aboutsummaryrefslogtreecommitdiff
path: root/disas/libvixl/vixl/invalset.h
blob: ffdc0237b47ca7d915858ecd0408b1f5d9e85d50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//   * Redistributions of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//   * Redistributions in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//   * Neither the name of ARM Limited nor the names of its contributors may be
//     used to endorse or promote products derived from this software without
//     specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef VIXL_INVALSET_H_
#define VIXL_INVALSET_H_

#include <string.h>

#include <algorithm>
#include <vector>

#include "vixl/globals.h"

namespace vixl {

// We define a custom data structure template and its iterator as `std`
// containers do not fit the performance requirements for some of our use cases.
//
// The structure behaves like an iterable unordered set with special properties
// and restrictions. "InvalSet" stands for "Invalidatable Set".
//
// Restrictions and requirements:
// - Adding an element already present in the set is illegal. In debug mode,
//   this is checked at insertion time.
// - The templated class `ElementType` must provide comparison operators so that
//   `std::sort()` can be used.
// - A key must be available to represent invalid elements.
// - Elements with an invalid key must compare higher or equal to any other
//   element.
//
// Use cases and performance considerations:
// Our use cases present two specificities that allow us to design this
// structure to provide fast insertion *and* fast search and deletion
// operations:
// - Elements are (generally) inserted in order (sorted according to their key).
// - A key is available to mark elements as invalid (deleted).
// The backing `std::vector` allows for fast insertions. When
// searching for an element we ensure the elements are sorted (this is generally
// the case) and perform a binary search. When deleting an element we do not
// free the associated memory immediately. Instead, an element to be deleted is
// marked with the 'invalid' key. Other methods of the container take care of
// ignoring entries marked as invalid.
// To avoid the overhead of the `std::vector` container when only few entries
// are used, a number of elements are preallocated.

// 'ElementType' and 'KeyType' are respectively the types of the elements and
// their key.  The structure only reclaims memory when safe to do so, if the
// number of elements that can be reclaimed is greater than `RECLAIM_FROM` and
// greater than `<total number of elements> / RECLAIM_FACTOR.
#define TEMPLATE_INVALSET_P_DECL                                               \
  class ElementType,                                                           \
  unsigned N_PREALLOCATED_ELEMENTS,                                            \
  class KeyType,                                                               \
  KeyType INVALID_KEY,                                                         \
  size_t RECLAIM_FROM,                                                         \
  unsigned RECLAIM_FACTOR

#define TEMPLATE_INVALSET_P_DEF                                                \
ElementType, N_PREALLOCATED_ELEMENTS,                                          \
KeyType, INVALID_KEY, RECLAIM_FROM, RECLAIM_FACTOR

template<class S> class InvalSetIterator;  // Forward declaration.

template<TEMPLATE_INVALSET_P_DECL> class InvalSet {
 public:
  InvalSet();
  ~InvalSet();

  static const size_t kNPreallocatedElements = N_PREALLOCATED_ELEMENTS;
  static const KeyType kInvalidKey = INVALID_KEY;

  // It is illegal to insert an element already present in the set.
  void insert(const ElementType& element);

  // Looks for the specified element in the set and - if found - deletes it.
  void erase(const ElementType& element);

  // This indicates the number of (valid) elements stored in this set.
  size_t size() const;

  // Returns true if no elements are stored in the set.
  // Note that this does not mean the the backing storage is empty: it can still
  // contain invalid elements.
  bool empty() const;

  void clear();

  const ElementType min_element();

  // This returns the key of the minimum element in the set.
  KeyType min_element_key();

  static bool IsValid(const ElementType& element);
  static KeyType Key(const ElementType& element);
  static void SetKey(ElementType* element, KeyType key);

 protected:
  // Returns a pointer to the element in vector_ if it was found, or NULL
  // otherwise.
  ElementType* Search(const ElementType& element);

  // The argument *must* point to an element stored in *this* set.
  // This function is not allowed to move elements in the backing vector
  // storage.
  void EraseInternal(ElementType* element);

  // The elements in the range searched must be sorted.
  ElementType* BinarySearch(const ElementType& element,
                            ElementType* start,
                            ElementType* end) const;

  // Sort the elements.
  enum SortType {
    // The 'hard' version guarantees that invalid elements are moved to the end
    // of the container.
    kHardSort,
    // The 'soft' version only guarantees that the elements will be sorted.
    // Invalid elements may still be present anywhere in the set.
    kSoftSort
  };
  void Sort(SortType sort_type);

  // Delete the elements that have an invalid key. The complexity is linear
  // with the size of the vector.
  void Clean();

  const ElementType Front() const;
  const ElementType Back() const;

  // Delete invalid trailing elements and return the last valid element in the
  // set.
  const ElementType CleanBack();

  // Returns a pointer to the start or end of the backing storage.
  const ElementType* StorageBegin() const;
  const ElementType* StorageEnd() const;
  ElementType* StorageBegin();
  ElementType* StorageEnd();

  // Returns the index of the element within the backing storage. The element
  // must belong to the backing storage.
  size_t ElementIndex(const ElementType* element) const;

  // Returns the element at the specified index in the backing storage.
  const ElementType* ElementAt(size_t index) const;
  ElementType* ElementAt(size_t index);

  static const ElementType* FirstValidElement(const ElementType* from,
                                              const ElementType* end);

  void CacheMinElement();
  const ElementType CachedMinElement() const;

  bool ShouldReclaimMemory() const;
  void ReclaimMemory();

  bool IsUsingVector() const { return vector_ != NULL; }
  void set_sorted(bool sorted) { sorted_ = sorted; }

  // We cache some data commonly required by users to improve performance.
  // We cannot cache pointers to elements as we do not control the backing
  // storage.
  bool valid_cached_min_;
  size_t cached_min_index_;  // Valid iff `valid_cached_min_` is true.
  KeyType cached_min_key_;         // Valid iff `valid_cached_min_` is true.

  // Indicates whether the elements are sorted.
  bool sorted_;

  // This represents the number of (valid) elements in this set.
  size_t size_;

  // The backing storage is either the array of preallocated elements or the
  // vector. The structure starts by using the preallocated elements, and
  // transitions (permanently) to using the vector once more than
  // kNPreallocatedElements are used.
  // Elements are only invalidated when using the vector. The preallocated
  // storage always only contains valid elements.
  ElementType preallocated_[kNPreallocatedElements];
  std::vector<ElementType>* vector_;

#ifdef VIXL_DEBUG
  // Iterators acquire and release this monitor. While a set is acquired,
  // certain operations are illegal to ensure that the iterator will
  // correctly iterate over the elements in the set.
  int monitor_;
  int monitor() const { return monitor_; }
  void Acquire() { monitor_++; }
  void Release() {
    monitor_--;
    VIXL_ASSERT(monitor_ >= 0);
  }
#endif

  friend class InvalSetIterator<InvalSet<TEMPLATE_INVALSET_P_DEF> >;
  typedef ElementType _ElementType;
  typedef KeyType _KeyType;
};


template<class S> class InvalSetIterator {
 private:
  // Redefine types to mirror the associated set types.
  typedef typename S::_ElementType ElementType;
  typedef typename S::_KeyType KeyType;

 public:
  explicit InvalSetIterator(S* inval_set);
  ~InvalSetIterator();

  ElementType* Current() const;
  void Advance();
  bool Done() const;

  // Mark this iterator as 'done'.
  void Finish();

  // Delete the current element and advance the iterator to point to the next
  // element.
  void DeleteCurrentAndAdvance();

  static bool IsValid(const ElementType& element);
  static KeyType Key(const ElementType& element);

 protected:
  void MoveToValidElement();

  // Indicates if the iterator is looking at the vector or at the preallocated
  // elements.
  const bool using_vector_;
  // Used when looking at the preallocated elements, or in debug mode when using
  // the vector to track how many times the iterator has advanced.
  size_t index_;
  typename std::vector<ElementType>::iterator iterator_;
  S* inval_set_;
};


template<TEMPLATE_INVALSET_P_DECL>
InvalSet<TEMPLATE_INVALSET_P_DEF>::InvalSet()
  : valid_cached_min_(false),
    sorted_(true), size_(0), vector_(NULL) {
#ifdef VIXL_DEBUG
  monitor_ = 0;
#endif
}


template<TEMPLATE_INVALSET_P_DECL>
InvalSet<TEMPLATE_INVALSET_P_DEF>::~InvalSet() {
  VIXL_ASSERT(monitor_ == 0);
  delete vector_;
}


template<TEMPLATE_INVALSET_P_DECL>
void InvalSet<TEMPLATE_INVALSET_P_DEF>::insert(const ElementType& element) {
  VIXL_ASSERT(monitor() == 0);
  VIXL_ASSERT(IsValid(element));
  VIXL_ASSERT(Search(element) == NULL);
  set_sorted(empty() || (sorted_ && (element > CleanBack())));
  if (IsUsingVector()) {
    vector_->push_back(element);
  } else {
    if (size_ < kNPreallocatedElements) {
      preallocated_[size_] = element;
    } else {
      // Transition to using the vector.
      vector_ = new std::vector<ElementType>(preallocated_,
                                             preallocated_ + size_);
      vector_->push_back(element);
    }
  }
  size_++;

  if (valid_cached_min_ && (element < min_element())) {
    cached_min_index_ = IsUsingVector() ? vector_->size() - 1 : size_ - 1;
    cached_min_key_ = Key(element);
    valid_cached_min_ = true;
  }

  if (ShouldReclaimMemory()) {
    ReclaimMemory();
  }
}


template<TEMPLATE_INVALSET_P_DECL>
void InvalSet<TEMPLATE_INVALSET_P_DEF>::erase(const ElementType& element) {
  VIXL_ASSERT(monitor() == 0);
  VIXL_ASSERT(IsValid(element));
  ElementType* local_element = Search(element);
  if (local_element != NULL) {
    EraseInternal(local_element);
  }
}


template<TEMPLATE_INVALSET_P_DECL>
ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::Search(
    const ElementType& element) {
  VIXL_ASSERT(monitor() == 0);
  if (empty()) {
    return NULL;
  }
  if (ShouldReclaimMemory()) {
    ReclaimMemory();
  }
  if (!sorted_) {
    Sort(kHardSort);
  }
  if (!valid_cached_min_) {
    CacheMinElement();
  }
  return BinarySearch(element, ElementAt(cached_min_index_), StorageEnd());
}


template<TEMPLATE_INVALSET_P_DECL>
size_t InvalSet<TEMPLATE_INVALSET_P_DEF>::size() const {
  return size_;
}


template<TEMPLATE_INVALSET_P_DECL>
bool InvalSet<TEMPLATE_INVALSET_P_DEF>::empty() const {
  return size_ == 0;
}


template<TEMPLATE_INVALSET_P_DECL>
void InvalSet<TEMPLATE_INVALSET_P_DEF>::clear() {
  VIXL_ASSERT(monitor() == 0);
  size_ = 0;
  if (IsUsingVector()) {
    vector_->clear();
  }
  set_sorted(true);
  valid_cached_min_ = false;
}


template<TEMPLATE_INVALSET_P_DECL>
const ElementType InvalSet<TEMPLATE_INVALSET_P_DEF>::min_element() {
  VIXL_ASSERT(monitor() == 0);
  VIXL_ASSERT(!empty());
  CacheMinElement();
  return *ElementAt(cached_min_index_);
}


template<TEMPLATE_INVALSET_P_DECL>
KeyType InvalSet<TEMPLATE_INVALSET_P_DEF>::min_element_key() {
  VIXL_ASSERT(monitor() == 0);
  if (valid_cached_min_) {
    return cached_min_key_;
  } else {
    return Key(min_element());
  }
}


template<TEMPLATE_INVALSET_P_DECL>
bool InvalSet<TEMPLATE_INVALSET_P_DEF>::IsValid(const ElementType& element) {
  return Key(element) != kInvalidKey;
}


template<TEMPLATE_INVALSET_P_DECL>
void InvalSet<TEMPLATE_INVALSET_P_DEF>::EraseInternal(ElementType* element) {
  // Note that this function must be safe even while an iterator has acquired
  // this set.
  VIXL_ASSERT(element != NULL);
  size_t deleted_index = ElementIndex(element);
  if (IsUsingVector()) {
    VIXL_ASSERT((&(vector_->front()) <= element) &&
                (element <= &(vector_->back())));
    SetKey(element, kInvalidKey);
  } else {
    VIXL_ASSERT((preallocated_ <= element) &&
                (element < (preallocated_ + kNPreallocatedElements)));
    ElementType* end = preallocated_ + kNPreallocatedElements;
    size_t copy_size = sizeof(*element) * (end - element - 1);
    memmove(element, element + 1, copy_size);
  }
  size_--;

  if (valid_cached_min_ &&
      (deleted_index == cached_min_index_)) {
    if (sorted_ && !empty()) {
      const ElementType* min = FirstValidElement(element, StorageEnd());
      cached_min_index_ = ElementIndex(min);
      cached_min_key_ = Key(*min);
      valid_cached_min_ = true;
    } else {
      valid_cached_min_ = false;
    }
  }
}


template<TEMPLATE_INVALSET_P_DECL>
ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::BinarySearch(
    const ElementType& element, ElementType* start, ElementType* end) const {
  if (start == end) {
    return NULL;
  }
  VIXL_ASSERT(sorted_);
  VIXL_ASSERT(start < end);
  VIXL_ASSERT(!empty());

  // Perform a binary search through the elements while ignoring invalid
  // elements.
  ElementType* elements = start;
  size_t low = 0;
  size_t high = (end - start) - 1;
  while (low < high) {
    // Find valid bounds.
    while (!IsValid(elements[low]) && (low < high)) ++low;
    while (!IsValid(elements[high]) && (low < high)) --high;
    VIXL_ASSERT(low <= high);
    // Avoid overflow when computing the middle index.
    size_t middle = low / 2 + high / 2 + (low & high & 1);
    if ((middle == low) || (middle == high)) {
      break;
    }
    while (!IsValid(elements[middle]) && (middle < high - 1)) ++middle;
    while (!IsValid(elements[middle]) && (low + 1 < middle)) --middle;
    if (!IsValid(elements[middle])) {
      break;
    }
    if (elements[middle] < element) {
      low = middle;
    } else {
      high = middle;
    }
  }

  if (elements[low] == element) return &elements[low];
  if (elements[high] == element) return &elements[high];
  return NULL;
}


template<TEMPLATE_INVALSET_P_DECL>
void InvalSet<TEMPLATE_INVALSET_P_DEF>::Sort(SortType sort_type) {
  VIXL_ASSERT(monitor() == 0);
  if (sort_type == kSoftSort) {
    if (sorted_) {
      return;
    }
  }
  if (empty()) {
    return;
  }

  Clean();
  std::sort(StorageBegin(), StorageEnd());

  set_sorted(true);
  cached_min_index_ = 0;
  cached_min_key_ = Key(Front());
  valid_cached_min_ = true;
}


template<TEMPLATE_INVALSET_P_DECL>
void InvalSet<TEMPLATE_INVALSET_P_DEF>::Clean() {
  VIXL_ASSERT(monitor() == 0);
  if (empty() || !IsUsingVector()) {
    return;
  }
  // Manually iterate through the vector storage to discard invalid elements.
  ElementType* start = &(vector_->front());
  ElementType* end = start + vector_->size();
  ElementType* c = start;
  ElementType* first_invalid;
  ElementType* first_valid;
  ElementType* next_invalid;

  while (c < end && IsValid(*c)) { c++; }
  first_invalid = c;

  while (c < end) {
    while (c < end && !IsValid(*c)) { c++; }
    first_valid = c;
    while (c < end && IsValid(*c)) { c++; }
    next_invalid = c;

    ptrdiff_t n_moved_elements = (next_invalid - first_valid);
    memmove(first_invalid, first_valid,  n_moved_elements * sizeof(*c));
    first_invalid = first_invalid + n_moved_elements;
    c = next_invalid;
  }

  // Delete the trailing invalid elements.
  vector_->erase(vector_->begin() + (first_invalid - start), vector_->end());
  VIXL_ASSERT(vector_->size() == size_);

  if (sorted_) {
    valid_cached_min_ = true;
    cached_min_index_ = 0;
    cached_min_key_ = Key(*ElementAt(0));
  } else {
    valid_cached_min_ = false;
  }
}


template<TEMPLATE_INVALSET_P_DECL>
const ElementType InvalSet<TEMPLATE_INVALSET_P_DEF>::Front() const {
  VIXL_ASSERT(!empty());
  return IsUsingVector() ? vector_->front() : preallocated_[0];
}


template<TEMPLATE_INVALSET_P_DECL>
const ElementType InvalSet<TEMPLATE_INVALSET_P_DEF>::Back() const {
  VIXL_ASSERT(!empty());
  return IsUsingVector() ? vector_->back() : preallocated_[size_ - 1];
}


template<TEMPLATE_INVALSET_P_DECL>
const ElementType InvalSet<TEMPLATE_INVALSET_P_DEF>::CleanBack() {
  VIXL_ASSERT(monitor() == 0);
  if (IsUsingVector()) {
    // Delete the invalid trailing elements.
    typename std::vector<ElementType>::reverse_iterator it = vector_->rbegin();
    while (!IsValid(*it)) {
      it++;
    }
    vector_->erase(it.base(), vector_->end());
  }
  return Back();
}


template<TEMPLATE_INVALSET_P_DECL>
const ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::StorageBegin() const {
  return IsUsingVector() ? &(vector_->front()) : preallocated_;
}


template<TEMPLATE_INVALSET_P_DECL>
const ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::StorageEnd() const {
  return IsUsingVector() ? &(vector_->back()) + 1 : preallocated_ + size_;
}


template<TEMPLATE_INVALSET_P_DECL>
ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::StorageBegin() {
  return IsUsingVector() ? &(vector_->front()) : preallocated_;
}


template<TEMPLATE_INVALSET_P_DECL>
ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::StorageEnd() {
  return IsUsingVector() ? &(vector_->back()) + 1 : preallocated_ + size_;
}


template<TEMPLATE_INVALSET_P_DECL>
size_t InvalSet<TEMPLATE_INVALSET_P_DEF>::ElementIndex(
    const ElementType* element) const {
  VIXL_ASSERT((StorageBegin() <= element) && (element < StorageEnd()));
  return element - StorageBegin();
}


template<TEMPLATE_INVALSET_P_DECL>
const ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::ElementAt(
    size_t index) const {
  VIXL_ASSERT(
      (IsUsingVector() && (index < vector_->size())) || (index < size_));
  return StorageBegin() + index;
}

template<TEMPLATE_INVALSET_P_DECL>
ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::ElementAt(size_t index) {
  VIXL_ASSERT(
      (IsUsingVector() && (index < vector_->size())) || (index < size_));
  return StorageBegin() + index;
}

template<TEMPLATE_INVALSET_P_DECL>
const ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::FirstValidElement(
    const ElementType* from, const ElementType* end) {
  while ((from < end) && !IsValid(*from)) {
    from++;
  }
  return from;
}


template<TEMPLATE_INVALSET_P_DECL>
void InvalSet<TEMPLATE_INVALSET_P_DEF>::CacheMinElement() {
  VIXL_ASSERT(monitor() == 0);
  VIXL_ASSERT(!empty());

  if (valid_cached_min_) {
    return;
  }

  if (sorted_) {
    const ElementType* min = FirstValidElement(StorageBegin(), StorageEnd());
    cached_min_index_ = ElementIndex(min);
    cached_min_key_ = Key(*min);
    valid_cached_min_ = true;
  } else {
    Sort(kHardSort);
  }
  VIXL_ASSERT(valid_cached_min_);
}


template<TEMPLATE_INVALSET_P_DECL>
bool InvalSet<TEMPLATE_INVALSET_P_DEF>::ShouldReclaimMemory() const {
  if (!IsUsingVector()) {
    return false;
  }
  size_t n_invalid_elements = vector_->size() - size_;
  return (n_invalid_elements > RECLAIM_FROM) &&
         (n_invalid_elements > vector_->size() / RECLAIM_FACTOR);
}


template<TEMPLATE_INVALSET_P_DECL>
void InvalSet<TEMPLATE_INVALSET_P_DEF>::ReclaimMemory() {
  VIXL_ASSERT(monitor() == 0);
  Clean();
}


template<class S>
InvalSetIterator<S>::InvalSetIterator(S* inval_set)
    : using_vector_((inval_set != NULL) && inval_set->IsUsingVector()),
      index_(0),
      inval_set_(inval_set) {
  if (inval_set != NULL) {
    inval_set->Sort(S::kSoftSort);
#ifdef VIXL_DEBUG
    inval_set->Acquire();
#endif
    if (using_vector_) {
      iterator_ = typename std::vector<ElementType>::iterator(
          inval_set_->vector_->begin());
    }
    MoveToValidElement();
  }
}


template<class S>
InvalSetIterator<S>::~InvalSetIterator() {
#ifdef VIXL_DEBUG
  if (inval_set_ != NULL) {
    inval_set_->Release();
  }
#endif
}


template<class S>
typename S::_ElementType* InvalSetIterator<S>::Current() const {
  VIXL_ASSERT(!Done());
  if (using_vector_) {
    return &(*iterator_);
  } else {
    return &(inval_set_->preallocated_[index_]);
  }
}


template<class S>
void InvalSetIterator<S>::Advance() {
  VIXL_ASSERT(!Done());
  if (using_vector_) {
    iterator_++;
#ifdef VIXL_DEBUG
    index_++;
#endif
    MoveToValidElement();
  } else {
    index_++;
  }
}


template<class S>
bool InvalSetIterator<S>::Done() const {
  if (using_vector_) {
    bool done = (iterator_ == inval_set_->vector_->end());
    VIXL_ASSERT(done == (index_ == inval_set_->size()));
    return done;
  } else {
    return index_ == inval_set_->size();
  }
}


template<class S>
void InvalSetIterator<S>::Finish() {
  VIXL_ASSERT(inval_set_->sorted_);
  if (using_vector_) {
    iterator_ = inval_set_->vector_->end();
  }
  index_ = inval_set_->size();
}


template<class S>
void InvalSetIterator<S>::DeleteCurrentAndAdvance() {
  if (using_vector_) {
    inval_set_->EraseInternal(&(*iterator_));
    MoveToValidElement();
  } else {
    inval_set_->EraseInternal(inval_set_->preallocated_ + index_);
  }
}


template<class S>
bool InvalSetIterator<S>::IsValid(const ElementType& element) {
  return S::IsValid(element);
}


template<class S>
typename S::_KeyType InvalSetIterator<S>::Key(const ElementType& element) {
  return S::Key(element);
}


template<class S>
void InvalSetIterator<S>::MoveToValidElement() {
  if (using_vector_) {
    while ((iterator_ != inval_set_->vector_->end()) && !IsValid(*iterator_)) {
      iterator_++;
    }
  } else {
    VIXL_ASSERT(inval_set_->empty() || IsValid(inval_set_->preallocated_[0]));
    // Nothing to do.
  }
}

#undef TEMPLATE_INVALSET_P_DECL
#undef TEMPLATE_INVALSET_P_DEF

}  // namespace vixl

#endif  // VIXL_INVALSET_H_