aboutsummaryrefslogtreecommitdiff
path: root/hw/omap3_boot.c
blob: 0bd8011228714b780f8624979c3dcc6eb2c0dac2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
/*
 * TI OMAP3 boot ROM emulation. Based on information in the OMAP34xx 3.1
 * Technical Reference Manual from Texas Instruments.
 *
 * Copyright (C) 2009 Nokia Corporation
 *
 * The OMAP3 boot ROM service routines accessed via ARM SMC instruction
 * are not available in this emulation due to the limited availability
 * of public documentation on the ARM TrustZone functionality. However
 * it seems executing the SMC instruction as a NOP causes no harm.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 or
 * (at your option) any later version of the License.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */
#include "hw.h"
#include "arm-misc.h"
#include "omap.h"
#include "sysemu.h"
#include "qemu-char.h"
#include "flash.h"
#include "blockdev.h"
#include "exec-memory.h"

//#define OMAP3_BOOT_DEBUG

#ifdef OMAP3_BOOT_DEBUG
#define TRACE(fmt,...) fprintf(stderr, "%s@%d: " fmt "\n", __FUNCTION__, \
                               __LINE__, ##__VA_ARGS__);
#else
#define TRACE(...)
#endif

/* list of supported NAND devices according to the OMAP34xx TRM */
static const struct {
    uint8_t id;
    uint32_t pagesize;
    uint32_t capacity_Mb;
} omap3_boot_nand_devices[] = {
    {0xe6,  512,    64}, {0x33,  512,   128}, {0x73,  512,   128},
    {0x43,  512,   128}, {0x53,  512,   128}, {0x35,  512,   256},
    {0x75,  512,   256}, {0x45,  512,   256}, {0x55,  512,   256},
    {0x36,  512,   512}, {0x76,  512,   512}, {0x46,  512,   512},
    {0x56,  512,   512}, {0xa2, 2048,   512}, {0xf2, 2048,   512},
    {0xb2, 2048,   512}, {0xc2, 2048,   512}, {0x39,  512,  1024},
    {0x79,  512,  1024}, {0x49,  512,  1024}, {0x59,  512,  1024},
    {0x78,  512,  1024}, {0x72,  512,  1024}, {0x74,  512,  1024},
    {0xa1, 2048,  1024}, {0xf1, 2048,  1024}, {0xb1, 2048,  1024},
    {0xc1, 2048,  1024}, {0xaa, 2048,  2048}, {0xda, 2048,  2048},
    {0xba, 2048,  2048}, {0xca, 2048,  2048}, {0x71,  512,  2048},
    {0x51,  512,  2048}, {0x31,  512,  2048}, {0x41,  512,  2048},
    {0xac, 2048,  4096}, {0xdc, 2048,  4096}, {0xbc, 2048,  4096},
    {0xcc, 2048,  4096}, {0xa3, 2048,  8192}, {0xd3, 2048,  8192},
    {0xb3, 2048,  8192}, {0xc3, 2048,  8192}, {0xa5, 2048, 16384},
    {0xd5, 2048, 16384}, {0xb5, 2048, 16384}, {0xc5, 2048, 16384},
    {0xa7, 2048, 32768}, {0xb7, 2048, 32768}, {0xae, 2048, 65536},
    {0xbe, 2048, 65536},
    {0, 0, 0}
};

struct omap3_nand_boot_desc_s {
    uint32_t pagesize;
    uint32_t capacity_Mb;
    uint8_t bus16;
};

static const uint8_t omap3_boot_rom[] = { /* 0x40014000-0x4001bfff */
    /* 0x40014000: ROM Exception vectors */
    0x3e, 0x00, 0x00, 0xea, /* b 0x40014100 */
    0x18, 0xf0, 0x9f, 0xe5, /* ldr pc, [pc, #0x18] */
    0x18, 0xf0, 0x9f, 0xe5, /* ldr pc, [pc, #0x18] */
    0x18, 0xf0, 0x9f, 0xe5, /* ldr pc, [pc, #0x18] */
    0x18, 0xf0, 0x9f, 0xe5, /* ldr pc, [pc, #0x18] */
    0x18, 0xf0, 0x9f, 0xe5, /* ldr pc, [pc, #0x18] */
    0x18, 0xf0, 0x9f, 0xe5, /* ldr pc, [pc, #0x18] */
    0x18, 0xf0, 0x9f, 0xe5, /* ldr pc, [pc, #0x18] */
    /* 0x40014020: ROM CRC */
    0xff, 0xff, 0xff, 0xff, 
    /* 0x40014024: unused(?), we use it for some data */
    0xc8, 0xff, 0x20, 0x40, /* 0x40014024: undef sram vector address */
    0xcc, 0xff, 0x20, 0x40, /* 0x40014028: swi sram vector address */
    0xd0, 0xff, 0x20, 0x40, /* 0x4001402c: pabt sram vector address */
    0xd4, 0xff, 0x20, 0x40, /* 0x40014030: dabt sram vector address */
    0xd8, 0xff, 0x20, 0x40, /* 0x40014034: unused sram vector address */
    0xdc, 0xff, 0x20, 0x40, /* 0x40014038: irq sram vector address */
    0xe0, 0xff, 0x20, 0x40, /* 0x4001403c: fiq sram vector address */
    0xff, 0xff, 0xff, 0xff, /* 0x40014040: boot loader image start address */
    0xff, 0xff, 0xff, 0xff, /* 0x40014044: booting parameter structure 0-3 */
    0xff, 0xff, 0xff, 0xff, /* 0x40014048: booting parameter structure 4-7 */
    0xff, 0xff, 0xff, 0xff, /* 0x4001404c: booting parameter structure 8-11 */
    0x0e, 0xf0, 0xb0, 0xe1, /* 0x40014050: "movs pc, lr" */
    0xff, 0xff, 0xff, 0xff, /* 0x40014054 */
    0xff, 0xff, 0xff, 0xff, /* 0x40014058 */
    0xff, 0xff, 0xff, 0xff, /* 0x4001405c */
    0xfe, 0xff, 0xff, 0xea, /* 0x40014060: monitor vector 0 (unused) */
    0xfe, 0xff, 0xff, 0xea, /* 0x40014064: monitor vector 1 (unused) */
    0x15, 0x00, 0x00, 0xea, /* 0x40014068: monitor vector 2 (smc) */
    0xfe, 0xff, 0xff, 0xea, /* 0x4001406c: monitor vector 3 (pabt) */
    0xfe, 0xff, 0xff, 0xea, /* 0x40014070: monitor vector 4 (dabt) */
    0xfe, 0xff, 0xff, 0xea, /* 0x40014074: monitor vector 5 (unused) */
    0xfe, 0xff, 0xff, 0xea, /* 0x40014078: monitor vector 6 (irq) */
    0xfe, 0xff, 0xff, 0xea, /* 0x4001407c: monitor vector 7 (fiq) */
    /* 0x40014080: Dead loops */
    0xfe, 0xff, 0xff, 0xea, /* b 0x40014080 @ undefined exception */
    0xfe, 0xff, 0xff, 0xea, /* b 0x40014084 @ swi exception */
    0xfe, 0xff, 0xff, 0xea, /* b 0x40014088 @ prefetch abort exception */
    0xfe, 0xff, 0xff, 0xea, /* b 0x4001408c @ data abort exception */
    0xfe, 0xff, 0xff, 0xea, /* b 0x40014090 @ unused exception */
    0xfe, 0xff, 0xff, 0xea, /* b 0x40014094 @ irq exception */
    0xfe, 0xff, 0xff, 0xea, /* b 0x40014098 @ fiq exception */
    0xfe, 0xff, 0xff, 0xea, /* b 0x4001409c @ validation tests pass */
    0xfe, 0xff, 0xff, 0xea, /* b 0x400140a0 @ validation tests fail */
    0xfe, 0xff, 0xff, 0xea, /* b 0x400140a4 @ boot failed: no more devices */
    0xfe, 0xff, 0xff, 0xea, /* b 0x400140a8 @ image not executed or returned */
    0xfe, 0xff, 0xff, 0xea, /* b 0x400140ac @ reserved */
    0xfe, 0xff, 0xff, 0xea, /* b 0x400140b0 @ reserved */
    0xfe, 0xff, 0xff, 0xea, /* b 0x400140b4 @ reserved */
    0xfe, 0xff, 0xff, 0xea, /* b 0x400140b8 @ reserved */
    0xfe, 0xff, 0xff, 0xea, /* b 0x400140bc @ reserved */
    /* 0x400140c0: should perform a software reset & jump to r0 */
    0x00, 0xf0, 0xa0, 0xe1, /* mov pc, r0 */
    /* 0x400140c4: monitor mode smc vector handler */
                            /* @ r12=1 is used to invalidate l2, we skip it */
    0x02, 0x00, 0x5c, 0xe3, /* cmp r12, #2 @ write to l2 cache aux ctrl */
    0x50, 0x0f, 0x29, 0xee, /* mcreq p15, 1, r0, c9, c0, 2 */
    0x03, 0x00, 0x5c, 0xe3, /* cmp r12, #3 @ write to aux ctrl */
    0x30, 0x0f, 0x01, 0xee, /* mcreq p15, 0, r0, c1, c0, 1 @ aux ctrl*/
    0x0e, 0xf0, 0xb0, 0xe1, /* movs pc, r14 */
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
    /* 0x40014100: code, ROM emulation uses this to launch the
     * boot loader after it has been read into memory */
    0xc8, 0x10, 0x1f, 0xe5, /* ldr r1, [#0x40014040] @ boot loader start */
    0xb0, 0x0c, 0x0f, 0xe3, /* movw r0, #0xfcb0 */
    0x20, 0x00, 0x44, 0xe3, /* movt r0, #0x4020    @ stack top at 0x4020fcb0 */
    0xdf, 0xf0, 0x21, 0xe3, /* msr cpsr_c, #0xdf   @ enter SYS mode */
    0x00, 0xd0, 0xa0, 0xe1, /* mov sp, r0 */
    0x80, 0x0c, 0x40, 0xe2, /* sub r0, r0, #32768  @ 32kB SYS/USR stack */
    0xd1, 0xf0, 0x21, 0xe3, /* msr cpsr_c, #0xd1   @ enter FIQ mode */
    0x00, 0xd0, 0xa0, 0xe1, /* mov sp, r0 */
    0x08, 0x0c, 0x40, 0xe2, /* sub r0, r0, #2048   @ 2kB FIQ stack */
    0xd2, 0xf0, 0x21, 0xe3, /* msr cpsr_c, #0xd2   @ enter IRQ mode */
    0x00, 0xd0, 0xa0, 0xe1, /* mov sp, r0 */
    0x08, 0x0c, 0x40, 0xe2, /* sub r0, r0, #2048   @ 2kB IRQ stack */
    0xd7, 0xf0, 0x21, 0xe3, /* msr cpsr_c, #0xd7   @ enter ABT mode */
    0x00, 0xd0, 0xa0, 0xe1, /* mov sp, r0 */
    0x08, 0x0c, 0x40, 0xe2, /* sub r0, r0, #2048   @ 2kB ABT stack */
    0xdb, 0xf0, 0x21, 0xe3, /* msr cpsr_c, #0xdb   @ enter UND mode */
    0x00, 0xd0, 0xa0, 0xe1, /* mov sp, r0 */
    0x08, 0x0c, 0x40, 0xe2, /* sub r0, r0, #2048   @ 2kB UND stack */
    0xd3, 0xf0, 0x21, 0xe3, /* msr cpsr_c, #0xd3   @ enter SVC mode */
    0x00, 0xd0, 0xa0, 0xe1, /* mov sp, r0          @ 23kB left for SVC stack */
    0xdf, 0xf0, 0x21, 0xe3, /* msr cpsr_c, #0xdf   @ enter SYS mode */
    0x40, 0x04, 0xa0, 0xe3, /* mov r0, #0x40000000 @ r0 -> vba */
    0x05, 0x09, 0x80, 0xe2, /* add r0, r0, #0x14000 */
    0x10, 0x0f, 0x0c, 0xfe, /* mcr2 p15, 0, r0, c12, c0, 0 */
    0x60, 0x00, 0x80, 0xe2, /* add r0, r0, #0x60  @ r0 -> monitor vba */
    0x30, 0x0f, 0x0c, 0xfe, /* mcr2 p15, 0, r0, c12, c0, 1 */
    0x1c, 0x00, 0x40, 0xe2, /* sub r0, r0, #1c    @ r0 -> booting parameter struct */
    0x01, 0xf0, 0xa0, 0xe1, /* mov pc, r1 */
};

/* SRAM exception vectors, to be placed at 0x4020ffc8 */
static const uint8_t omap3_sram_vectors[] = {
    0x14, 0xf0, 0x9f, 0xe5, /* ldr pc, [#0x4020ffe4] @ undefined */
    0x14, 0xf0, 0x9f, 0xe5, /* ldr pc, [#0x4020ffe8] @ swi */
    0x14, 0xf0, 0x9f, 0xe5, /* ldr pc, [#0x4020ffec] @ prefetch abort */
    0x14, 0xf0, 0x9f, 0xe5, /* ldr pc, [#0x4020fff0] @ data abort */
    0x14, 0xf0, 0x9f, 0xe5, /* ldr pc, [#0x4020fff4] @ unused */
    0x14, 0xf0, 0x9f, 0xe5, /* ldr pc, [#0x4020fff8] @ irq */
    0x14, 0xf0, 0x9f, 0xe5, /* ldr pc, [#0x4020fffc] @ fiq */
    0x80, 0x40, 0x01, 0x00, /* 0x14080 */
    0x50, 0x40, 0x01, 0x40, /* 0x40014050 (default is 0x14084) */
    0x88, 0x40, 0x01, 0x00, /* 0x14088 */
    0x8c, 0x40, 0x01, 0x00, /* 0x1408c */
    0x90, 0x40, 0x01, 0x00, /* 0x14090 */
    0x94, 0x40, 0x01, 0x00, /* 0x14094 */
    0x98, 0x40, 0x01, 0x00, /* 0x14098 */
};

static inline uint32_t omap3_get_le32(const void *p)
{
    const uint8_t *q = (const uint8_t *)p;
    uint32_t v;
    v = q[3]; v <<= 8;
    v |= q[2]; v <<= 8;
    v |= q[1]; v <<= 8;
    v |= q[0];
    return v;
}

static inline uint32_t omap3_get_le16(const void *p)
{
    const uint8_t *q = (const uint8_t *)p;
    uint32_t v;
    v = q[1]; v <<= 8;
    v |= q[0];
    return v;
}

static inline void omap3_boot_setlsb(target_phys_addr_t addr, uint16_t lsb)
{
    uint8_t x[4];
    
    cpu_physical_memory_read(addr, x, 4);
    x[0] = lsb & 0xff;
    x[1] = (lsb >> 8) & 0xff;
    cpu_physical_memory_write(addr, x, 4);
}

typedef enum {
    xip = 1,
    nand,
    onenand,
    doc,
    mmc2,
    mmc1,
    xipwait,
    uart = 0x10,
    hsusb,
}  omap3_boot_device_t;

struct omap3_boot_s {
    struct omap_mpu_state_s *mpu;
    omap3_boot_device_t devicetype;
    enum {
        undefined = 0,
        confighdr,
        chdone,
        imagehdr,
        copy,
        done
    } state;
    uint8_t chflags;
    target_phys_addr_t addr;
    uint32_t count;
};

static struct omap3_boot_s *omap3_boot_init(struct omap_mpu_state_s *mpu,
                                            omap3_boot_device_t dtype,
                                            const uint8_t *data,
                                            uint32_t data_len)
{
    struct omap3_boot_s *s = g_malloc0(sizeof(struct omap3_boot_s));
    s->mpu = mpu;
    s->devicetype = dtype;
    s->state = chdone;
    if (data_len >= 512) {
        if (!strncasecmp((char *)(data + 0x14), "chsettings", 10)
            || !strncasecmp((char *)(data + 0x14), "chram", 5)
            || !strncasecmp((char *)(data + 0x14), "chflash", 7)
            || !strncasecmp((char *)(data + 0x14), "chmmcsd", 7))
            s->state = confighdr;
    }
    return s;
}

static void omap3_boot_chsettings(struct omap3_boot_s *boot,
                                  const uint8_t *chtoc)
{
    uint32_t flags, x;
    
    if (omap3_get_le32(chtoc) != 0xc0c0c0c1) {
        TRACE("invalid section verification key");
        return;
    }
    if (!chtoc[4]) { /* section disabled? */
        return;
    }
    if (omap3_get_le16(chtoc + 5) != 0x0001) {
        TRACE("unsupported CH version (0x%04x)", omap3_get_le16(chtoc));
        return;
    }
    boot->chflags |= 0x01;
    flags = omap3_get_le32(chtoc + 8);
    chtoc += 12;
    if (flags & 1) {
        cpu_physical_memory_write(0x48307270, chtoc + 0x00, 4); /* PRM_CLKSRC_CTRL */
        cpu_physical_memory_write(0x48306d40, chtoc + 0x04, 4); /* PRM_CLKSEL */
        cpu_physical_memory_write(0x48005140, chtoc + 0x08, 4); /* CM_CLKSEL1_EMU */
        if (flags & (1 << 2)) { /* clock configuration */
            cpu_physical_memory_write(0x48004a40, chtoc + 0x0c, 4); /* CM_CLKSEL_CORE */
            cpu_physical_memory_write(0x48004c40, chtoc + 0x10, 4); /* CM_CLKSEL_WKUP */
        }
        if (flags & (1 << 5)) { /* DPLL3 CORE */
            if (flags & (1 << 8)) { /* enable DPLL3 bypass */
                cpu_physical_memory_read(0x48004d00, (uint8_t *)&x, 4);
                x &= ~7; x |= 5; /* set DPLL3 bypass */
                cpu_physical_memory_write(0x48004d00, (uint8_t *)&x, 4);
            }
            cpu_physical_memory_write(0x48004d00, chtoc + 0x14, 4); /* CM_CLKEN_PLL */
            cpu_physical_memory_write(0x48004d30, chtoc + 0x18, 4); /* CM_AUTOIDLE_PLL */
            cpu_physical_memory_write(0x48004d40, chtoc + 0x1c, 4); /* CM_CLKSEL1_PLL */
        }
        if (flags & (1 << 3)) { /* DPLL4 PER */
            if (flags & (1 << 6)) { /* enable DPLL4 bypass */
                cpu_physical_memory_read(0x48004d00, (uint8_t *)&x, 4);
                x &= ~0x70000; x |= 0x10000; /* set DPLL4 in stop mode */
                cpu_physical_memory_write(0x48004d00, (uint8_t *)&x, 4);
            }
            cpu_physical_memory_write(0x48004d00, chtoc + 0x20, 4); /* CM_CLKEN_PLL */
            cpu_physical_memory_write(0x48004d30, chtoc + 0x24, 4); /* CM_AUTOIDLE_PLL */
            cpu_physical_memory_write(0x48004d44, chtoc + 0x28, 4); /* CM_CLKSEL2_PLL */
            cpu_physical_memory_write(0x48004d48, chtoc + 0x2c, 4); /* CM_CLKSEL3_PLL */
        }
        if (flags & (1 << 3)) { /* DPLL1 MPU */
            if (flags & (1 << 7)) { /* enable DPLL1 bypass */
                cpu_physical_memory_read(0x48004904, (uint8_t *)&x, 4);
                x &= ~7; x |= 5; /* set DPLL1 bypass */
                cpu_physical_memory_write(0x48004904, (uint8_t *)&x, 4);
            }
            cpu_physical_memory_write(0x48004904, chtoc + 0x30, 4); /* CM_CLKEN_PLL_MPU */
            cpu_physical_memory_write(0x48004934, chtoc + 0x34, 4); /* CM_AUTOIDLE_PLL_MPU */
            cpu_physical_memory_write(0x48004940, chtoc + 0x38, 4); /* CM_CLKSEL1_PLL_MPU */
            cpu_physical_memory_write(0x48004944, chtoc + 0x3c, 4); /* CM_CLKSEL2_PLL_MPU */
            cpu_physical_memory_write(0x48004948, chtoc + 0x40, 4); /* CM_CLKSTCTRL_MPU */
        }
        switch ((flags >> 24) & 0xff) {
            case 0x01: x = 0; break; /* 12MHz */
            case 0x02: x = 1; break; /* 13MHz */
            case 0x03: x = 5; break; /* 16.8MHz */
            case 0x04: x = 2; break; /* 19.2MHz */
            case 0x05: x = 3; break; /* 26MHz */
            case 0x06: x = 4; break; /* 38.4MHz */
            default:
                TRACE("unsupported SYS.CLK setting (0x%02x)", (flags >> 24) & 0xff);
                x = 1;
                break;
        }
        if (x != omap3_get_le32(chtoc + 0x04)) {
            TRACE("mismatch in SYS.CLK id and PRM_CLKSEL value");
        }
    }
}

static void omap3_boot_chram(struct omap3_boot_s *boot,
                             const uint8_t *chtoc)
{
    if (omap3_get_le32(chtoc) != 0xc0c0c0c2) {
        TRACE("invalid section verification key");
        return;
    }
    if (!chtoc[4]) { /* section disabled? */
        return;
    }
    boot->chflags |= 0x02;
    omap3_boot_setlsb(0x6d000040, omap3_get_le16(chtoc + 0x0a)); /* SDRC_CS_CFG */
    omap3_boot_setlsb(0x6d000044, omap3_get_le16(chtoc + 0x0c)); /* SDRC_SHARING */
    cpu_physical_memory_write(0x6d000060, chtoc + 0x10, 4);      /* SDRC_DLLA_CTRL */
    
    cpu_physical_memory_write(0x6d000080, chtoc + 0x20, 4);      /* SDRC_MCFG_0 */
    omap3_boot_setlsb(0x6d000084, omap3_get_le16(chtoc + 0x24)); /* SDRC_MR_0 */
    omap3_boot_setlsb(0x6d000088, omap3_get_le16(chtoc + 0x26)); /* SDRC_EMR1_0? */
    omap3_boot_setlsb(0x6d00008c, omap3_get_le16(chtoc + 0x28)); /* SDRC_EMR2_0 */
    omap3_boot_setlsb(0x6d000090, omap3_get_le16(chtoc + 0x2a)); /* SDRC_EMR3_0? */
    cpu_physical_memory_write(0x6d00009c, chtoc + 0x2c, 4);      /* SDRC_ACTIM_CTRLA_0 */
    cpu_physical_memory_write(0x6d0000a0, chtoc + 0x30, 4);      /* SDRC_ACTIM_CTRLB_0 */
    cpu_physical_memory_write(0x6d0000a4, chtoc + 0x34, 4);      /* SDRC_RFR_CTRL_0 */
    
    cpu_physical_memory_write(0x6d0000b0, chtoc + 0x20, 4);      /* SDRC_MCFG_1 */
    omap3_boot_setlsb(0x6d0000b4, omap3_get_le16(chtoc + 0x24)); /* SDRC_MR_1 */
    omap3_boot_setlsb(0x6d0000b8, omap3_get_le16(chtoc + 0x26)); /* SDRC_EMR1_1? */
    omap3_boot_setlsb(0x6d0000bc, omap3_get_le16(chtoc + 0x28)); /* SDRC_EMR2_1 */
    omap3_boot_setlsb(0x6d0000c0, omap3_get_le16(chtoc + 0x2a)); /* SDRC_EMR3_1? */
    cpu_physical_memory_write(0x6d0000cc, chtoc + 0x2c, 4);      /* SDRC_ACTIM_CTRLA_1 */
    cpu_physical_memory_write(0x6d0000d0, chtoc + 0x30, 4);      /* SDRC_ACTIM_CTRLB_1 */
    cpu_physical_memory_write(0x6d0000d4, chtoc + 0x34, 4);      /* SDRC_RFR_CTRL_1 */
}

static void omap3_boot_chflash(struct omap3_boot_s *boot,
                               const uint8_t *chtoc)
{
    if (omap3_get_le32(chtoc) != 0xc0c0c0c3) {
        TRACE("invalid section verification key");
        return;
    }
    if (!chtoc[4]) { /* section disabled? */
        return;
    }
    boot->chflags |= 0x04;
    omap3_boot_setlsb(0x6e000010, omap3_get_le16(chtoc + 0x08)); /* GPMC_SYSCONFIG */
    omap3_boot_setlsb(0x6e00001c, omap3_get_le16(chtoc + 0x0a)); /* GPMC_IRQENABLE */
    omap3_boot_setlsb(0x6e000040, omap3_get_le16(chtoc + 0x0c)); /* GPMC_TIMEOUT_CONTROL */
    omap3_boot_setlsb(0x6e000050, omap3_get_le16(chtoc + 0x0e)); /* GPMC_CONFIG */
    cpu_physical_memory_write(0x6e000060, chtoc + 0x10, 4);      /* GPMC_CONFIG1_0 */
    cpu_physical_memory_write(0x6e000064, chtoc + 0x14, 4);      /* GPMC_CONFIG2_0 */
    cpu_physical_memory_write(0x6e000068, chtoc + 0x18, 4);      /* GPMC_CONFIG3_0 */
    cpu_physical_memory_write(0x6e00006c, chtoc + 0x1c, 4);      /* GPMC_CONFIG4_0 */
    cpu_physical_memory_write(0x6e000070, chtoc + 0x20, 4);      /* GPMC_CONFIG5_0 */
    cpu_physical_memory_write(0x6e000074, chtoc + 0x24, 4);      /* GPMC_CONFIG6_0 */
    cpu_physical_memory_write(0x6e000078, chtoc + 0x28, 4);      /* GPMC_CONFIG7_0 */
    cpu_physical_memory_write(0x6e0001e0, chtoc + 0x2c, 4);      /* GPMC_PREFETCH_CONFIG1 */
    omap3_boot_setlsb(0x6e0001e4, omap3_get_le16(chtoc + 0x30)); /* GPMC_PREFETCH_CONFIG2 */
    omap3_boot_setlsb(0x6e0001ec, omap3_get_le16(chtoc + 0x32)); /* GPMC_PREFETCH_CONTROL */
    /* TODO: ECC config registers. The TRM spec is not clear on these */
}

static void omap3_boot_chmmcsd(struct omap3_boot_s *boot,
                               const uint8_t *chtoc)
{
    if (omap3_get_le32(chtoc) != 0xc0c0c0c4) {
        TRACE("invalid section verification key");
        return;
    }
    if (!chtoc[4]) { /* section disabled? */
        return;
    }
    boot->chflags |= 0x08;
    /* TODO: MMCHS registers */
}

/* returns non-zero if more blocks are needed */
static uint32_t omap3_boot_block(const uint8_t *data,
                                 uint32_t data_len,
                                 struct omap3_boot_s *s)
{
    const uint8_t *p = 0;
    uint32_t i = 0;
    
    switch (s->state) {
        case confighdr:
            i = data_len;
            for (p = data; i >= 32 && omap3_get_le32(p) != 0xffffffff; p += 32, i -= 32) {
                if (!strcasecmp((char *)(p + 0x14), "chsettings"))
                    omap3_boot_chsettings(s, p + omap3_get_le32(p));
                else if (!strcasecmp((char *)(p + 0x14), "chram"))
                    omap3_boot_chram(s, p + omap3_get_le32(p));
                else if (!strcasecmp((char *)(p + 0x14), "chflash"))
                    omap3_boot_chflash(s, p + omap3_get_le32(p));
                else if (!strcasecmp((char *)(p + 0x14), "chmmcsd"))
                    omap3_boot_chmmcsd(s, p + omap3_get_le32(p));
                else {
                    TRACE("unknown CHTOC item \"%s\"", (char *)(p + 0x14));
                }
            }
            data += 512;
            data_len -= 512;
            s->state = chdone;
            /* fallthrough */
        case chdone:
            s->state = imagehdr;
            /* fallthrough */
        case imagehdr:
            if (!data_len)
                return 1;
            if (data_len < 8)
                break;
            s->count = omap3_get_le32(data);
            s->addr = omap3_get_le32(data + 4);
            if (!s->count || (s->count >> 24) || !s->addr || s->addr == 0xffffffff)
                break;
            /* patch image start address in boot ROM */
            cpu_physical_memory_write_rom(0x40014040, data + 4, 4);
            /* start copying image */
            data += 8;
            data_len -= 8;
            s->state = copy;
            /* fallthrough */
        case copy:
            i = (s->count >= data_len) ? data_len : s->count;
            cpu_physical_memory_write(s->addr, data, i);
            s->addr += i;
            s->count -= i;
            if (!s->count)
                s->state = done;
            return s->count;
        default:
            break;
    }
    return 0;
}

/* returns non-zero if boot has finished succesfully */
static int omap3_boot_finish(struct omap3_boot_s *s)
{
    uint8_t x[12] = {
        0, 0, 0, 0, /* last received booting message */
        (uint8_t)s->devicetype,
        0,
        1, /* POR */
        s->chflags,
        0, 0, 0, 0 /* device descriptor */
    };
    int result = (s->state == done);

    if (result) {
        /* fill in the booting parameter structure */
        cpu_physical_memory_write_rom(0x40014044, x, 12);
    }
    free(s);
    return result;
}

/* returns ptr to matching dir entry / zero entry or 0 if unsuccessful */
static const uint8_t *omap3_scan_fat_dir_sector(const uint8_t *s)
{
    int i;
    
    /* there are 0x10 items with 0x20 bytes per item */
    for (i = 0x10; i--; s += 0x20) {
        if (*s == 0xe5 || (s[0x0b] & 0x0f) == 0x0f) continue; /* erased/LFN */
        if (!*s || !strncasecmp((void *)s, "mlo        ", 8+3)) return s;
    }
    return 0;
}

struct omap3_fat_drv_s {
    BlockDriverState *bs;
    uint8_t ptype; /* 12, 16, 32 */
    uint64_t c0;   /* physical byte offset for data cluster 0 */
    uint64_t fat;  /* physical byte offset for used FAT sector 0 */
    uint32_t spc;  /* sectors per cluster */
};

/* returns cluster data in the buffer and next cluster chain number
 or 0 if unsuccessful */
static uint32_t omap3_read_fat_cluster(uint8_t *data,
                                       struct omap3_fat_drv_s *drv,
                                       uint32_t cl)
{
    uint8_t buf[ 4 ];
    uint32_t len = drv->spc * 0x200; /* number of bytes to read */
    
    switch (drv->ptype) { /* check for EOF */
        case 12: if (cl > 0xff0) return 0; break;
        case 16: if (cl > 0xfff0) return 0; break;
        case 32: if (cl > 0x0ffffff0) return 0; break;
        default: return 0;
    }
    
    if (bdrv_pread(drv->bs, 
                   drv->c0 + (cl - 2) * len,
                   data, len) != len)
        return 0;
    
    switch (drv->ptype) { /* determine next cluster # */
        case 12:
            hw_error("%s: FAT12 parsing not implemented!", __FUNCTION__);
            break;
        case 16:
            return (bdrv_pread(drv->bs, drv->fat + cl * 2, buf, 2) != 2)
            ? 0 : omap3_get_le16(buf);
        case 32:
            return (bdrv_pread(drv->bs, drv->fat + cl * 4, buf, 4) != 4)
            ? 0 : omap3_get_le32(buf) & 0x0fffffff;
        default:
            break;
    }
    return 0;
}

static int omap3_mmc_fat_boot(BlockDriverState *bs,
                              uint8_t *sector,
                              uint32_t pstart,
                              struct omap_mpu_state_s *mpu)
{
    struct omap3_fat_drv_s drv;
    struct omap3_boot_s *boot;
    uint32_t i, j, cluster0, fatsize, bootsize, rootsize;
    const uint8_t *p, *q;
    uint8_t *cluster;
    int result = 0;
    
    /* determine FAT type */
    
    drv.bs = bs;
    fatsize = omap3_get_le16(sector + 0x16);
    if (!fatsize) 
        fatsize = omap3_get_le32(sector + 0x24);
    bootsize = omap3_get_le16(sector + 0x0e);
    cluster0 = bootsize + fatsize * sector[0x10];
    rootsize = omap3_get_le16(sector + 0x11);
    if (rootsize & 0x0f)
        rootsize += 0x10;
    rootsize >>= 4;
    drv.spc = sector[0x0d];
    i = omap3_get_le16(sector + 0x13);
    if (!i)
        i = omap3_get_le32(sector + 0x20);
    i = (i - (cluster0 + rootsize)) / drv.spc;
    drv.ptype = (i < 4085) ? 12 : (i < 65525) ? 16 : 32;
    
    /* search for boot loader file */
    
    drv.fat = (bootsize + pstart) * 0x200;
    drv.c0 = (cluster0 + pstart) * 0x200;
    if (drv.ptype == 32) {
        i = omap3_get_le32(sector + 0x2c); /* first root cluster # */
        j = omap3_get_le16(sector + 0x28);
        if (j & 0x80)
            drv.fat += (j & 0x0f) * fatsize * 0x200;
        cluster = g_malloc0(drv.spc * 0x200);
        for (p = 0; !p && (i = omap3_read_fat_cluster(cluster, &drv, i)); ) {
            for (j = drv.spc, q=cluster; j-- && !p; q += 0x200)
                p = omap3_scan_fat_dir_sector(q);
            if (p) {
                memcpy(sector, p, 0x200); /* save the sector */
                /* allows referring to p after freeing cluster */
                p = sector;
            }
        }
        free(cluster);
    } else { /* FAT12/16 */
        /*
         * drv.c0 points to start of root directory
         */
        for (i = rootsize, j = 0, p = 0; i-- && !p; j++) {
            if (bdrv_pread(drv.bs, drv.c0 + j * 0x200, sector, 0x200) != 0x200)
                break;
            p = omap3_scan_fat_dir_sector(sector);
        }
        /*
         * Adjust start of clusters to point after the root directory.
         */
        drv.c0 += 0x200 * rootsize;
    }
    
    if (p && *p) { /* did we indeed find the file? */
        /*
         * FAT16 Spec says to ignore bytes at offset 0x14 (the FAT32
         * high-order cylinder number bytes); but the omap3 bootrom
         * seems always to use them.
         */
        i = omap3_get_le16(p + 0x14);
        i <<= 16;
        i |= omap3_get_le16(p + 0x1a);
        j = drv.spc * 0x200;
        uint8 *data = g_malloc0(j);
        if ((i = omap3_read_fat_cluster(data, &drv, i))) {
            boot = omap3_boot_init(mpu, mmc1, data, j);
            while (omap3_boot_block(data, j, boot))
                i = omap3_read_fat_cluster(data, &drv, i);
            result = omap3_boot_finish(boot);
        } else {
            TRACE("unable to read MLO file contents from SD card");
        }
        free(data);
    } else {
        TRACE("MLO file not found in the root directory");
    }
    return result;
}

static int omap3_mmc_raw_boot(BlockDriverState *bs,
                              uint8_t *sector,
                              struct omap_mpu_state_s *mpu)
{
    struct omap3_boot_s *boot;
    uint32_t i = 0;
    int result = 0;
    /* We try to load an image from sectors 0 and 256 */
    uint32_t boot_sectors[] = { 0, 256 };
    int idx;

    for (idx = 0; !result && idx < ARRAY_SIZE(boot_sectors); idx++) {
        i = boot_sectors[idx];
        if (bdrv_pread(bs, i * 0x200, sector, 0x200) != 0x200) {
            TRACE("error trying to read sector %u on boot device", i);
            continue;
        }

        boot = omap3_boot_init(mpu, mmc1, sector, 0x200);
        if (boot->state == confighdr) {
            /* CH must be present for raw boot */
            while (omap3_boot_block(sector, 0x200, boot)) {
                i++;
                if (bdrv_pread(bs, i * 0x200, sector, 0x200) != 0x200) {
                    TRACE("error trying to read sector %u on boot device", i);
                    break;
                }
            }
        }

        result = (boot->state == done);
        free(boot);
    }
    return result;
}

/* returns non-zero if successful, zero if unsuccessful */
static int omap3_mmc_boot(struct omap_mpu_state_s *s)
{
    DriveInfo *di = drive_get(IF_SD, 0, 0);
    uint8_t *sector, *p;
    uint32_t pstart, i;
    int result = 0;
    
    /* very simple implementation for GP device boot,
     supports only two modes:
     1. MBR partition table with an active FAT partition
     and boot loader file (MLO) in its root directory, or
     2. CH sector located on first sector, followed by boot loader image */
    if (di) {
        sector = g_malloc0(0x200);
        if (bdrv_pread(di->bdrv, 0, sector, 0x200) == 0x200) {
            for (i = 0, p = sector + 0x1be; i < 4; i++, p += 0x10) 
                if (p[0] == 0x80) break;
            if (sector[0x1fe] == 0x55 && sector[0x1ff] == 0xaa /* signature */
                && i < 4 /* active partition exists */
                && (p[4] == 1 || p[4] == 4 || p[4] == 6 || p[4] == 11
                    || p[4] == 12 || p[4] == 14 || p[4] == 15) /* FAT */
                && bdrv_pread(di->bdrv,
                              (pstart = omap3_get_le32(p + 8)) * 0x200,
                              sector, 0x200) == 0x200
                && sector[0x1fe] == 0x55 && sector[0x1ff] == 0xaa)
                result = omap3_mmc_fat_boot(di->bdrv, sector, pstart, s);
            else
                result = omap3_mmc_raw_boot(di->bdrv, sector, s);
        }
        free(sector);
    }
    return result;
}

static inline void omap3_nand_sendcmd(struct omap3_nand_boot_desc_s *nd,
                                      uint8_t cmd)
{
    uint8_t x[2] = {cmd, 0};
    cpu_physical_memory_write(0x6e00007c, x, nd->bus16 ? 2 : 1);
}

static inline void omap3_nand_sendaddr_byte(struct omap3_nand_boot_desc_s *nd,
                                            uint8_t a)
{
    uint8_t x[2] = { a, 0 };
    
    cpu_physical_memory_write(0x6e000080, x, nd->bus16 ? 2 : 1);
}

static inline uint8_t omap3_nand_readbyte(struct omap3_nand_boot_desc_s *nd)
{
    uint8_t x[2];
    
    cpu_physical_memory_read(0x6e000084, x, nd->bus16 ? 2 : 1);
    return x[0];
}

static inline void omap3_nand_readpage(struct omap3_nand_boot_desc_s *nd,
                                       uint32_t pageaddr,
                                       uint8_t *data)
{
    uint32_t i;
    
    omap3_nand_sendcmd(nd, 0x00); /* read page */
    omap3_nand_sendaddr_byte(nd, 0x00);
    if (nd->pagesize >= 2048) {
        omap3_nand_sendaddr_byte(nd, 0x00);
        omap3_nand_sendaddr_byte(nd, (uint8_t)(pageaddr & 0xff));
        omap3_nand_sendaddr_byte(nd, (uint8_t)((pageaddr >> 8) & 0xff));
        if (nd->capacity_Mb >= 2048)
            omap3_nand_sendaddr_byte(nd, (uint8_t)((pageaddr >> 16) & 0xff));
        omap3_nand_sendcmd(nd, 0x30); /* confirm read */
    } else {
        omap3_nand_sendaddr_byte(nd, (uint8_t)(pageaddr & 0xff));
        omap3_nand_sendaddr_byte(nd, (uint8_t)((pageaddr >> 8) & 0xff));
    }
    if (nd->bus16) {
        for (i = nd->pagesize / 2; i--; data += 2)
            cpu_physical_memory_read(0x6e000084, data, 2);
    } else {
        for (i = nd->pagesize; i--; data++)
            cpu_physical_memory_read(0x6e000084, data, 1);
    }
}

/* returns non-zero if successful, zero if unsuccessful */
static int omap3_nand_boot(struct omap_mpu_state_s *mpu, int bus16)
{
    struct omap3_nand_boot_desc_s *nd;
    struct omap3_boot_s *boot;
    uint8_t *data;
    uint32_t page = 0;
    int result = 0, i;
    uint8_t id[4];
    
    /* TODO: support bad block marks */
    nd = g_malloc0(sizeof(struct omap3_nand_boot_desc_s));
    nd->bus16 = bus16;
    omap3_nand_sendcmd(nd, 0xff); /* reset */
    omap3_nand_sendcmd(nd, 0x90); /* read id */
    omap3_nand_sendaddr_byte(nd, 0);
    id[0] = omap3_nand_readbyte(nd); /* manufacturer id */
    id[1] = omap3_nand_readbyte(nd); /* device id */
    id[2] = omap3_nand_readbyte(nd); /* don't care */
    id[3] = omap3_nand_readbyte(nd); /* attributes */
    for (i = 0; omap3_boot_nand_devices[i].id; i++) {
        if (omap3_boot_nand_devices[i].id == id[1]) {
            nd->capacity_Mb = omap3_boot_nand_devices[i].capacity_Mb;
            if (nd->capacity_Mb > 1024)
                nd->pagesize = 1024 * (1 << (id[3] & 3));
            else
                nd->pagesize = omap3_boot_nand_devices[i].pagesize;
            break;
        }
    }
    /* TODO: if device is not recognized at this state, we should
     * issue READ ID2 command to the device and get device parameters
     * from there */
    if (nd->pagesize) {
        data = g_malloc0(nd->pagesize);
        /* TODO: scan through 4 first blocks for image */
        omap3_nand_readpage(nd, 0, data);
        boot = omap3_boot_init(mpu, nand, data, nd->pagesize);
        while (omap3_boot_block(data, nd->pagesize, boot))
            omap3_nand_readpage(nd, ++page, data);
        result = omap3_boot_finish(boot);
        free(data);
    }
    free(nd);
    return result;
}

static inline void omap3_onenand_writereg(uint16_t reg, uint16_t value)
{
    cpu_to_le16s(&value);
    cpu_physical_memory_write(0x08000000 + (reg << 1), (void *)&value, 2);
}

static inline uint16_t omap3_onenand_readreg(uint16_t reg)
{
    uint16_t value;
    cpu_physical_memory_read(0x08000000 + (reg << 1), (void *)&value, 2);
    return le16_to_cpu(value);
}

static int omap3_onenand_readpage(uint16_t pagesize,
                                  uint16_t b,
                                  uint16_t p,
                                  uint8_t *d)
{
    omap3_onenand_writereg(0xf100, b);
    omap3_onenand_writereg(0xf107, (p & 0x3f) << 2);
    omap3_onenand_writereg(0xf200, 0x0800);
    omap3_onenand_writereg(0xf101, 0);
    omap3_onenand_writereg(0xf241, 0);
    omap3_onenand_writereg(0xf220, 0);
    if (!(omap3_onenand_readreg(0xf241) & 0x8000) ||
        (omap3_onenand_readreg(0xf240) & 0x0400))
        return 0;
    cpu_physical_memory_read(0x08000400, (void *)d, pagesize);
    return 1;
}

static int omap3_onenand_boot(struct omap_mpu_state_s *s)
{
    uint32_t x;
    uint16_t i, j, pagesize;
    uint8_t *page;
    struct omap3_boot_s *boot;
    int result = 0;

    /* reset device type at cs0: 16bit NOR, no wait monitoring */
    cpu_to_le32wu(&x, 0x79001000);
    cpu_physical_memory_write(0x6e000060, (void *)&x, 4); /* GPMC_CONFIG1_0 */
    /* map cs0 at 0x08000000 */
    cpu_to_le32wu(&x, 0x00000848);
    cpu_physical_memory_write(0x6e000078, (void *)&x, 4); /* GPMC_CONFIG7_0 */
    /* try to read onenand registers */
    x = omap3_onenand_readreg(0xf000);                    /* manufacturer id */
    if (!x || (x >> 8)) { /* we accept any non-zero 8bit id */
        return 0;
    }
    pagesize = omap3_onenand_readreg(0xf003);
    if (pagesize != 2048 && pagesize != 1024) {
        hw_error("%s: OneNAND page size %d not supported",
                __FUNCTION__, pagesize);
        return 0;
    }
    /* search for boot loader */
    page = g_malloc0(pagesize);
    for (i = 0; i < 4; i++) { /* search 4 blocks */
        if (omap3_onenand_readpage(pagesize, i, 0, page)) {
            boot = omap3_boot_init(s, onenand, page, pagesize);
            for (j = 1; omap3_boot_block(page, pagesize, boot); j++)
                if (!omap3_onenand_readpage(pagesize, i, j, page))
                    break;
            result = omap3_boot_finish(boot);
            if (result)
                break;
        }
    }
    free(page);
    return result;
}

void omap3_boot_rom_init(struct omap_mpu_state_s *s)
{
    const uint8_t rom_version[4] = { 0x00, 0x14, 0x00, 0x00 }; /* v. 14.00 */

    if (!s->bootrom_initialized) {
        s->bootrom_initialized = 1;
        memory_region_init_ram(&s->bootrom, "omap3_boot_rom",
                               OMAP3XXX_BOOTROM_SIZE);
        memory_region_set_readonly(&s->bootrom, true);
        memory_region_add_subregion(get_system_memory(),
                                    OMAP3_Q1_BASE + 0x14000,
                                    &s->bootrom);
        cpu_physical_memory_write_rom(OMAP3_Q1_BASE + 0x14000,
                                      omap3_boot_rom,
                                      sizeof(omap3_boot_rom));
        cpu_physical_memory_write_rom(OMAP3_Q1_BASE + 0x1bffc,
                                      rom_version,
                                      sizeof(rom_version));
        cpu_physical_memory_write(OMAP3_SRAM_BASE + 0xffc8,
                                  omap3_sram_vectors,
                                  sizeof(omap3_sram_vectors));
    }
}

void omap3_boot_rom_emu(struct omap_mpu_state_s *s)
{
    uint8_t x[4] = {0, 0, 0, 0};
    int result = 0;
    
    /* only emulate the boot rom if it was initialized earlier */
    if (!s->bootrom_initialized) {
        return;
    }
    
    /* here we are relying on all memories to be attached and gpmc_attach
     * to fill in DEVICETYPE field correctly for CS0 for us */
    cpu_physical_memory_read(0x6e000060, x, 4); /* GPMC_CONFIG1_0 */
    switch (((x[1] >> 2) & 3)) {
        case 0: /* NOR */
            result = omap3_onenand_boot(s);
            break;
        case 2: /* NAND */
            result = omap3_nand_boot(s, ((x[1] >> 4) & 3) == 1);
            break;
        default:
            break;
    }

    /* if no boot loader found yet, try the MMC/SD card... */
    if (!result)
        result = omap3_mmc_boot(s);

    /* move PC to the boot ROM reset vector */
    s->cpu->env.regs[15] = 0x40014000;

    if (!result) { /* no boot device found */
        /* move PC to the appropriate ROM dead loop address */
        s->cpu->env.regs[15] = 0x400140a4;
        /* ...on second thought, let's just call it a day and quit */
        hw_error("no boot device found");
    }
}