aboutsummaryrefslogtreecommitdiff
path: root/target-arm/kvm64.c
blob: 61111091ad3b525b7ddd6ae9390ce43559eec624 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
/*
 * ARM implementation of KVM hooks, 64 bit specific code
 *
 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
 * Copyright Alex Bennée 2014, Linaro
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include "qemu/osdep.h"
#include <sys/ioctl.h>
#include <sys/ptrace.h>

#include <linux/elf.h>
#include <linux/kvm.h>

#include "qemu-common.h"
#include "cpu.h"
#include "qemu/timer.h"
#include "qemu/error-report.h"
#include "qemu/host-utils.h"
#include "exec/gdbstub.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_arm.h"
#include "internals.h"
#include "hw/arm/arm.h"

static bool have_guest_debug;

/*
 * Although the ARM implementation of hardware assisted debugging
 * allows for different breakpoints per-core, the current GDB
 * interface treats them as a global pool of registers (which seems to
 * be the case for x86, ppc and s390). As a result we store one copy
 * of registers which is used for all active cores.
 *
 * Write access is serialised by virtue of the GDB protocol which
 * updates things. Read access (i.e. when the values are copied to the
 * vCPU) is also gated by GDB's run control.
 *
 * This is not unreasonable as most of the time debugging kernels you
 * never know which core will eventually execute your function.
 */

typedef struct {
    uint64_t bcr;
    uint64_t bvr;
} HWBreakpoint;

/* The watchpoint registers can cover more area than the requested
 * watchpoint so we need to store the additional information
 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
 * when the watchpoint is hit.
 */
typedef struct {
    uint64_t wcr;
    uint64_t wvr;
    CPUWatchpoint details;
} HWWatchpoint;

/* Maximum and current break/watch point counts */
int max_hw_bps, max_hw_wps;
GArray *hw_breakpoints, *hw_watchpoints;

#define cur_hw_wps      (hw_watchpoints->len)
#define cur_hw_bps      (hw_breakpoints->len)
#define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
#define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))

/**
 * kvm_arm_init_debug() - check for guest debug capabilities
 * @cs: CPUState
 *
 * kvm_check_extension returns the number of debug registers we have
 * or 0 if we have none.
 *
 */
static void kvm_arm_init_debug(CPUState *cs)
{
    have_guest_debug = kvm_check_extension(cs->kvm_state,
                                           KVM_CAP_SET_GUEST_DEBUG);

    max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
    hw_watchpoints = g_array_sized_new(true, true,
                                       sizeof(HWWatchpoint), max_hw_wps);

    max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
    hw_breakpoints = g_array_sized_new(true, true,
                                       sizeof(HWBreakpoint), max_hw_bps);
    return;
}

/**
 * insert_hw_breakpoint()
 * @addr: address of breakpoint
 *
 * See ARM ARM D2.9.1 for details but here we are only going to create
 * simple un-linked breakpoints (i.e. we don't chain breakpoints
 * together to match address and context or vmid). The hardware is
 * capable of fancier matching but that will require exposing that
 * fanciness to GDB's interface
 *
 * D7.3.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers
 *
 *  31  24 23  20 19   16 15 14  13  12   9 8   5 4    3 2   1  0
 * +------+------+-------+-----+----+------+-----+------+-----+---+
 * | RES0 |  BT  |  LBN  | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
 * +------+------+-------+-----+----+------+-----+------+-----+---+
 *
 * BT: Breakpoint type (0 = unlinked address match)
 * LBN: Linked BP number (0 = unused)
 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
 * BAS: Byte Address Select (RES1 for AArch64)
 * E: Enable bit
 */
static int insert_hw_breakpoint(target_ulong addr)
{
    HWBreakpoint brk = {
        .bcr = 0x1,                             /* BCR E=1, enable */
        .bvr = addr
    };

    if (cur_hw_bps >= max_hw_bps) {
        return -ENOBUFS;
    }

    brk.bcr = deposit32(brk.bcr, 1, 2, 0x3);   /* PMC = 11 */
    brk.bcr = deposit32(brk.bcr, 5, 4, 0xf);   /* BAS = RES1 */

    g_array_append_val(hw_breakpoints, brk);

    return 0;
}

/**
 * delete_hw_breakpoint()
 * @pc: address of breakpoint
 *
 * Delete a breakpoint and shuffle any above down
 */

static int delete_hw_breakpoint(target_ulong pc)
{
    int i;
    for (i = 0; i < hw_breakpoints->len; i++) {
        HWBreakpoint *brk = get_hw_bp(i);
        if (brk->bvr == pc) {
            g_array_remove_index(hw_breakpoints, i);
            return 0;
        }
    }
    return -ENOENT;
}

/**
 * insert_hw_watchpoint()
 * @addr: address of watch point
 * @len: size of area
 * @type: type of watch point
 *
 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
 * stuff if we want to. The watch points can be linked with the break
 * points above to make them context aware. However for simplicity
 * currently we only deal with simple read/write watch points.
 *
 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
 *
 *  31  29 28   24 23  21  20  19 16 15 14  13   12  5 4   3 2   1  0
 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
 * | RES0 |  MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
 *
 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
 * WT: 0 - unlinked, 1 - linked (not currently used)
 * LBN: Linked BP number (not currently used)
 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
 * BAS: Byte Address Select
 * LSC: Load/Store control (01: load, 10: store, 11: both)
 * E: Enable
 *
 * The bottom 2 bits of the value register are masked. Therefore to
 * break on any sizes smaller than an unaligned word you need to set
 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
 * need to ensure you mask the address as required and set BAS=0xff
 */

static int insert_hw_watchpoint(target_ulong addr,
                                target_ulong len, int type)
{
    HWWatchpoint wp = {
        .wcr = 1, /* E=1, enable */
        .wvr = addr & (~0x7ULL),
        .details = { .vaddr = addr, .len = len }
    };

    if (cur_hw_wps >= max_hw_wps) {
        return -ENOBUFS;
    }

    /*
     * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
     * valid whether EL3 is implemented or not
     */
    wp.wcr = deposit32(wp.wcr, 1, 2, 3);

    switch (type) {
    case GDB_WATCHPOINT_READ:
        wp.wcr = deposit32(wp.wcr, 3, 2, 1);
        wp.details.flags = BP_MEM_READ;
        break;
    case GDB_WATCHPOINT_WRITE:
        wp.wcr = deposit32(wp.wcr, 3, 2, 2);
        wp.details.flags = BP_MEM_WRITE;
        break;
    case GDB_WATCHPOINT_ACCESS:
        wp.wcr = deposit32(wp.wcr, 3, 2, 3);
        wp.details.flags = BP_MEM_ACCESS;
        break;
    default:
        g_assert_not_reached();
        break;
    }
    if (len <= 8) {
        /* we align the address and set the bits in BAS */
        int off = addr & 0x7;
        int bas = (1 << len) - 1;

        wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
    } else {
        /* For ranges above 8 bytes we need to be a power of 2 */
        if (is_power_of_2(len)) {
            int bits = ctz64(len);

            wp.wvr &= ~((1 << bits) - 1);
            wp.wcr = deposit32(wp.wcr, 24, 4, bits);
            wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
        } else {
            return -ENOBUFS;
        }
    }

    g_array_append_val(hw_watchpoints, wp);
    return 0;
}


static bool check_watchpoint_in_range(int i, target_ulong addr)
{
    HWWatchpoint *wp = get_hw_wp(i);
    uint64_t addr_top, addr_bottom = wp->wvr;
    int bas = extract32(wp->wcr, 5, 8);
    int mask = extract32(wp->wcr, 24, 4);

    if (mask) {
        addr_top = addr_bottom + (1 << mask);
    } else {
        /* BAS must be contiguous but can offset against the base
         * address in DBGWVR */
        addr_bottom = addr_bottom + ctz32(bas);
        addr_top = addr_bottom + clo32(bas);
    }

    if (addr >= addr_bottom && addr <= addr_top) {
        return true;
    }

    return false;
}

/**
 * delete_hw_watchpoint()
 * @addr: address of breakpoint
 *
 * Delete a breakpoint and shuffle any above down
 */

static int delete_hw_watchpoint(target_ulong addr,
                                target_ulong len, int type)
{
    int i;
    for (i = 0; i < cur_hw_wps; i++) {
        if (check_watchpoint_in_range(i, addr)) {
            g_array_remove_index(hw_watchpoints, i);
            return 0;
        }
    }
    return -ENOENT;
}


int kvm_arch_insert_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    switch (type) {
    case GDB_BREAKPOINT_HW:
        return insert_hw_breakpoint(addr);
        break;
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_ACCESS:
        return insert_hw_watchpoint(addr, len, type);
    default:
        return -ENOSYS;
    }
}

int kvm_arch_remove_hw_breakpoint(target_ulong addr,
                                  target_ulong len, int type)
{
    switch (type) {
    case GDB_BREAKPOINT_HW:
        return delete_hw_breakpoint(addr);
        break;
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_ACCESS:
        return delete_hw_watchpoint(addr, len, type);
    default:
        return -ENOSYS;
    }
}


void kvm_arch_remove_all_hw_breakpoints(void)
{
    if (cur_hw_wps > 0) {
        g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
    }
    if (cur_hw_bps > 0) {
        g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
    }
}

void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
{
    int i;
    memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));

    for (i = 0; i < max_hw_wps; i++) {
        HWWatchpoint *wp = get_hw_wp(i);
        ptr->dbg_wcr[i] = wp->wcr;
        ptr->dbg_wvr[i] = wp->wvr;
    }
    for (i = 0; i < max_hw_bps; i++) {
        HWBreakpoint *bp = get_hw_bp(i);
        ptr->dbg_bcr[i] = bp->bcr;
        ptr->dbg_bvr[i] = bp->bvr;
    }
}

bool kvm_arm_hw_debug_active(CPUState *cs)
{
    return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
}

static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
{
    int i;

    for (i = 0; i < cur_hw_bps; i++) {
        HWBreakpoint *bp = get_hw_bp(i);
        if (bp->bvr == pc) {
            return true;
        }
    }
    return false;
}

static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
{
    int i;

    for (i = 0; i < cur_hw_wps; i++) {
        if (check_watchpoint_in_range(i, addr)) {
            return &get_hw_wp(i)->details;
        }
    }
    return NULL;
}

static bool kvm_arm_pmu_support_ctrl(CPUState *cs, struct kvm_device_attr *attr)
{
    return kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr) == 0;
}

int kvm_arm_pmu_create(CPUState *cs, int irq)
{
    int err;

    struct kvm_device_attr attr = {
        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
        .addr = (intptr_t)&irq,
        .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
        .flags = 0,
    };

    if (!kvm_arm_pmu_support_ctrl(cs, &attr)) {
        return 0;
    }

    err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, &attr);
    if (err < 0) {
        fprintf(stderr, "KVM_SET_DEVICE_ATTR failed: %s\n",
                strerror(-err));
        abort();
    }

    attr.group = KVM_ARM_VCPU_PMU_V3_CTRL;
    attr.attr = KVM_ARM_VCPU_PMU_V3_INIT;
    attr.addr = 0;
    attr.flags = 0;

    err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, &attr);
    if (err < 0) {
        fprintf(stderr, "KVM_SET_DEVICE_ATTR failed: %s\n",
                strerror(-err));
        abort();
    }

    return 1;
}

static inline void set_feature(uint64_t *features, int feature)
{
    *features |= 1ULL << feature;
}

static inline void unset_feature(uint64_t *features, int feature)
{
    *features &= ~(1ULL << feature);
}

bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
{
    /* Identify the feature bits corresponding to the host CPU, and
     * fill out the ARMHostCPUClass fields accordingly. To do this
     * we have to create a scratch VM, create a single CPU inside it,
     * and then query that CPU for the relevant ID registers.
     * For AArch64 we currently don't care about ID registers at
     * all; we just want to know the CPU type.
     */
    int fdarray[3];
    uint64_t features = 0;
    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
     * we know these will only support creating one kind of guest CPU,
     * which is its preferred CPU type. Fortunately these old kernels
     * support only a very limited number of CPUs.
     */
    static const uint32_t cpus_to_try[] = {
        KVM_ARM_TARGET_AEM_V8,
        KVM_ARM_TARGET_FOUNDATION_V8,
        KVM_ARM_TARGET_CORTEX_A57,
        QEMU_KVM_ARM_TARGET_NONE
    };
    struct kvm_vcpu_init init;

    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
        return false;
    }

    ahcc->target = init.target;
    ahcc->dtb_compatible = "arm,arm-v8";

    kvm_arm_destroy_scratch_host_vcpu(fdarray);

   /* We can assume any KVM supporting CPU is at least a v8
     * with VFPv4+Neon; this in turn implies most of the other
     * feature bits.
     */
    set_feature(&features, ARM_FEATURE_V8);
    set_feature(&features, ARM_FEATURE_VFP4);
    set_feature(&features, ARM_FEATURE_NEON);
    set_feature(&features, ARM_FEATURE_AARCH64);
    set_feature(&features, ARM_FEATURE_PMU);

    ahcc->features = features;

    return true;
}

#define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5

int kvm_arch_init_vcpu(CPUState *cs)
{
    int ret;
    uint64_t mpidr;
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
        !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
        fprintf(stderr, "KVM is not supported for this guest CPU type\n");
        return -EINVAL;
    }

    /* Determine init features for this CPU */
    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
    if (cpu->start_powered_off) {
        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
    }
    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
        cpu->psci_version = 2;
        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
    }
    if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
    }
    if (!kvm_irqchip_in_kernel() ||
        !kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
            cpu->has_pmu = false;
    }
    if (cpu->has_pmu) {
        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
    } else {
        unset_feature(&env->features, ARM_FEATURE_PMU);
    }

    /* Do KVM_ARM_VCPU_INIT ioctl */
    ret = kvm_arm_vcpu_init(cs);
    if (ret) {
        return ret;
    }

    /*
     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
     * Currently KVM has its own idea about MPIDR assignment, so we
     * override our defaults with what we get from KVM.
     */
    ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
    if (ret) {
        return ret;
    }
    cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;

    kvm_arm_init_debug(cs);

    return kvm_arm_init_cpreg_list(cpu);
}

bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
{
    /* Return true if the regidx is a register we should synchronize
     * via the cpreg_tuples array (ie is not a core reg we sync by
     * hand in kvm_arch_get/put_registers())
     */
    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
    case KVM_REG_ARM_CORE:
        return false;
    default:
        return true;
    }
}

typedef struct CPRegStateLevel {
    uint64_t regidx;
    int level;
} CPRegStateLevel;

/* All system registers not listed in the following table are assumed to be
 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
 * often, you must add it to this table with a state of either
 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
 */
static const CPRegStateLevel non_runtime_cpregs[] = {
    { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
};

int kvm_arm_cpreg_level(uint64_t regidx)
{
    int i;

    for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
        const CPRegStateLevel *l = &non_runtime_cpregs[i];
        if (l->regidx == regidx) {
            return l->level;
        }
    }

    return KVM_PUT_RUNTIME_STATE;
}

#define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))

#define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))

#define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))

int kvm_arch_put_registers(CPUState *cs, int level)
{
    struct kvm_one_reg reg;
    uint32_t fpr;
    uint64_t val;
    int i;
    int ret;
    unsigned int el;

    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
     * AArch64 registers before pushing them out to 64-bit KVM.
     */
    if (!is_a64(env)) {
        aarch64_sync_32_to_64(env);
    }

    for (i = 0; i < 31; i++) {
        reg.id = AARCH64_CORE_REG(regs.regs[i]);
        reg.addr = (uintptr_t) &env->xregs[i];
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret) {
            return ret;
        }
    }

    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
     * QEMU side we keep the current SP in xregs[31] as well.
     */
    aarch64_save_sp(env, 1);

    reg.id = AARCH64_CORE_REG(regs.sp);
    reg.addr = (uintptr_t) &env->sp_el[0];
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    reg.id = AARCH64_CORE_REG(sp_el1);
    reg.addr = (uintptr_t) &env->sp_el[1];
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
    if (is_a64(env)) {
        val = pstate_read(env);
    } else {
        val = cpsr_read(env);
    }
    reg.id = AARCH64_CORE_REG(regs.pstate);
    reg.addr = (uintptr_t) &val;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    reg.id = AARCH64_CORE_REG(regs.pc);
    reg.addr = (uintptr_t) &env->pc;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    reg.id = AARCH64_CORE_REG(elr_el1);
    reg.addr = (uintptr_t) &env->elr_el[1];
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    /* Saved Program State Registers
     *
     * Before we restore from the banked_spsr[] array we need to
     * ensure that any modifications to env->spsr are correctly
     * reflected in the banks.
     */
    el = arm_current_el(env);
    if (el > 0 && !is_a64(env)) {
        i = bank_number(env->uncached_cpsr & CPSR_M);
        env->banked_spsr[i] = env->spsr;
    }

    /* KVM 0-4 map to QEMU banks 1-5 */
    for (i = 0; i < KVM_NR_SPSR; i++) {
        reg.id = AARCH64_CORE_REG(spsr[i]);
        reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret) {
            return ret;
        }
    }

    /* Advanced SIMD and FP registers
     * We map Qn = regs[2n+1]:regs[2n]
     */
    for (i = 0; i < 32; i++) {
        int rd = i << 1;
        uint64_t fp_val[2];
#ifdef HOST_WORDS_BIGENDIAN
        fp_val[0] = env->vfp.regs[rd + 1];
        fp_val[1] = env->vfp.regs[rd];
#else
        fp_val[1] = env->vfp.regs[rd + 1];
        fp_val[0] = env->vfp.regs[rd];
#endif
        reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
        reg.addr = (uintptr_t)(&fp_val);
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret) {
            return ret;
        }
    }

    reg.addr = (uintptr_t)(&fpr);
    fpr = vfp_get_fpsr(env);
    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    fpr = vfp_get_fpcr(env);
    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    if (!write_list_to_kvmstate(cpu, level)) {
        return EINVAL;
    }

    kvm_arm_sync_mpstate_to_kvm(cpu);

    return ret;
}

int kvm_arch_get_registers(CPUState *cs)
{
    struct kvm_one_reg reg;
    uint64_t val;
    uint32_t fpr;
    unsigned int el;
    int i;
    int ret;

    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    for (i = 0; i < 31; i++) {
        reg.id = AARCH64_CORE_REG(regs.regs[i]);
        reg.addr = (uintptr_t) &env->xregs[i];
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret) {
            return ret;
        }
    }

    reg.id = AARCH64_CORE_REG(regs.sp);
    reg.addr = (uintptr_t) &env->sp_el[0];
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    reg.id = AARCH64_CORE_REG(sp_el1);
    reg.addr = (uintptr_t) &env->sp_el[1];
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    reg.id = AARCH64_CORE_REG(regs.pstate);
    reg.addr = (uintptr_t) &val;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    env->aarch64 = ((val & PSTATE_nRW) == 0);
    if (is_a64(env)) {
        pstate_write(env, val);
    } else {
        cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
    }

    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
     * QEMU side we keep the current SP in xregs[31] as well.
     */
    aarch64_restore_sp(env, 1);

    reg.id = AARCH64_CORE_REG(regs.pc);
    reg.addr = (uintptr_t) &env->pc;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
     * incoming AArch64 regs received from 64-bit KVM.
     * We must perform this after all of the registers have been acquired from
     * the kernel.
     */
    if (!is_a64(env)) {
        aarch64_sync_64_to_32(env);
    }

    reg.id = AARCH64_CORE_REG(elr_el1);
    reg.addr = (uintptr_t) &env->elr_el[1];
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    /* Fetch the SPSR registers
     *
     * KVM SPSRs 0-4 map to QEMU banks 1-5
     */
    for (i = 0; i < KVM_NR_SPSR; i++) {
        reg.id = AARCH64_CORE_REG(spsr[i]);
        reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret) {
            return ret;
        }
    }

    el = arm_current_el(env);
    if (el > 0 && !is_a64(env)) {
        i = bank_number(env->uncached_cpsr & CPSR_M);
        env->spsr = env->banked_spsr[i];
    }

    /* Advanced SIMD and FP registers
     * We map Qn = regs[2n+1]:regs[2n]
     */
    for (i = 0; i < 32; i++) {
        uint64_t fp_val[2];
        reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
        reg.addr = (uintptr_t)(&fp_val);
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret) {
            return ret;
        } else {
            int rd = i << 1;
#ifdef HOST_WORDS_BIGENDIAN
            env->vfp.regs[rd + 1] = fp_val[0];
            env->vfp.regs[rd] = fp_val[1];
#else
            env->vfp.regs[rd + 1] = fp_val[1];
            env->vfp.regs[rd] = fp_val[0];
#endif
        }
    }

    reg.addr = (uintptr_t)(&fpr);
    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }
    vfp_set_fpsr(env, fpr);

    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }
    vfp_set_fpcr(env, fpr);

    if (!write_kvmstate_to_list(cpu)) {
        return EINVAL;
    }
    /* Note that it's OK to have registers which aren't in CPUState,
     * so we can ignore a failure return here.
     */
    write_list_to_cpustate(cpu);

    kvm_arm_sync_mpstate_to_qemu(cpu);

    /* TODO: other registers */
    return ret;
}

/* C6.6.29 BRK instruction */
static const uint32_t brk_insn = 0xd4200000;

int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
    if (have_guest_debug) {
        if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
            cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
            return -EINVAL;
        }
        return 0;
    } else {
        error_report("guest debug not supported on this kernel");
        return -EINVAL;
    }
}

int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
    static uint32_t brk;

    if (have_guest_debug) {
        if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
            brk != brk_insn ||
            cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
            return -EINVAL;
        }
        return 0;
    } else {
        error_report("guest debug not supported on this kernel");
        return -EINVAL;
    }
}

/* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
 *
 * To minimise translating between kernel and user-space the kernel
 * ABI just provides user-space with the full exception syndrome
 * register value to be decoded in QEMU.
 */

bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
{
    int hsr_ec = debug_exit->hsr >> ARM_EL_EC_SHIFT;
    ARMCPU *cpu = ARM_CPU(cs);
    CPUClass *cc = CPU_GET_CLASS(cs);
    CPUARMState *env = &cpu->env;

    /* Ensure PC is synchronised */
    kvm_cpu_synchronize_state(cs);

    switch (hsr_ec) {
    case EC_SOFTWARESTEP:
        if (cs->singlestep_enabled) {
            return true;
        } else {
            /*
             * The kernel should have suppressed the guest's ability to
             * single step at this point so something has gone wrong.
             */
            error_report("%s: guest single-step while debugging unsupported"
                         " (%"PRIx64", %"PRIx32")\n",
                         __func__, env->pc, debug_exit->hsr);
            return false;
        }
        break;
    case EC_AA64_BKPT:
        if (kvm_find_sw_breakpoint(cs, env->pc)) {
            return true;
        }
        break;
    case EC_BREAKPOINT:
        if (find_hw_breakpoint(cs, env->pc)) {
            return true;
        }
        break;
    case EC_WATCHPOINT:
    {
        CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
        if (wp) {
            cs->watchpoint_hit = wp;
            return true;
        }
        break;
    }
    default:
        error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")\n",
                     __func__, debug_exit->hsr, env->pc);
    }

    /* If we are not handling the debug exception it must belong to
     * the guest. Let's re-use the existing TCG interrupt code to set
     * everything up properly.
     */
    cs->exception_index = EXCP_BKPT;
    env->exception.syndrome = debug_exit->hsr;
    env->exception.vaddress = debug_exit->far;
    cc->do_interrupt(cs);

    return false;
}