/* * QEMU coroutines * * Copyright IBM, Corp. 2011 * * Authors: * Stefan Hajnoczi * Kevin Wolf * * This work is licensed under the terms of the GNU LGPL, version 2 or later. * See the COPYING.LIB file in the top-level directory. * */ #include "qemu/osdep.h" #include "trace.h" #include "qemu/thread.h" #include "qemu/atomic.h" #include "qemu/coroutine.h" #include "qemu/coroutine_int.h" #include "qemu/coroutine-tls.h" #include "block/aio.h" /** * The minimal batch size is always 64, coroutines from the release_pool are * reused as soon as there are 64 coroutines in it. The maximum pool size starts * with 64 and is increased on demand so that coroutines are not deleted even if * they are not immediately reused. */ enum { POOL_MIN_BATCH_SIZE = 64, POOL_INITIAL_MAX_SIZE = 64, }; /** Free list to speed up creation */ static QSLIST_HEAD(, Coroutine) release_pool = QSLIST_HEAD_INITIALIZER(pool); static unsigned int pool_max_size = POOL_INITIAL_MAX_SIZE; static unsigned int release_pool_size; typedef QSLIST_HEAD(, Coroutine) CoroutineQSList; QEMU_DEFINE_STATIC_CO_TLS(CoroutineQSList, alloc_pool); QEMU_DEFINE_STATIC_CO_TLS(unsigned int, alloc_pool_size); QEMU_DEFINE_STATIC_CO_TLS(Notifier, coroutine_pool_cleanup_notifier); static void coroutine_pool_cleanup(Notifier *n, void *value) { Coroutine *co; Coroutine *tmp; CoroutineQSList *alloc_pool = get_ptr_alloc_pool(); QSLIST_FOREACH_SAFE(co, alloc_pool, pool_next, tmp) { QSLIST_REMOVE_HEAD(alloc_pool, pool_next); qemu_coroutine_delete(co); } } Coroutine *qemu_coroutine_create(CoroutineEntry *entry, void *opaque) { Coroutine *co = NULL; if (CONFIG_COROUTINE_POOL) { CoroutineQSList *alloc_pool = get_ptr_alloc_pool(); co = QSLIST_FIRST(alloc_pool); if (!co) { if (release_pool_size > POOL_MIN_BATCH_SIZE) { /* Slow path; a good place to register the destructor, too. */ Notifier *notifier = get_ptr_coroutine_pool_cleanup_notifier(); if (!notifier->notify) { notifier->notify = coroutine_pool_cleanup; qemu_thread_atexit_add(notifier); } /* This is not exact; there could be a little skew between * release_pool_size and the actual size of release_pool. But * it is just a heuristic, it does not need to be perfect. */ set_alloc_pool_size(qatomic_xchg(&release_pool_size, 0)); QSLIST_MOVE_ATOMIC(alloc_pool, &release_pool); co = QSLIST_FIRST(alloc_pool); } } if (co) { QSLIST_REMOVE_HEAD(alloc_pool, pool_next); set_alloc_pool_size(get_alloc_pool_size() - 1); } } if (!co) { co = qemu_coroutine_new(); } co->entry = entry; co->entry_arg = opaque; QSIMPLEQ_INIT(&co->co_queue_wakeup); return co; } static void coroutine_delete(Coroutine *co) { co->caller = NULL; if (CONFIG_COROUTINE_POOL) { if (release_pool_size < qatomic_read(&pool_max_size) * 2) { QSLIST_INSERT_HEAD_ATOMIC(&release_pool, co, pool_next); qatomic_inc(&release_pool_size); return; } if (get_alloc_pool_size() < qatomic_read(&pool_max_size)) { QSLIST_INSERT_HEAD(get_ptr_alloc_pool(), co, pool_next); set_alloc_pool_size(get_alloc_pool_size() + 1); return; } } qemu_coroutine_delete(co); } void qemu_aio_coroutine_enter(AioContext *ctx, Coroutine *co) { QSIMPLEQ_HEAD(, Coroutine) pending = QSIMPLEQ_HEAD_INITIALIZER(pending); Coroutine *from = qemu_coroutine_self(); QSIMPLEQ_INSERT_TAIL(&pending, co, co_queue_next); /* Run co and any queued coroutines */ while (!QSIMPLEQ_EMPTY(&pending)) { Coroutine *to = QSIMPLEQ_FIRST(&pending); CoroutineAction ret; /* Cannot rely on the read barrier for to in aio_co_wake(), as there are * callers outside of aio_co_wake() */ const char *scheduled = qatomic_mb_read(&to->scheduled); QSIMPLEQ_REMOVE_HEAD(&pending, co_queue_next); trace_qemu_aio_coroutine_enter(ctx, from, to, to->entry_arg); /* if the Coroutine has already been scheduled, entering it again will * cause us to enter it twice, potentially even after the coroutine has * been deleted */ if (scheduled) { fprintf(stderr, "%s: Co-routine was already scheduled in '%s'\n", __func__, scheduled); abort(); } if (to->caller) { fprintf(stderr, "Co-routine re-entered recursively\n"); abort(); } to->caller = from; to->ctx = ctx; /* Store to->ctx before anything that stores to. Matches * barrier in aio_co_wake and qemu_co_mutex_wake. */ smp_wmb(); ret = qemu_coroutine_switch(from, to, COROUTINE_ENTER); /* Queued coroutines are run depth-first; previously pending coroutines * run after those queued more recently. */ QSIMPLEQ_PREPEND(&pending, &to->co_queue_wakeup); switch (ret) { case COROUTINE_YIELD: break; case COROUTINE_TERMINATE: assert(!to->locks_held); trace_qemu_coroutine_terminate(to); coroutine_delete(to); break; default: abort(); } } } void qemu_coroutine_enter(Coroutine *co) { qemu_aio_coroutine_enter(qemu_get_current_aio_context(), co); } void qemu_coroutine_enter_if_inactive(Coroutine *co) { if (!qemu_coroutine_entered(co)) { qemu_coroutine_enter(co); } } void coroutine_fn qemu_coroutine_yield(void) { Coroutine *self = qemu_coroutine_self(); Coroutine *to = self->caller; trace_qemu_coroutine_yield(self, to); if (!to) { fprintf(stderr, "Co-routine is yielding to no one\n"); abort(); } self->caller = NULL; qemu_coroutine_switch(self, to, COROUTINE_YIELD); } bool qemu_coroutine_entered(Coroutine *co) { return co->caller; } AioContext *coroutine_fn qemu_coroutine_get_aio_context(Coroutine *co) { return co->ctx; } void qemu_coroutine_inc_pool_size(unsigned int additional_pool_size) { qatomic_add(&pool_max_size, additional_pool_size); } void qemu_coroutine_dec_pool_size(unsigned int removing_pool_size) { qatomic_sub(&pool_max_size, removing_pool_size); }