arm_feature(env, ARM_FEATURE_PXN)) {
            pxn = (desc >> 2) & 1;
        }
        ns = extract32(desc, 3, 1);
        /* Lookup l2 entry.  */
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
                           mmu_idx, fi);
        if (fi->type != ARMFault_None) {
            goto do_fault;
        }
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            fi->type = ARMFault_Translation;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            xn = desc & (1 << 15);
            *page_size = 0x10000;
            break;
        case 2: case 3: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            xn = desc & 1;
            *page_size = 0x1000;
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
        }
    }
    if (domain_prot == 3) {
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    } else {
        if (pxn && !regime_is_user(env, mmu_idx)) {
            xn = 1;
        }
        if (xn && access_type == MMU_INST_FETCH) {
            fi->type = ARMFault_Permission;
            goto do_fault;
        }

        if (arm_feature(env, ARM_FEATURE_V6K) &&
                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
            /* The simplified model uses AP[0] as an access control bit.  */
            if ((ap & 1) == 0) {
                /* Access flag fault.  */
                fi->type = ARMFault_AccessFlag;
                goto do_fault;
            }
            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
        } else {
            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
        }
        if (*prot && !xn) {
            *prot |= PAGE_EXEC;
        }
        if (!(*prot & (1 << access_type))) {
            /* Access permission fault.  */
            fi->type = ARMFault_Permission;
            goto do_fault;
        }
    }
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        attrs->secure = false;
    }
    *phys_ptr = phys_addr;
    return false;
do_fault:
    fi->domain = domain;
    fi->level = level;
    return true;
}

/*
 * check_s2_mmu_setup
 * @cpu:        ARMCPU
 * @is_aa64:    True if the translation regime is in AArch64 state
 * @startlevel: Suggested starting level
 * @inputsize:  Bitsize of IPAs
 * @stride:     Page-table stride (See the ARM ARM)
 *
 * Returns true if the suggested S2 translation parameters are OK and
 * false otherwise.
 */
static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
                               int inputsize, int stride)
{
    const int grainsize = stride + 3;
    int startsizecheck;

    /* Negative levels are never allowed.  */
    if (level < 0) {
        return false;
    }

    startsizecheck = inputsize - ((3 - level) * stride + grainsize);
    if (startsizecheck < 1 || startsizecheck > stride + 4) {
        return false;
    }

    if (is_aa64) {
        CPUARMState *env = &cpu->env;
        unsigned int pamax = arm_pamax(cpu);

        switch (stride) {
        case 13: /* 64KB Pages.  */
            if (level == 0 || (level == 1 && pamax <= 42)) {
                return false;
            }
            break;
        case 11: /* 16KB Pages.  */
            if (level == 0 || (level == 1 && pamax <= 40)) {
                return false;
            }
            break;
        case 9: /* 4KB Pages.  */
            if (level == 0 && pamax <= 42) {
                return false;
            }
            break;
        default:
            g_assert_not_reached();
        }

        /* Inputsize checks.  */
        if (inputsize > pamax &&
            (arm_el_is_aa64(env, 1) || inputsize > 40)) {
            /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
            return false;
        }
    } else {
        /* AArch32 only supports 4KB pages. Assert on that.  */
        assert(stride == 9);

        if (level == 0) {
            return false;
        }
    }
    return true;
}

/* Translate from the 4-bit stage 2 representation of
 * memory attributes (without cache-allocation hints) to
 * the 8-bit representation of the stage 1 MAIR registers
 * (which includes allocation hints).
 *
 * ref: shared/translation/attrs/S2AttrDecode()
 *      .../S2ConvertAttrsHints()
 */
static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
{
    uint8_t hiattr = extract32(s2attrs, 2, 2);
    uint8_t loattr = extract32(s2attrs, 0, 2);
    uint8_t hihint = 0, lohint = 0;

    if (hiattr != 0) { /* normal memory */
        if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
            hiattr = loattr = 1; /* non-cacheable */
        } else {
            if (hiattr != 1) { /* Write-through or write-back */
                hihint = 3; /* RW allocate */
            }
            if (loattr != 1) { /* Write-through or write-back */
                lohint = 3; /* RW allocate */
            }
        }
    }

    return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
}
#endif /* !CONFIG_USER_ONLY */

static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
{
    if (regime_has_2_ranges(mmu_idx)) {
        return extract64(tcr, 37, 2);
    } else if (mmu_idx == ARMMMUIdx_Stage2) {
        return 0; /* VTCR_EL2 */
    } else {
        /* Replicate the single TBI bit so we always have 2 bits.  */
        return extract32(tcr, 20, 1) * 3;
    }
}

static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
{
    if (regime_has_2_ranges(mmu_idx)) {
        return extract64(tcr, 51, 2);
    } else if (mmu_idx == ARMMMUIdx_Stage2) {
        return 0; /* VTCR_EL2 */
    } else {
        /* Replicate the single TBID bit so we always have 2 bits.  */
        return extract32(tcr, 29, 1) * 3;
    }
}

static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
{
    if (regime_has_2_ranges(mmu_idx)) {
        return extract64(tcr, 57, 2);
    } else {
        /* Replicate the single TCMA bit so we always have 2 bits.  */
        return extract32(tcr, 30, 1) * 3;
    }
}

ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
                                   ARMMMUIdx mmu_idx, bool data)
{
    uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
    bool epd, hpd, using16k, using64k;
    int select, tsz, tbi;

    if (!regime_has_2_ranges(mmu_idx)) {
        select = 0;
        tsz = extract32(tcr, 0, 6);
        using64k = extract32(tcr, 14, 1);
        using16k = extract32(tcr, 15, 1);
        if (mmu_idx == ARMMMUIdx_Stage2) {
            /* VTCR_EL2 */
            hpd = false;
        } else {
            hpd = extract32(tcr, 24, 1);
        }
        epd = false;
    } else {
        /*
         * Bit 55 is always between the two regions, and is canonical for
         * determining if address tagging is enabled.
         */
        select = extract64(va, 55, 1);
        if (!select) {
            tsz = extract32(tcr, 0, 6);
            epd = extract32(tcr, 7, 1);
            using64k = extract32(tcr, 14, 1);
            using16k = extract32(tcr, 15, 1);
            hpd = extract64(tcr, 41, 1);
        } else {
            int tg = extract32(tcr, 30, 2);
            using16k = tg == 1;
            using64k = tg == 3;
            tsz = extract32(tcr, 16, 6);
            epd = extract32(tcr, 23, 1);
            hpd = extract64(tcr, 42, 1);
        }
    }
    tsz = MIN(tsz, 39);  /* TODO: ARMv8.4-TTST */
    tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */

    /* Present TBI as a composite with TBID.  */
    tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
    if (!data) {
        tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
    }
    tbi = (tbi >> select) & 1;

    return (ARMVAParameters) {
        .tsz = tsz,
        .select = select,
        .tbi = tbi,
        .epd = epd,
        .hpd = hpd,
        .using16k = using16k,
        .using64k = using64k,
    };
}

#ifndef CONFIG_USER_ONLY
static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
                                          ARMMMUIdx mmu_idx)
{
    uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
    uint32_t el = regime_el(env, mmu_idx);
    int select, tsz;
    bool epd, hpd;

    if (mmu_idx == ARMMMUIdx_Stage2) {
        /* VTCR */
        bool sext = extract32(tcr, 4, 1);
        bool sign = extract32(tcr, 3, 1);

        /*
         * If the sign-extend bit is not the same as t0sz[3], the result
         * is unpredictable. Flag this as a guest error.
         */
        if (sign != sext) {
            qemu_log_mask(LOG_GUEST_ERROR,
                          "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
        }
        tsz = sextract32(tcr, 0, 4) + 8;
        select = 0;
        hpd = false;
        epd = false;
    } else if (el == 2) {
        /* HTCR */
        tsz = extract32(tcr, 0, 3);
        select = 0;
        hpd = extract64(tcr, 24, 1);
        epd = false;
    } else {
        int t0sz = extract32(tcr, 0, 3);
        int t1sz = extract32(tcr, 16, 3);

        if (t1sz == 0) {
            select = va > (0xffffffffu >> t0sz);
        } else {
            /* Note that we will detect errors later.  */
            select = va >= ~(0xffffffffu >> t1sz);
        }
        if (!select) {
            tsz = t0sz;
            epd = extract32(tcr, 7, 1);
            hpd = extract64(tcr, 41, 1);
        } else {
            tsz = t1sz;
            epd = extract32(tcr, 23, 1);
            hpd = extract64(tcr, 42, 1);
        }
        /* For aarch32, hpd0 is not enabled without t2e as well.  */
        hpd &= extract32(tcr, 6, 1);
    }

    return (ARMVAParameters) {
        .tsz = tsz,
        .select = select,
        .epd = epd,
        .hpd = hpd,
    };
}

/**
 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
 *
 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
 * prot and page_size may not be filled in, and the populated fsr value provides
 * information on why the translation aborted, in the format of a long-format
 * DFSR/IFSR fault register, with the following caveats:
 *  * the WnR bit is never set (the caller must do this).
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
 * @mmu_idx: MMU index indicating required translation regime
 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
 *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
 *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
 * @phys_ptr: set to the physical address corresponding to the virtual address
 * @attrs: set to the memory transaction attributes to use
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size_ptr: set to the size of the page containing phys_ptr
 * @fi: set to fault info if the translation fails
 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
 */
static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
                               bool s1_is_el0,
                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
                               target_ulong *page_size_ptr,
                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
{
    ARMCPU *cpu = env_archcpu(env);
    CPUState *cs = CPU(cpu);
    /* Read an LPAE long-descriptor translation table. */
    ARMFaultType fault_type = ARMFault_Translation;
    uint32_t level;
    ARMVAParameters param;
    uint64_t ttbr;
    hwaddr descaddr, indexmask, indexmask_grainsize;
    uint32_t tableattrs;
    target_ulong page_size;
    uint32_t attrs;
    int32_t stride;
    int addrsize, inputsize;
    TCR *tcr = regime_tcr(env, mmu_idx);
    int ap, ns, xn, pxn;
    uint32_t el = regime_el(env, mmu_idx);
    uint64_t descaddrmask;
    bool aarch64 = arm_el_is_aa64(env, el);
    bool guarded = false;

    /* TODO: This code does not support shareability levels. */
    if (aarch64) {
        param = aa64_va_parameters(env, address, mmu_idx,
                                   access_type != MMU_INST_FETCH);
        level = 0;
        addrsize = 64 - 8 * param.tbi;
        inputsize = 64 - param.tsz;
    } else {
        param = aa32_va_parameters(env, address, mmu_idx);
        level = 1;
        addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
        inputsize = addrsize - param.tsz;
    }

    /*
     * We determined the region when collecting the parameters, but we
     * have not yet validated that the address is valid for the region.
     * Extract the top bits and verify that they all match select.
     *
     * For aa32, if inputsize == addrsize, then we have selected the
     * region by exclusion in aa32_va_parameters and there is no more
     * validation to do here.
     */
    if (inputsize < addrsize) {
        target_ulong top_bits = sextract64(address, inputsize,
                                           addrsize - inputsize);
        if (-top_bits != param.select) {
            /* The gap between the two regions is a Translation fault */
            fault_type = ARMFault_Translation;
            goto do_fault;
        }
    }

    if (param.using64k) {
        stride = 13;
    } else if (param.using16k) {
        stride = 11;
    } else {
        stride = 9;
    }

    /* Note that QEMU ignores shareability and cacheability attributes,
     * so we don't need to do anything with the SH, ORGN, IRGN fields
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
     * implement any ASID-like capability so we can ignore it (instead
     * we will always flush the TLB any time the ASID is changed).
     */
    ttbr = regime_ttbr(env, mmu_idx, param.select);

    /* Here we should have set up all the parameters for the translation:
     * inputsize, ttbr, epd, stride, tbi
     */

    if (param.epd) {
        /* Translation table walk disabled => Translation fault on TLB miss
         * Note: This is always 0 on 64-bit EL2 and EL3.
         */
        goto do_fault;
    }

    if (mmu_idx != ARMMMUIdx_Stage2) {
        /* The starting level depends on the virtual address size (which can
         * be up to 48 bits) and the translation granule size. It indicates
         * the number of strides (stride bits at a time) needed to
         * consume the bits of the input address. In the pseudocode this is:
         *  level = 4 - RoundUp((inputsize - grainsize) / stride)
         * where their 'inputsize' is our 'inputsize', 'grainsize' is
         * our 'stride + 3' and 'stride' is our 'stride'.
         * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
         * = 4 - (inputsize - stride - 3 + stride - 1) / stride
         * = 4 - (inputsize - 4) / stride;
         */
        level = 4 - (inputsize - 4) / stride;
    } else {
        /* For stage 2 translations the starting level is specified by the
         * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
         */
        uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
        uint32_t startlevel;
        bool ok;

        if (!aarch64 || stride == 9) {
            /* AArch32 or 4KB pages */
            startlevel = 2 - sl0;
        } else {
            /* 16KB or 64KB pages */
            startlevel = 3 - sl0;
        }

        /* Check that the starting level is valid. */
        ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
                                inputsize, stride);
        if (!ok) {
            fault_type = ARMFault_Translation;
            goto do_fault;
        }
        level = startlevel;
    }

    indexmask_grainsize = (1ULL << (stride + 3)) - 1;
    indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;

    /* Now we can extract the actual base address from the TTBR */
    descaddr = extract64(ttbr, 0, 48);
    /*
     * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
     * and also to mask out CnP (bit 0) which could validly be non-zero.
     */
    descaddr &= ~indexmask;

    /* The address field in the descriptor goes up to bit 39 for ARMv7
     * but up to bit 47 for ARMv8, but we use the descaddrmask
     * up to bit 39 for AArch32, because we don't need other bits in that case
     * to construct next descriptor address (anyway they should be all zeroes).
     */
    descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
                   ~indexmask_grainsize;

    /* Secure accesses start with the page table in secure memory and
     * can be downgraded to non-secure at any step. Non-secure accesses
     * remain non-secure. We implement this by just ORing in the NSTable/NS
     * bits at each step.
     */
    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
    for (;;) {
        uint64_t descriptor;
        bool nstable;

        descaddr |= (address >> (stride * (4 - level))) & indexmask;
        descaddr &= ~7ULL;
        nstable = extract32(tableattrs, 4, 1);
        descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
        if (fi->type != ARMFault_None) {
            goto do_fault;
        }

        if (!(descriptor & 1) ||
            (!(descriptor & 2) && (level == 3))) {
            /* Invalid, or the Reserved level 3 encoding */
            goto do_fault;
        }
        descaddr = descriptor & descaddrmask;

        if ((descriptor & 2) && (level < 3)) {
            /* Table entry. The top five bits are attributes which may
             * propagate down through lower levels of the table (and
             * which are all arranged so that 0 means "no effect", so
             * we can gather them up by ORing in the bits at each level).
             */
            tableattrs |= extract64(descriptor, 59, 5);
            level++;
            indexmask = indexmask_grainsize;
            continue;
        }
        /* Block entry at level 1 or 2, or page entry at level 3.
         * These are basically the same thing, although the number
         * of bits we pull in from the vaddr varies.
         */
        page_size = (1ULL << ((stride * (4 - level)) + 3));
        descaddr |= (address & (page_size - 1));
        /* Extract attributes from the descriptor */
        attrs = extract64(descriptor, 2, 10)
            | (extract64(descriptor, 52, 12) << 10);

        if (mmu_idx == ARMMMUIdx_Stage2) {
            /* Stage 2 table descriptors do not include any attribute fields */
            break;
        }
        /* Merge in attributes from table descriptors */
        attrs |= nstable << 3; /* NS */
        guarded = extract64(descriptor, 50, 1);  /* GP */
        if (param.hpd) {
            /* HPD disables all the table attributes except NSTable.  */
            break;
        }
        attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
         * means "force PL1 access only", which means forcing AP[1] to 0.
         */
        attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
        attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
        break;
    }
    /* Here descaddr is the final physical address, and attributes
     * are all in attrs.
     */
    fault_type = ARMFault_AccessFlag;
    if ((attrs & (1 << 8)) == 0) {
        /* Access flag */
        goto do_fault;
    }

    ap = extract32(attrs, 4, 2);

    if (mmu_idx == ARMMMUIdx_Stage2) {
        ns = true;
        xn = extract32(attrs, 11, 2);
        *prot = get_S2prot(env, ap, xn, s1_is_el0);
    } else {
        ns = extract32(attrs, 3, 1);
        xn = extract32(attrs, 12, 1);
        pxn = extract32(attrs, 11, 1);
        *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
    }

    fault_type = ARMFault_Permission;
    if (!(*prot & (1 << access_type))) {
        goto do_fault;
    }

    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        txattrs->secure = false;
    }
    /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
    if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
        arm_tlb_bti_gp(txattrs) = true;
    }

    if (mmu_idx == ARMMMUIdx_Stage2) {
        cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
    } else {
        /* Index into MAIR registers for cache attributes */
        uint8_t attrindx = extract32(attrs, 0, 3);
        uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
        assert(attrindx <= 7);
        cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
    }
    cacheattrs->shareability = extract32(attrs, 6, 2);

    *phys_ptr = descaddr;
    *page_size_ptr = page_size;
    return false;

do_fault:
    fi->type = fault_type;
    fi->level = level;
    /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
    fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2);
    return true;
}

static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
                                                ARMMMUIdx mmu_idx,
                                                int32_t address, int *prot)
{
    if (!arm_feature(env, ARM_FEATURE_M)) {
        *prot = PAGE_READ | PAGE_WRITE;
        switch (address) {
        case 0xF0000000 ... 0xFFFFFFFF:
            if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
                /* hivecs execing is ok */
                *prot |= PAGE_EXEC;
            }
            break;
        case 0x00000000 ... 0x7FFFFFFF:
            *prot |= PAGE_EXEC;
            break;
        }
    } else {
        /* Default system address map for M profile cores.
         * The architecture specifies which regions are execute-never;
         * at the MPU level no other checks are defined.
         */
        switch (address) {
        case 0x00000000 ... 0x1fffffff: /* ROM */
        case 0x20000000 ... 0x3fffffff: /* SRAM */
        case 0x60000000 ... 0x7fffffff: /* RAM */
        case 0x80000000 ... 0x9fffffff: /* RAM */
            *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
            break;
        case 0x40000000 ... 0x5fffffff: /* Peripheral */
        case 0xa0000000 ... 0xbfffffff: /* Device */
        case 0xc0000000 ... 0xdfffffff: /* Device */
        case 0xe0000000 ... 0xffffffff: /* System */
            *prot = PAGE_READ | PAGE_WRITE;
            break;
        default:
            g_assert_not_reached();
        }
    }
}

static bool pmsav7_use_background_region(ARMCPU *cpu,
                                         ARMMMUIdx mmu_idx, bool is_user)
{
    /* Return true if we should use the default memory map as a
     * "background" region if there are no hits against any MPU regions.
     */
    CPUARMState *env = &cpu->env;

    if (is_user) {
        return false;
    }

    if (arm_feature(env, ARM_FEATURE_M)) {
        return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
            & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
    } else {
        return regime_sctlr(env, mmu_idx) & SCTLR_BR;
    }
}

static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
{
    /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
    return arm_feature(env, ARM_FEATURE_M) &&
        extract32(address, 20, 12) == 0xe00;
}

static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
{
    /* True if address is in the M profile system region
     * 0xe0000000 - 0xffffffff
     */
    return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
}

static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, int *prot,
                                 target_ulong *page_size,
                                 ARMMMUFaultInfo *fi)
{
    ARMCPU *cpu = env_archcpu(env);
    int n;
    bool is_user = regime_is_user(env, mmu_idx);

    *phys_ptr = address;
    *page_size = TARGET_PAGE_SIZE;
    *prot = 0;

    if (regime_translation_disabled(env, mmu_idx) ||
        m_is_ppb_region(env, address)) {
        /* MPU disabled or M profile PPB access: use default memory map.
         * The other case which uses the default memory map in the
         * v7M ARM ARM pseudocode is exception vector reads from the vector
         * table. In QEMU those accesses are done in arm_v7m_load_vector(),
         * which always does a direct read using address_space_ldl(), rather
         * than going via this function, so we don't need to check that here.
         */
        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
    } else { /* MPU enabled */
        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
            /* region search */
            uint32_t base = env->pmsav7.drbar[n];
            uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
            uint32_t rmask;
            bool srdis = false;

            if (!(env->pmsav7.drsr[n] & 0x1)) {
                continue;
            }

            if (!rsize) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "DRSR[%d]: Rsize field cannot be 0\n", n);
                continue;
            }
            rsize++;
            rmask = (1ull << rsize) - 1;

            if (base & rmask) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "DRBAR[%d]: 0x%" PRIx32 " misaligned "
                              "to DRSR region size, mask = 0x%" PRIx32 "\n",
                              n, base, rmask);
                continue;
            }

            if (address < base || address > base + rmask) {
                /*
                 * Address not in this region. We must check whether the
                 * region covers addresses in the same page as our address.
                 * In that case we must not report a size that covers the
                 * whole page for a subsequent hit against a different MPU
                 * region or the background region, because it would result in
                 * incorrect TLB hits for subsequent accesses to addresses that
                 * are in this MPU region.
                 */
                if (ranges_overlap(base, rmask,
                                   address & TARGET_PAGE_MASK,
                                   TARGET_PAGE_SIZE)) {
                    *page_size = 1;
                }
                continue;
            }

            /* Region matched */

            if (rsize >= 8) { /* no subregions for regions < 256 bytes */
                int i, snd;
                uint32_t srdis_mask;

                rsize -= 3; /* sub region size (power of 2) */
                snd = ((address - base) >> rsize) & 0x7;
                srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);

                srdis_mask = srdis ? 0x3 : 0x0;
                for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
                    /* This will check in groups of 2, 4 and then 8, whether
                     * the subregion bits are consistent. rsize is incremented
                     * back up to give the region size, considering consistent
                     * adjacent subregions as one region. Stop testing if rsize
                     * is already big enough for an entire QEMU page.
                     */
                    int snd_rounded = snd & ~(i - 1);
                    uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
                                                     snd_rounded + 8, i);
                    if (srdis_mask ^ srdis_multi) {
                        break;
                    }
                    srdis_mask = (srdis_mask << i) | srdis_mask;
                    rsize++;
                }
            }
            if (srdis) {
                continue;
            }
            if (rsize < TARGET_PAGE_BITS) {
                *page_size = 1 << rsize;
            }
            break;
        }

        if (n == -1) { /* no hits */
            if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
                /* background fault */
                fi->type = ARMFault_Background;
                return true;
            }
            get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
        } else { /* a MPU hit! */
            uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
            uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);

            if (m_is_system_region(env, address)) {
                /* System space is always execute never */
                xn = 1;
            }

            if (is_user) { /* User mode AP bit decoding */
                switch (ap) {
                case 0:
                case 1:
                case 5:
                    break; /* no access */
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 2:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
                case 7:
                    /* for v7M, same as 6; for R profile a reserved value */
                    if (arm_feature(env, ARM_FEATURE_M)) {
                        *prot |= PAGE_READ | PAGE_EXEC;
                        break;
                    }
                    /* fall through */
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
                                  "DRACR[%d]: Bad value for AP bits: 0x%"
                                  PRIx32 "\n", n, ap);
                }
            } else { /* Priv. mode AP bits decoding */
                switch (ap) {
                case 0:
                    break; /* no access */
                case 1:
                case 2:
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 5:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
                case 7:
                    /* for v7M, same as 6; for R profile a reserved value */
                    if (arm_feature(env, ARM_FEATURE_M)) {
                        *prot |= PAGE_READ | PAGE_EXEC;
                        break;
                    }
                    /* fall through */
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
                                  "DRACR[%d]: Bad value for AP bits: 0x%"
                                  PRIx32 "\n", n, ap);
                }
            }

            /* execute never */
            if (xn) {
                *prot &= ~PAGE_EXEC;
            }
        }
    }

    fi->type = ARMFault_Permission;
    fi->level = 1;
    return !(*prot & (1 << access_type));
}

static bool v8m_is_sau_exempt(CPUARMState *env,
                              uint32_t address, MMUAccessType access_type)
{
    /* The architecture specifies that certain address ranges are
     * exempt from v8M SAU/IDAU checks.
     */
    return
        (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
        (address >= 0xe0000000 && address <= 0xe0002fff) ||
        (address >= 0xe000e000 && address <= 0xe000efff) ||
        (address >= 0xe002e000 && address <= 0xe002efff) ||
        (address >= 0xe0040000 && address <= 0xe0041fff) ||
        (address >= 0xe00ff000 && address <= 0xe00fffff);
}

void v8m_security_lookup(CPUARMState *env, uint32_t address,
                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
                                V8M_SAttributes *sattrs)
{
    /* Look up the security attributes for this address. Compare the
     * pseudocode SecurityCheck() function.
     * We assume the caller has zero-initialized *sattrs.
     */
    ARMCPU *cpu = env_archcpu(env);
    int r;
    bool idau_exempt = false, idau_ns = true, idau_nsc = true;
    int idau_region = IREGION_NOTVALID;
    uint32_t addr_page_base = address & TARGET_PAGE_MASK;
    uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);

    if (cpu->idau) {
        IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
        IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);

        iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
                   &idau_nsc);
    }

    if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
        /* 0xf0000000..0xffffffff is always S for insn fetches */
        return;
    }

    if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
        sattrs->ns = !regime_is_secure(env, mmu_idx);
        return;
    }

    if (idau_region != IREGION_NOTVALID) {
        sattrs->irvalid = true;
        sattrs->iregion = idau_region;
    }

    switch (env->sau.ctrl & 3) {
    case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
        break;
    case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
        sattrs->ns = true;
        break;
    default: /* SAU.ENABLE == 1 */
        for (r = 0; r < cpu->sau_sregion; r++) {
            if (env->sau.rlar[r] & 1) {
                uint32_t base = env->sau.rbar[r] & ~0x1f;
                uint32_t limit = env->sau.rlar[r] | 0x1f;

                if (base <= address && limit >= address) {
                    if (base > addr_page_base || limit < addr_page_limit) {
                        sattrs->subpage = true;
                    }
                    if (sattrs->srvalid) {
                        /* If we hit in more than one region then we must report
                         * as Secure, not NS-Callable, with no valid region
                         * number info.
                         */
                        sattrs->ns = false;
                        sattrs->nsc = false;
                        sattrs->sregion = 0;
                        sattrs->srvalid = false;
                        break;
                    } else {
                        if (env->sau.rlar[r] & 2) {
                            sattrs->nsc = true;
                        } else {
                            sattrs->ns = true;
                        }
                        sattrs->srvalid = true;
                        sattrs->sregion = r;
                    }
                } else {
                    /*
                     * Address not in this region. We must check whether the
                     * region covers addresses in the same page as our address.
                     * In that case we must not report a size that covers the
                     * whole page for a subsequent hit against a different MPU
                     * region or the background region, because it would result
                     * in incorrect TLB hits for subsequent accesses to
                     * addresses that are in this MPU region.
                     */
                    if (limit >= base &&
                        ranges_overlap(base, limit - base + 1,
                                       addr_page_base,
                                       TARGET_PAGE_SIZE)) {
                        sattrs->subpage = true;
                    }
                }
            }
        }
        break;
    }

    /*
     * The IDAU will override the SAU lookup results if it specifies
     * higher security than the SAU does.
     */
    if (!idau_ns) {
        if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
            sattrs->ns = false;
            sattrs->nsc = idau_nsc;
        }
    }
}

bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
                              hwaddr *phys_ptr, MemTxAttrs *txattrs,
                              int *prot, bool *is_subpage,
                              ARMMMUFaultInfo *fi, uint32_t *mregion)
{
    /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
     * that a full phys-to-virt translation does).
     * mregion is (if not NULL) set to the region number which matched,
     * or -1 if no region number is returned (MPU off, address did not
     * hit a region, address hit in multiple regions).
     * We set is_subpage to true if the region hit doesn't cover the
     * entire TARGET_PAGE the address is within.
     */
    ARMCPU *cpu = env_archcpu(env);
    bool is_user = regime_is_user(env, mmu_idx);
    uint32_t secure = regime_is_secure(env, mmu_idx);
    int n;
    int matchregion = -1;
    bool hit = false;
    uint32_t addr_page_base = address & TARGET_PAGE_MASK;
    uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);

    *is_subpage = false;
    *phys_ptr = address;
    *prot = 0;
    if (mregion) {
        *mregion = -1;
    }

    /* Unlike the ARM ARM pseudocode, we don't need to check whether this
     * was an exception vector read from the vector table (which is always
     * done using the default system address map), because those accesses
     * are done in arm_v7m_load_vector(), which always does a direct
     * read using address_space_ldl(), rather than going via this function.
     */
    if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
        hit = true;
    } else if (m_is_ppb_region(env, address)) {
        hit = true;
    } else {
        if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
            hit = true;
        }

        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
            /* region search */
            /* Note that the base address is bits [31:5] from the register
             * with bits [4:0] all zeroes, but the limit address is bits
             * [31:5] from the register with bits [4:0] all ones.
             */
            uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
            uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;

            if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
                /* Region disabled */
                continue;
            }

            if (address < base || address > limit) {
                /*
                 * Address not in this region. We must check whether the
                 * region covers addresses in the same page as our address.
                 * In that case we must not report a size that covers the
                 * whole page for a subsequent hit against a different MPU
                 * region or the background region, because it would result in
                 * incorrect TLB hits for subsequent accesses to addresses that
                 * are in this MPU region.
                 */
                if (limit >= base &&
                    ranges_overlap(base, limit - base + 1,
                                   addr_page_base,
                                   TARGET_PAGE_SIZE)) {
                    *is_subpage = true;
                }
                continue;
            }

            if (base > addr_page_base || limit < addr_page_limit) {
                *is_subpage = true;
            }

            if (matchregion != -1) {
                /* Multiple regions match -- always a failure (unlike
                 * PMSAv7 where highest-numbered-region wins)
                 */
                fi->type = ARMFault_Permission;
                fi->level = 1;
                return true;
            }

            matchregion = n;
            hit = true;
        }
    }

    if (!hit) {
        /* background fault */
        fi->type = ARMFault_Background;
        return true;
    }

    if (matchregion == -1) {
        /* hit using the background region */
        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
    } else {
        uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
        uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);

        if (m_is_system_region(env, address)) {
            /* System space is always execute never */
            xn = 1;
        }

        *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
        if (*prot && !xn) {
            *prot |= PAGE_EXEC;
        }
        /* We don't need to look the attribute up in the MAIR0/MAIR1
         * registers because that only tells us about cacheability.
         */
        if (mregion) {
            *mregion = matchregion;
        }
    }

    fi->type = ARMFault_Permission;
    fi->level = 1;
    return !(*prot & (1 << access_type));
}


static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, MemTxAttrs *txattrs,
                                 int *prot, target_ulong *page_size,
                                 ARMMMUFaultInfo *fi)
{
    uint32_t secure = regime_is_secure(env, mmu_idx);
    V8M_SAttributes sattrs = {};
    bool ret;
    bool mpu_is_subpage;

    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
        v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
        if (access_type == MMU_INST_FETCH) {
            /* Instruction fetches always use the MMU bank and the
             * transaction attribute determined by the fetch address,
             * regardless of CPU state. This is painful for QEMU
             * to handle, because it would mean we need to encode
             * into the mmu_idx not just the (user, negpri) information
             * for the current security state but also that for the
             * other security state, which would balloon the number
             * of mmu_idx values needed alarmingly.
             * Fortunately we can avoid this because it's not actually
             * possible to arbitrarily execute code from memory with
             * the wrong security attribute: it will always generate
             * an exception of some kind or another, apart from the
             * special case of an NS CPU executing an SG instruction
             * in S&NSC memory. So we always just fail the translation
             * here and sort things out in the exception handler
             * (including possibly emulating an SG instruction).
             */
            if (sattrs.ns != !secure) {
                if (sattrs.nsc) {
                    fi->type = ARMFault_QEMU_NSCExec;
                } else {
                    fi->type = ARMFault_QEMU_SFault;
                }
                *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
                *phys_ptr = address;
                *prot = 0;
                return true;
            }
        } else {
            /* For data accesses we always use the MMU bank indicated
             * by the current CPU state, but the security attributes
             * might downgrade a secure access to nonsecure.
             */
            if (sattrs.ns) {
                txattrs->secure = false;
            } else if (!secure) {
                /* NS access to S memory must fault.
                 * Architecturally we should first check whether the
                 * MPU information for this address indicates that we
                 * are doing an unaligned access to Device memory, which
                 * should generate a UsageFault instead. QEMU does not
                 * currently check for that kind of unaligned access though.
                 * If we added it we would need to do so as a special case
                 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
                 */
                fi->type = ARMFault_QEMU_SFault;
                *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
                *phys_ptr = address;
                *prot = 0;
                return true;
            }
        }
    }

    ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
                            txattrs, prot, &mpu_is_subpage, fi, NULL);
    *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
    return ret;
}

static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, int *prot,
                                 ARMMMUFaultInfo *fi)
{
    int n;
    uint32_t mask;
    uint32_t base;
    bool is_user = regime_is_user(env, mmu_idx);

    if (regime_translation_disabled(env, mmu_idx)) {
        /* MPU disabled.  */
        *phys_ptr = address;
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
        return false;
    }

    *phys_ptr = address;
    for (n = 7; n >= 0; n--) {
        base = env->cp15.c6_region[n];
        if ((base & 1) == 0) {
            continue;
        }
        mask = 1 << ((base >> 1) & 0x1f);
        /* Keep this shift separate from the above to avoid an
           (undefined) << 32.  */
        mask = (mask << 1) - 1;
        if (((base ^ address) & ~mask) == 0) {
            break;
        }
    }
    if (n < 0) {
        fi->type = ARMFault_Background;
        return true;
    }

    if (access_type == MMU_INST_FETCH) {
        mask = env->cp15.pmsav5_insn_ap;
    } else {
        mask = env->cp15.pmsav5_data_ap;
    }
    mask = (mask >> (n * 4)) & 0xf;
    switch (mask) {
    case 0:
        fi->type = ARMFault_Permission;
        fi->level = 1;
        return true;
    case 1:
        if (is_user) {
            fi->type = ARMFault_Permission;
            fi->level = 1;
            return true;
        }
        *prot = PAGE_READ | PAGE_WRITE;
        break;
    case 2:
        *prot = PAGE_READ;
        if (!is_user) {
            *prot |= PAGE_WRITE;
        }
        break;
    case 3:
        *prot = PAGE_READ | PAGE_WRITE;
        break;
    case 5:
        if (is_user) {
            fi->type = ARMFault_Permission;
            fi->level = 1;
            return true;
        }
        *prot = PAGE_READ;
        break;
    case 6:
        *prot = PAGE_READ;
        break;
    default:
        /* Bad permission.  */
        fi->type = ARMFault_Permission;
        fi->level = 1;
        return true;
    }
    *prot |= PAGE_EXEC;
    return false;
}

/* Combine either inner or outer cacheability attributes for normal
 * memory, according to table D4-42 and pseudocode procedure
 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
 *
 * NB: only stage 1 includes allocation hints (RW bits), leading to
 * some asymmetry.
 */
static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
{
    if (s1 == 4 || s2 == 4) {
        /* non-cacheable has precedence */
        return 4;
    } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
        /* stage 1 write-through takes precedence */
        return s1;
    } else if (extract32(s2, 2, 2) == 2) {
        /* stage 2 write-through takes precedence, but the allocation hint
         * is still taken from stage 1
         */
        return (2 << 2) | extract32(s1, 0, 2);
    } else { /* write-back */
        return s1;
    }
}

/* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
 * and CombineS1S2Desc()
 *
 * @s1:      Attributes from stage 1 walk
 * @s2:      Attributes from stage 2 walk
 */
static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
{
    uint8_t s1lo, s2lo, s1hi, s2hi;
    ARMCacheAttrs ret;
    bool tagged = false;

    if (s1.attrs == 0xf0) {
        tagged = true;
        s1.attrs = 0xff;
    }

    s1lo = extract32(s1.attrs, 0, 4);
    s2lo = extract32(s2.attrs, 0, 4);
    s1hi = extract32(s1.attrs, 4, 4);
    s2hi = extract32(s2.attrs, 4, 4);

    /* Combine shareability attributes (table D4-43) */
    if (s1.shareability == 2 || s2.shareability == 2) {
        /* if either are outer-shareable, the result is outer-shareable */
        ret.shareability = 2;
    } else if (s1.shareability == 3 || s2.shareability == 3) {
        /* if either are inner-shareable, the result is inner-shareable */
        ret.shareability = 3;
    } else {
        /* both non-shareable */
        ret.shareability = 0;
    }

    /* Combine memory type and cacheability attributes */
    if (s1hi == 0 || s2hi == 0) {
        /* Device has precedence over normal */
        if (s1lo == 0 || s2lo == 0) {
            /* nGnRnE has precedence over anything */
            ret.attrs = 0;
        } else if (s1lo == 4 || s2lo == 4) {
            /* non-Reordering has precedence over Reordering */
            ret.attrs = 4;  /* nGnRE */
        } else if (s1lo == 8 || s2lo == 8) {
            /* non-Gathering has precedence over Gathering */
            ret.attrs = 8;  /* nGRE */
        } else {
            ret.attrs = 0xc; /* GRE */
        }

        /* Any location for which the resultant memory type is any
         * type of Device memory is always treated as Outer Shareable.
         */
        ret.shareability = 2;
    } else { /* Normal memory */
        /* Outer/inner cacheability combine independently */
        ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
                  | combine_cacheattr_nibble(s1lo, s2lo);

        if (ret.attrs == 0x44) {
            /* Any location for which the resultant memory type is Normal
             * Inner Non-cacheable, Outer Non-cacheable is always treated
             * as Outer Shareable.
             */
            ret.shareability = 2;
        }
    }

    /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
    if (tagged && ret.attrs == 0xff) {
        ret.attrs = 0xf0;
    }

    return ret;
}


/* get_phys_addr - get the physical address for this virtual address
 *
 * Find the physical address corresponding to the given virtual address,
 * by doing a translation table walk on MMU based systems or using the
 * MPU state on MPU based systems.
 *
 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
 * prot and page_size may not be filled in, and the populated fsr value provides
 * information on why the translation aborted, in the format of a
 * DFSR/IFSR fault register, with the following caveats:
 *  * we honour the short vs long DFSR format differences.
 *  * the WnR bit is never set (the caller must do this).
 *  * for PSMAv5 based systems we don't bother to return a full FSR format
 *    value.
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: 0 for read, 1 for write, 2 for execute
 * @mmu_idx: MMU index indicating required translation regime
 * @phys_ptr: set to the physical address corresponding to the virtual address
 * @attrs: set to the memory transaction attributes to use
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size: set to the size of the page containing phys_ptr
 * @fi: set to fault info if the translation fails
 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
 */
bool get_phys_addr(CPUARMState *env, target_ulong address,
                   MMUAccessType access_type, ARMMMUIdx mmu_idx,
                   hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
                   target_ulong *page_size,
                   ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
{
    if (mmu_idx == ARMMMUIdx_E10_0 ||
        mmu_idx == ARMMMUIdx_E10_1 ||
        mmu_idx == ARMMMUIdx_E10_1_PAN) {
        /* Call ourselves recursively to do the stage 1 and then stage 2
         * translations.
         */
        if (arm_feature(env, ARM_FEATURE_EL2)) {
            hwaddr ipa;
            int s2_prot;
            int ret;
            ARMCacheAttrs cacheattrs2 = {};

            ret = get_phys_addr(env, address, access_type,
                                stage_1_mmu_idx(mmu_idx), &ipa, attrs,
                                prot, page_size, fi, cacheattrs);

            /* If S1 fails or S2 is disabled, return early.  */
            if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
                *phys_ptr = ipa;
                return ret;
            }

            /* S1 is done. Now do S2 translation.  */
            ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2,
                                     mmu_idx == ARMMMUIdx_E10_0,
                                     phys_ptr, attrs, &s2_prot,
                                     page_size, fi, &cacheattrs2);
            fi->s2addr = ipa;
            /* Combine the S1 and S2 perms.  */
            *prot &= s2_prot;

            /* If S2 fails, return early.  */
            if (ret) {
                return ret;
            }

            /* Combine the S1 and S2 cache attributes. */
            if (env->cp15.hcr_el2 & HCR_DC) {
                /*
                 * HCR.DC forces the first stage attributes to
                 *  Normal Non-Shareable,
                 *  Inner Write-Back Read-Allocate Write-Allocate,
                 *  Outer Write-Back Read-Allocate Write-Allocate.
                 * Do not overwrite Tagged within attrs.
                 */
                if (cacheattrs->attrs != 0xf0) {
                    cacheattrs->attrs = 0xff;
                }
                cacheattrs->shareability = 0;
            }
            *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
            return 0;
        } else {
            /*
             * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
             */
            mmu_idx = stage_1_mmu_idx(mmu_idx);
        }
    }

    /* The page table entries may downgrade secure to non-secure, but
     * cannot upgrade an non-secure translation regime's attributes
     * to secure.
     */
    attrs->secure = regime_is_secure(env, mmu_idx);
    attrs->user = regime_is_user(env, mmu_idx);

    /* Fast Context Switch Extension. This doesn't exist at all in v8.
     * In v7 and earlier it affects all stage 1 translations.
     */
    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
        && !arm_feature(env, ARM_FEATURE_V8)) {
        if (regime_el(env, mmu_idx) == 3) {
            address += env->cp15.fcseidr_s;
        } else {
            address += env->cp15.fcseidr_ns;
        }
    }

    if (arm_feature(env, ARM_FEATURE_PMSA)) {
        bool ret;
        *page_size = TARGET_PAGE_SIZE;

        if (arm_feature(env, ARM_FEATURE_V8)) {
            /* PMSAv8 */
            ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
                                       phys_ptr, attrs, prot, page_size, fi);
        } else if (arm_feature(env, ARM_FEATURE_V7)) {
            /* PMSAv7 */
            ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
                                       phys_ptr, prot, page_size, fi);
        } else {
            /* Pre-v7 MPU */
            ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
                                       phys_ptr, prot, fi);
        }
        qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
                      " mmu_idx %u -> %s (prot %c%c%c)\n",
                      access_type == MMU_DATA_LOAD ? "reading" :
                      (access_type == MMU_DATA_STORE ? "writing" : "execute"),
                      (uint32_t)address, mmu_idx,
                      ret ? "Miss" : "Hit",
                      *prot & PAGE_READ ? 'r' : '-',
                      *prot & PAGE_WRITE ? 'w' : '-',
                      *prot & PAGE_EXEC ? 'x' : '-');

        return ret;
    }

    /* Definitely a real MMU, not an MPU */

    if (regime_translation_disabled(env, mmu_idx)) {
        uint64_t hcr;
        uint8_t memattr;

        /*
         * MMU disabled.  S1 addresses within aa64 translation regimes are
         * still checked for bounds -- see AArch64.TranslateAddressS1Off.
         */
        if (mmu_idx != ARMMMUIdx_Stage2) {
            int r_el = regime_el(env, mmu_idx);
            if (arm_el_is_aa64(env, r_el)) {
                int pamax = arm_pamax(env_archcpu(env));
                uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
                int addrtop, tbi;

                tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
                if (access_type == MMU_INST_FETCH) {
                    tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
                }
                tbi = (tbi >> extract64(address, 55, 1)) & 1;
                addrtop = (tbi ? 55 : 63);

                if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
                    fi->type = ARMFault_AddressSize;
                    fi->level = 0;
                    fi->stage2 = false;
                    return 1;
                }

                /*
                 * When TBI is disabled, we've just validated that all of the
                 * bits above PAMax are zero, so logically we only need to
                 * clear the top byte for TBI.  But it's clearer to follow
                 * the pseudocode set of addrdesc.paddress.
                 */
                address = extract64(address, 0, 52);
            }
        }
        *phys_ptr = address;
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
        *page_size = TARGET_PAGE_SIZE;

        /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
        hcr = arm_hcr_el2_eff(env);
        cacheattrs->shareability = 0;
        if (hcr & HCR_DC) {
            if (hcr & HCR_DCT) {
                memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
            } else {
                memattr = 0xff;  /* Normal, WB, RWA */
            }
        } else if (access_type == MMU_INST_FETCH) {
            if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
                memattr = 0xee;  /* Normal, WT, RA, NT */
            } else {
                memattr = 0x44;  /* Normal, NC, No */
            }
            cacheattrs->shareability = 2; /* outer sharable */
        } else {
            memattr = 0x00;      /* Device, nGnRnE */
        }
        cacheattrs->attrs = memattr;
        return 0;
    }

    if (regime_using_lpae_format(env, mmu_idx)) {
        return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
                                  phys_ptr, attrs, prot, page_size,
                                  fi, cacheattrs);
    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
        return get_phys_addr_v6(env, address, access_type, mmu_idx,
                                phys_ptr, attrs, prot, page_size, fi);
    } else {
        return get_phys_addr_v5(env, address, access_type, mmu_idx,
                                    phys_ptr, prot, page_size, fi);
    }
}

hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
                                         MemTxAttrs *attrs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    hwaddr phys_addr;
    target_ulong page_size;
    int prot;
    bool ret;
    ARMMMUFaultInfo fi = {};
    ARMMMUIdx mmu_idx = arm_mmu_idx(env);
    ARMCacheAttrs cacheattrs = {};

    *attrs = (MemTxAttrs) {};

    ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
                        attrs, &prot, &page_size, &fi, &cacheattrs);

    if (ret) {
        return -1;
    }
    return phys_addr;
}

#endif

/* Note that signed overflow is undefined in C.  The following routines are
   careful to use unsigned types where modulo arithmetic is required.
   Failure to do so _will_ break on newer gcc.  */

/* Signed saturating arithmetic.  */

/* Perform 16-bit signed saturating addition.  */
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a + b;
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

/* Perform 8-bit signed saturating addition.  */
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a + b;
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

/* Perform 16-bit signed saturating subtraction.  */
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a - b;
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

/* Perform 8-bit signed saturating subtraction.  */
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a - b;
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
#define PFX q

#include "op_addsub.h"

/* Unsigned saturating arithmetic.  */
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
{
    uint16_t res;
    res = a + b;
    if (res < a)
        res = 0xffff;
    return res;
}

static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
{
    if (a > b)
        return a - b;
    else
        return 0;
}

static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
    uint8_t res;
    res = a + b;
    if (res < a)
        res = 0xff;
    return res;
}

static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return 0;
}

#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
#define PFX uq

#include "op_addsub.h"

/* Signed modulo arithmetic.  */
#define SARITH16(a, b, n, op) do { \
    int32_t sum; \
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
    RESULT(sum, n, 16); \
    if (sum >= 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SARITH8(a, b, n, op) do { \
    int32_t sum; \
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
    RESULT(sum, n, 8); \
    if (sum >= 0) \
        ge |= 1 << n; \
    } while(0)


#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE

#include "op_addsub.h"

/* Unsigned modulo arithmetic.  */
#define ADD16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 1) \
        ge |= 3 << (n * 2); \
    } while(0)

#define ADD8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 1) \
        ge |= 1 << n; \
    } while(0)

#define SUB16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SUB8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 0) \
        ge |= 1 << n; \
    } while(0)

#define PFX u
#define ARITH_GE

#include "op_addsub.h"

/* Halved signed arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh

#include "op_addsub.h"

/* Halved unsigned arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh

#include "op_addsub.h"

static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return b - a;
}

/* Unsigned sum of absolute byte differences.  */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
    uint32_t sum;
    sum = do_usad(a, b);
    sum += do_usad(a >> 8, b >> 8);
    sum += do_usad(a >> 16, b >>16);
    sum += do_usad(a >> 24, b >> 24);
    return sum;
}

/* For ARMv6 SEL instruction.  */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
    uint32_t mask;

    mask = 0;
    if (flags & 1)
        mask |= 0xff;
    if (flags & 2)
        mask |= 0xff00;
    if (flags & 4)
        mask |= 0xff0000;
    if (flags & 8)
        mask |= 0xff000000;
    return (a & mask) | (b & ~mask);
}

/* CRC helpers.
 * The upper bytes of val (above the number specified by 'bytes') must have
 * been zeroed out by the caller.
 */
uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

    stl_le_p(buf, val);

    /* zlib crc32 converts the accumulator and output to one's complement.  */
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}

uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

    stl_le_p(buf, val);

    /* Linux crc32c converts the output to one's complement.  */
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
}

/* Return the exception level to which FP-disabled exceptions should
 * be taken, or 0 if FP is enabled.
 */
int fp_exception_el(CPUARMState *env, int cur_el)
{
#ifndef CONFIG_USER_ONLY
    /* CPACR and the CPTR registers don't exist before v6, so FP is
     * always accessible
     */
    if (!arm_feature(env, ARM_FEATURE_V6)) {
        return 0;
    }

    if (arm_feature(env, ARM_FEATURE_M)) {
        /* CPACR can cause a NOCP UsageFault taken to current security state */
        if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
            return 1;
        }

        if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
            if (!extract32(env->v7m.nsacr, 10, 1)) {
                /* FP insns cause a NOCP UsageFault taken to Secure */
                return 3;
            }
        }

        return 0;
    }

    /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
     * 0, 2 : trap EL0 and EL1/PL1 accesses
     * 1    : trap only EL0 accesses
     * 3    : trap no accesses
     * This register is ignored if E2H+TGE are both set.
     */
    if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
        int fpen = extract32(env->cp15.cpacr_el1, 20, 2);

        switch (fpen) {
        case 0:
        case 2:
            if (cur_el == 0 || cur_el == 1) {
                /* Trap to PL1, which might be EL1 or EL3 */
                if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
                    return 3;
                }
                return 1;
            }
            if (cur_el == 3 && !is_a64(env)) {
                /* Secure PL1 running at EL3 */
                return 3;
            }
            break;
        case 1:
            if (cur_el == 0) {
                return 1;
            }
            break;
        case 3:
            break;
        }
    }

    /*
     * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
     * to control non-secure access to the FPU. It doesn't have any
     * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
     */
    if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
         cur_el <= 2 && !arm_is_secure_below_el3(env))) {
        if (!extract32(env->cp15.nsacr, 10, 1)) {
            /* FP insns act as UNDEF */
            return cur_el == 2 ? 2 : 1;
        }
    }

    /* For the CPTR registers we don't need to guard with an ARM_FEATURE
     * check because zero bits in the registers mean "don't trap".
     */

    /* CPTR_EL2 : present in v7VE or v8 */
    if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
        && !arm_is_secure_below_el3(env)) {
        /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
        return 2;
    }

    /* CPTR_EL3 : present in v8 */
    if (extract32(env->cp15.cptr_el[3], 10, 1)) {
        /* Trap all FP ops to EL3 */
        return 3;
    }
#endif
    return 0;
}

/* Return the exception level we're running at if this is our mmu_idx */
int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
{
    if (mmu_idx & ARM_MMU_IDX_M) {
        return mmu_idx & ARM_MMU_IDX_M_PRIV;
    }

    switch (mmu_idx) {
    case ARMMMUIdx_E10_0:
    case ARMMMUIdx_E20_0:
    case ARMMMUIdx_SE10_0:
        return 0;
    case ARMMMUIdx_E10_1:
    case ARMMMUIdx_E10_1_PAN:
    case ARMMMUIdx_SE10_1:
    case ARMMMUIdx_SE10_1_PAN:
        return 1;
    case ARMMMUIdx_E2:
    case ARMMMUIdx_E20_2:
    case ARMMMUIdx_E20_2_PAN:
        return 2;
    case ARMMMUIdx_SE3:
        return 3;
    default:
        g_assert_not_reached();
    }
}

#ifndef CONFIG_TCG
ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
{
    g_assert_not_reached();
}
#endif

ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
{
    if (arm_feature(env, ARM_FEATURE_M)) {
        return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
    }

    /* See ARM pseudo-function ELIsInHost.  */
    switch (el) {
    case 0:
        if (arm_is_secure_below_el3(env)) {
            return ARMMMUIdx_SE10_0;
        }
        if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)
            && arm_el_is_aa64(env, 2)) {
            return ARMMMUIdx_E20_0;
        }
        return ARMMMUIdx_E10_0;
    case 1:
        if (arm_is_secure_below_el3(env)) {
            if (env->pstate & PSTATE_PAN) {
                return ARMMMUIdx_SE10_1_PAN;
            }
            return ARMMMUIdx_SE10_1;
        }
        if (env->pstate & PSTATE_PAN) {
            return ARMMMUIdx_E10_1_PAN;
        }
        return ARMMMUIdx_E10_1;
    case 2:
        /* TODO: ARMv8.4-SecEL2 */
        /* Note that TGE does not apply at EL2.  */
        if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) {
            if (env->pstate & PSTATE_PAN) {
                return ARMMMUIdx_E20_2_PAN;
            }
            return ARMMMUIdx_E20_2;
        }
        return ARMMMUIdx_E2;
    case 3:
        return ARMMMUIdx_SE3;
    default:
        g_assert_not_reached();
    }
}

ARMMMUIdx arm_mmu_idx(CPUARMState *env)
{
    return arm_mmu_idx_el(env, arm_current_el(env));
}

#ifndef CONFIG_USER_ONLY
ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
{
    return stage_1_mmu_idx(arm_mmu_idx(env));
}
#endif

static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
                                      ARMMMUIdx mmu_idx, uint32_t flags)
{
    flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
    flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
                       arm_to_core_mmu_idx(mmu_idx));

    if (arm_singlestep_active(env)) {
        flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
    }
    return flags;
}

static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
                                         ARMMMUIdx mmu_idx, uint32_t flags)
{
    bool sctlr_b = arm_sctlr_b(env);

    if (sctlr_b) {
        flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
    }
    if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
        flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
    }
    flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));

    return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
}

static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
                                   ARMMMUIdx mmu_idx)
{
    uint32_t flags = 0;

    if (arm_v7m_is_handler_mode(env)) {
        flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
    }

    /*
     * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
     * is suppressing them because the requested execution priority
     * is less than 0.
     */
    if (arm_feature(env, ARM_FEATURE_V8) &&
        !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
          (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
        flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
    }

    return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
}

static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
{
    int flags = 0;

    flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
                       arm_debug_target_el(env));
    return flags;
}

static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
                                   ARMMMUIdx mmu_idx)
{
    uint32_t flags = rebuild_hflags_aprofile(env);

    if (arm_el_is_aa64(env, 1)) {
        flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
    }

    if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
        (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
        flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
    }

    return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
}

static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
                                   ARMMMUIdx mmu_idx)
{
    uint32_t flags = rebuild_hflags_aprofile(env);
    ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
    uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
    uint64_t sctlr;
    int tbii, tbid;

    flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);

    /* Get control bits for tagged addresses.  */
    tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
    tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);

    flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
    flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);

    if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
        int sve_el = sve_exception_el(env, el);
        uint32_t zcr_len;

        /*
         * If SVE is disabled, but FP is enabled,
         * then the effective len is 0.
         */
        if (sve_el != 0 && fp_el == 0) {
            zcr_len = 0;
        } else {
            zcr_len = sve_zcr_len_for_el(env, el);
        }
        flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
        flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
    }

    sctlr = regime_sctlr(env, stage1);

    if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
        flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
    }

    if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
        /*
         * In order to save space in flags, we record only whether
         * pauth is "inactive", meaning all insns are implemented as
         * a nop, or "active" when some action must be performed.
         * The decision of which action to take is left to a helper.
         */
        if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
            flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
        }
    }

    if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
        /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
        if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
            flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
        }
    }

    /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
    if (!(env->pstate & PSTATE_UAO)) {
        switch (mmu_idx) {
        case ARMMMUIdx_E10_1:
        case ARMMMUIdx_E10_1_PAN:
        case ARMMMUIdx_SE10_1:
        case ARMMMUIdx_SE10_1_PAN:
            /* TODO: ARMv8.3-NV */
            flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
            break;
        case ARMMMUIdx_E20_2:
        case ARMMMUIdx_E20_2_PAN:
            /* TODO: ARMv8.4-SecEL2 */
            /*
             * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
             * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
             */
            if (env->cp15.hcr_el2 & HCR_TGE) {
                flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
            }
            break;
        default:
            break;
        }
    }

    if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
        /*
         * Set MTE_ACTIVE if any access may be Checked, and leave clear
         * if all accesses must be Unchecked:
         * 1) If no TBI, then there are no tags in the address to check,
         * 2) If Tag Check Override, then all accesses are Unchecked,
         * 3) If Tag Check Fail == 0, then Checked access have no effect,
         * 4) If no Allocation Tag Access, then all accesses are Unchecked.
         */
        if (allocation_tag_access_enabled(env, el, sctlr)) {
            flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1);
            if (tbid
                && !(env->pstate & PSTATE_TCO)
                && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
                flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1);
            }
        }
        /* And again for unprivileged accesses, if required.  */
        if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV)
            && tbid
            && !(env->pstate & PSTATE_TCO)
            && (sctlr & SCTLR_TCF0)
            && allocation_tag_access_enabled(env, 0, sctlr)) {
            flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1);
        }
        /* Cache TCMA as well as TBI. */
        flags = FIELD_DP32(flags, TBFLAG_A64, TCMA,
                           aa64_va_parameter_tcma(tcr, mmu_idx));
    }

    return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
}

static uint32_t rebuild_hflags_internal(CPUARMState *env)
{
    int el = arm_current_el(env);
    int fp_el = fp_exception_el(env, el);
    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);

    if (is_a64(env)) {
        return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
    } else if (arm_feature(env, ARM_FEATURE_M)) {
        return rebuild_hflags_m32(env, fp_el, mmu_idx);
    } else {
        return rebuild_hflags_a32(env, fp_el, mmu_idx);
    }
}

void arm_rebuild_hflags(CPUARMState *env)
{
    env->hflags = rebuild_hflags_internal(env);
}

/*
 * If we have triggered a EL state change we can't rely on the
 * translator having passed it to us, we need to recompute.
 */
void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
{
    int el = arm_current_el(env);
    int fp_el = fp_exception_el(env, el);
    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
    env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
}

void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
{
    int fp_el = fp_exception_el(env, el);
    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);

    env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
}

/*
 * If we have triggered a EL state change we can't rely on the
 * translator having passed it to us, we need to recompute.
 */
void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
{
    int el = arm_current_el(env);
    int fp_el = fp_exception_el(env, el);
    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
    env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
}

void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
{
    int fp_el = fp_exception_el(env, el);
    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);

    env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
}

void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
{
    int fp_el = fp_exception_el(env, el);
    ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);

    env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
}

static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
{
#ifdef CONFIG_DEBUG_TCG
    uint32_t env_flags_current = env->hflags;
    uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);

    if (unlikely(env_flags_current != env_flags_rebuilt)) {
        fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
                env_flags_current, env_flags_rebuilt);
        abort();
    }
#endif
}

void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
                          target_ulong *cs_base, uint32_t *pflags)
{
    uint32_t flags = env->hflags;
    uint32_t pstate_for_ss;

    *cs_base = 0;
    assert_hflags_rebuild_correctly(env);

    if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
        *pc = env->pc;
        if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
            flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
        }
        pstate_for_ss = env->pstate;
    } else {
        *pc = env->regs[15];

        if (arm_feature(env, ARM_FEATURE_M)) {
            if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
                FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
                != env->v7m.secure) {
                flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
            }

            if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
                (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
                 (env->v7m.secure &&
                  !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
                /*
                 * ASPEN is set, but FPCA/SFPA indicate that there is no
                 * active FP context; we must create a new FP context before
                 * executing any FP insn.
                 */
                flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
            }

            bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
            if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
                flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
            }
        } else {
            /*
             * Note that XSCALE_CPAR shares bits with VECSTRIDE.
             * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
             */
            if (arm_feature(env, ARM_FEATURE_XSCALE)) {
                flags = FIELD_DP32(flags, TBFLAG_A32,
                                   XSCALE_CPAR, env->cp15.c15_cpar);
            } else {
                flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
                                   env->vfp.vec_len);
                flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
                                   env->vfp.vec_stride);
            }
            if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
                flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
            }
        }

        flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
        flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
        pstate_for_ss = env->uncached_cpsr;
    }

    /*
     * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
     * states defined in the ARM ARM for software singlestep:
     *  SS_ACTIVE   PSTATE.SS   State
     *     0            x       Inactive (the TB flag for SS is always 0)
     *     1            0       Active-pending
     *     1            1       Active-not-pending
     * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
     */
    if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
        (pstate_for_ss & PSTATE_SS)) {
        flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
    }

    *pflags = flags;
}

#ifdef TARGET_AARCH64
/*
 * The manual says that when SVE is enabled and VQ is widened the
 * implementation is allowed to zero the previously inaccessible
 * portion of the registers.  The corollary to that is that when
 * SVE is enabled and VQ is narrowed we are also allowed to zero
 * the now inaccessible portion of the registers.
 *
 * The intent of this is that no predicate bit beyond VQ is ever set.
 * Which means that some operations on predicate registers themselves
 * may operate on full uint64_t or even unrolled across the maximum
 * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
 * may well be cheaper than conditionals to restrict the operation
 * to the relevant portion of a uint16_t[16].
 */
void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
{
    int i, j;
    uint64_t pmask;

    assert(vq >= 1 && vq <= ARM_MAX_VQ);
    assert(vq <= env_archcpu(env)->sve_max_vq);

    /* Zap the high bits of the zregs.  */
    for (i = 0; i < 32; i++) {
        memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
    }

    /* Zap the high bits of the pregs and ffr.  */
    pmask = 0;
    if (vq & 3) {
        pmask = ~(-1ULL << (16 * (vq & 3)));
    }
    for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
        for (i = 0; i < 17; ++i) {
            env->vfp.pregs[i].p[j] &= pmask;
        }
        pmask = 0;
    }
}

/*
 * Notice a change in SVE vector size when changing EL.
 */
void aarch64_sve_change_el(CPUARMState *env, int old_el,
                           int new_el, bool el0_a64)
{
    ARMCPU *cpu = env_archcpu(env);
    int old_len, new_len;
    bool old_a64, new_a64;

    /* Nothing to do if no SVE.  */
    if (!cpu_isar_feature(aa64_sve, cpu)) {
        return;
    }

    /* Nothing to do if FP is disabled in either EL.  */
    if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
        return;
    }

    /*
     * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
     * at ELx, or not available because the EL is in AArch32 state, then
     * for all purposes other than a direct read, the ZCR_ELx.LEN field
     * has an effective value of 0".
     *
     * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
     * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
     * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
     * we already have the correct register contents when encountering the
     * vq0->vq0 transition between EL0->EL1.
     */
    old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
    old_len = (old_a64 && !sve_exception_el(env, old_el)
               ? sve_zcr_len_for_el(env, old_el) : 0);
    new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
    new_len = (new_a64 && !sve_exception_el(env, new_el)
               ? sve_zcr_len_for_el(env, new_el) : 0);

    /* When changing vector length, clear inaccessible state.  */
    if (new_len < old_len) {
        aarch64_sve_narrow_vq(env, new_len + 1);
    }
}
#endif