/* * QTest testcase for the M48T59 and M48T08 real-time clocks * * Based on MC146818 RTC test: * Copyright IBM, Corp. 2012 * * Authors: * Anthony Liguori * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include #include #include #include #include #include "libqtest.h" #define RTC_SECONDS 0x9 #define RTC_MINUTES 0xa #define RTC_HOURS 0xb #define RTC_DAY_OF_WEEK 0xc #define RTC_DAY_OF_MONTH 0xd #define RTC_MONTH 0xe #define RTC_YEAR 0xf static uint32_t base; static uint16_t reg_base = 0x1ff0; /* 0x7f0 for m48t02 */ static int base_year; static bool use_mmio; static uint8_t cmos_read_mmio(uint8_t reg) { return readb(base + (uint32_t)reg_base + (uint32_t)reg); } static void cmos_write_mmio(uint8_t reg, uint8_t val) { uint8_t data = val; writeb(base + (uint32_t)reg_base + (uint32_t)reg, data); } static uint8_t cmos_read_ioio(uint8_t reg) { outw(base + 0, reg_base + (uint16_t)reg); return inb(base + 3); } static void cmos_write_ioio(uint8_t reg, uint8_t val) { outw(base + 0, reg_base + (uint16_t)reg); outb(base + 3, val); } static uint8_t cmos_read(uint8_t reg) { if (use_mmio) { return cmos_read_mmio(reg); } else { return cmos_read_ioio(reg); } } static void cmos_write(uint8_t reg, uint8_t val) { if (use_mmio) { cmos_write_mmio(reg, val); } else { cmos_write_ioio(reg, val); } } static int bcd2dec(int value) { return (((value >> 4) & 0x0F) * 10) + (value & 0x0F); } static int tm_cmp(struct tm *lhs, struct tm *rhs) { time_t a, b; struct tm d1, d2; memcpy(&d1, lhs, sizeof(d1)); memcpy(&d2, rhs, sizeof(d2)); a = mktime(&d1); b = mktime(&d2); if (a < b) { return -1; } else if (a > b) { return 1; } return 0; } #if 0 static void print_tm(struct tm *tm) { printf("%04d-%02d-%02d %02d:%02d:%02d %+02ld\n", tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff); } #endif static void cmos_get_date_time(struct tm *date) { int sec, min, hour, mday, mon, year; time_t ts; struct tm dummy; sec = cmos_read(RTC_SECONDS); min = cmos_read(RTC_MINUTES); hour = cmos_read(RTC_HOURS); mday = cmos_read(RTC_DAY_OF_MONTH); mon = cmos_read(RTC_MONTH); year = cmos_read(RTC_YEAR); sec = bcd2dec(sec); min = bcd2dec(min); hour = bcd2dec(hour); mday = bcd2dec(mday); mon = bcd2dec(mon); year = bcd2dec(year); ts = time(NULL); localtime_r(&ts, &dummy); date->tm_isdst = dummy.tm_isdst; date->tm_sec = sec; date->tm_min = min; date->tm_hour = hour; date->tm_mday = mday; date->tm_mon = mon - 1; date->tm_year = base_year + year - 1900; #ifndef __sun__ date->tm_gmtoff = 0; #endif ts = mktime(date); } static void check_time(int wiggle) { struct tm start, date[4], end; struct tm *datep; time_t ts; /* * This check assumes a few things. First, we cannot guarantee that we get * a consistent reading from the wall clock because we may hit an edge of * the clock while reading. To work around this, we read four clock readings * such that at least two of them should match. We need to assume that one * reading is corrupt so we need four readings to ensure that we have at * least two consecutive identical readings * * It's also possible that we'll cross an edge reading the host clock so * simply check to make sure that the clock reading is within the period of * when we expect it to be. */ ts = time(NULL); gmtime_r(&ts, &start); cmos_get_date_time(&date[0]); cmos_get_date_time(&date[1]); cmos_get_date_time(&date[2]); cmos_get_date_time(&date[3]); ts = time(NULL); gmtime_r(&ts, &end); if (tm_cmp(&date[0], &date[1]) == 0) { datep = &date[0]; } else if (tm_cmp(&date[1], &date[2]) == 0) { datep = &date[1]; } else if (tm_cmp(&date[2], &date[3]) == 0) { datep = &date[2]; } else { g_assert_not_reached(); } if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) { long t, s; start.tm_isdst = datep->tm_isdst; t = (long)mktime(datep); s = (long)mktime(&start); if (t < s) { g_test_message("RTC is %ld second(s) behind wall-clock\n", (s - t)); } else { g_test_message("RTC is %ld second(s) ahead of wall-clock\n", (t - s)); } g_assert_cmpint(ABS(t - s), <=, wiggle); } } static int wiggle = 2; static void bcd_check_time(void) { if (strcmp(qtest_get_arch(), "sparc64") == 0) { base = 0x74; base_year = 1900; use_mmio = false; } else if (strcmp(qtest_get_arch(), "sparc") == 0) { base = 0x71200000; base_year = 1968; use_mmio = true; } else { /* PPC: need to map macio in PCI */ g_assert_not_reached(); } check_time(wiggle); } /* success if no crash or abort */ static void fuzz_registers(void) { unsigned int i; for (i = 0; i < 1000; i++) { uint8_t reg, val; reg = (uint8_t)g_test_rand_int_range(0, 16); val = (uint8_t)g_test_rand_int_range(0, 256); if (reg == 7) { /* watchdog setup register, may trigger system reset, skip */ continue; } cmos_write(reg, val); cmos_read(reg); } } int main(int argc, char **argv) { QTestState *s = NULL; int ret; g_test_init(&argc, &argv, NULL); s = qtest_start("-rtc clock=vm"); qtest_add_func("/rtc/bcd/check-time", bcd_check_time); qtest_add_func("/rtc/fuzz-registers", fuzz_registers); ret = g_test_run(); if (s) { qtest_quit(s); } return ret; }