/* * AHCI test cases * * Copyright (c) 2014 John Snow * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include "libqtest.h" #include "libqos/pci-pc.h" #include "libqos/malloc-pc.h" #include "qemu-common.h" #include "qemu/host-utils.h" #include "hw/pci/pci_ids.h" #include "hw/pci/pci_regs.h" /* Test-specific defines. */ #define TEST_IMAGE_SIZE (64 * 1024 * 1024) /*** Supplementary PCI Config Space IDs & Masks ***/ #define PCI_DEVICE_ID_INTEL_Q35_AHCI (0x2922) #define PCI_MSI_FLAGS_RESERVED (0xFF00) #define PCI_PM_CTRL_RESERVED (0xFC) #define PCI_BCC(REG32) ((REG32) >> 24) #define PCI_PI(REG32) (((REG32) >> 8) & 0xFF) #define PCI_SCC(REG32) (((REG32) >> 16) & 0xFF) /*** Recognized AHCI Device Types ***/ #define AHCI_INTEL_ICH9 (PCI_DEVICE_ID_INTEL_Q35_AHCI << 16 | \ PCI_VENDOR_ID_INTEL) /*** AHCI/HBA Register Offsets and Bitmasks ***/ #define AHCI_CAP (0) #define AHCI_CAP_NP (0x1F) #define AHCI_CAP_SXS (0x20) #define AHCI_CAP_EMS (0x40) #define AHCI_CAP_CCCS (0x80) #define AHCI_CAP_NCS (0x1F00) #define AHCI_CAP_PSC (0x2000) #define AHCI_CAP_SSC (0x4000) #define AHCI_CAP_PMD (0x8000) #define AHCI_CAP_FBSS (0x10000) #define AHCI_CAP_SPM (0x20000) #define AHCI_CAP_SAM (0x40000) #define AHCI_CAP_RESERVED (0x80000) #define AHCI_CAP_ISS (0xF00000) #define AHCI_CAP_SCLO (0x1000000) #define AHCI_CAP_SAL (0x2000000) #define AHCI_CAP_SALP (0x4000000) #define AHCI_CAP_SSS (0x8000000) #define AHCI_CAP_SMPS (0x10000000) #define AHCI_CAP_SSNTF (0x20000000) #define AHCI_CAP_SNCQ (0x40000000) #define AHCI_CAP_S64A (0x80000000) #define AHCI_GHC (1) #define AHCI_GHC_HR (0x01) #define AHCI_GHC_IE (0x02) #define AHCI_GHC_MRSM (0x04) #define AHCI_GHC_RESERVED (0x7FFFFFF8) #define AHCI_GHC_AE (0x80000000) #define AHCI_IS (2) #define AHCI_PI (3) #define AHCI_VS (4) #define AHCI_CCCCTL (5) #define AHCI_CCCCTL_EN (0x01) #define AHCI_CCCCTL_RESERVED (0x06) #define AHCI_CCCCTL_CC (0xFF00) #define AHCI_CCCCTL_TV (0xFFFF0000) #define AHCI_CCCPORTS (6) #define AHCI_EMLOC (7) #define AHCI_EMCTL (8) #define AHCI_EMCTL_STSMR (0x01) #define AHCI_EMCTL_CTLTM (0x100) #define AHCI_EMCTL_CTLRST (0x200) #define AHCI_EMCTL_RESERVED (0xF0F0FCFE) #define AHCI_CAP2 (9) #define AHCI_CAP2_BOH (0x01) #define AHCI_CAP2_NVMP (0x02) #define AHCI_CAP2_APST (0x04) #define AHCI_CAP2_RESERVED (0xFFFFFFF8) #define AHCI_BOHC (10) #define AHCI_RESERVED (11) #define AHCI_NVMHCI (24) #define AHCI_VENDOR (40) #define AHCI_PORTS (64) /*** Port Memory Offsets & Bitmasks ***/ #define AHCI_PX_CLB (0) #define AHCI_PX_CLB_RESERVED (0x1FF) #define AHCI_PX_CLBU (1) #define AHCI_PX_FB (2) #define AHCI_PX_FB_RESERVED (0xFF) #define AHCI_PX_FBU (3) #define AHCI_PX_IS (4) #define AHCI_PX_IS_DHRS (0x1) #define AHCI_PX_IS_PSS (0x2) #define AHCI_PX_IS_DSS (0x4) #define AHCI_PX_IS_SDBS (0x8) #define AHCI_PX_IS_UFS (0x10) #define AHCI_PX_IS_DPS (0x20) #define AHCI_PX_IS_PCS (0x40) #define AHCI_PX_IS_DMPS (0x80) #define AHCI_PX_IS_RESERVED (0x23FFF00) #define AHCI_PX_IS_PRCS (0x400000) #define AHCI_PX_IS_IPMS (0x800000) #define AHCI_PX_IS_OFS (0x1000000) #define AHCI_PX_IS_INFS (0x4000000) #define AHCI_PX_IS_IFS (0x8000000) #define AHCI_PX_IS_HBDS (0x10000000) #define AHCI_PX_IS_HBFS (0x20000000) #define AHCI_PX_IS_TFES (0x40000000) #define AHCI_PX_IS_CPDS (0x80000000) #define AHCI_PX_IE (5) #define AHCI_PX_IE_DHRE (0x1) #define AHCI_PX_IE_PSE (0x2) #define AHCI_PX_IE_DSE (0x4) #define AHCI_PX_IE_SDBE (0x8) #define AHCI_PX_IE_UFE (0x10) #define AHCI_PX_IE_DPE (0x20) #define AHCI_PX_IE_PCE (0x40) #define AHCI_PX_IE_DMPE (0x80) #define AHCI_PX_IE_RESERVED (0x23FFF00) #define AHCI_PX_IE_PRCE (0x400000) #define AHCI_PX_IE_IPME (0x800000) #define AHCI_PX_IE_OFE (0x1000000) #define AHCI_PX_IE_INFE (0x4000000) #define AHCI_PX_IE_IFE (0x8000000) #define AHCI_PX_IE_HBDE (0x10000000) #define AHCI_PX_IE_HBFE (0x20000000) #define AHCI_PX_IE_TFEE (0x40000000) #define AHCI_PX_IE_CPDE (0x80000000) #define AHCI_PX_CMD (6) #define AHCI_PX_CMD_ST (0x1) #define AHCI_PX_CMD_SUD (0x2) #define AHCI_PX_CMD_POD (0x4) #define AHCI_PX_CMD_CLO (0x8) #define AHCI_PX_CMD_FRE (0x10) #define AHCI_PX_CMD_RESERVED (0xE0) #define AHCI_PX_CMD_CCS (0x1F00) #define AHCI_PX_CMD_MPSS (0x2000) #define AHCI_PX_CMD_FR (0x4000) #define AHCI_PX_CMD_CR (0x8000) #define AHCI_PX_CMD_CPS (0x10000) #define AHCI_PX_CMD_PMA (0x20000) #define AHCI_PX_CMD_HPCP (0x40000) #define AHCI_PX_CMD_MPSP (0x80000) #define AHCI_PX_CMD_CPD (0x100000) #define AHCI_PX_CMD_ESP (0x200000) #define AHCI_PX_CMD_FBSCP (0x400000) #define AHCI_PX_CMD_APSTE (0x800000) #define AHCI_PX_CMD_ATAPI (0x1000000) #define AHCI_PX_CMD_DLAE (0x2000000) #define AHCI_PX_CMD_ALPE (0x4000000) #define AHCI_PX_CMD_ASP (0x8000000) #define AHCI_PX_CMD_ICC (0xF0000000) #define AHCI_PX_RES1 (7) #define AHCI_PX_TFD (8) #define AHCI_PX_TFD_STS (0xFF) #define AHCI_PX_TFD_STS_ERR (0x01) #define AHCI_PX_TFD_STS_CS1 (0x06) #define AHCI_PX_TFD_STS_DRQ (0x08) #define AHCI_PX_TFD_STS_CS2 (0x70) #define AHCI_PX_TFD_STS_BSY (0x80) #define AHCI_PX_TFD_ERR (0xFF00) #define AHCI_PX_TFD_RESERVED (0xFFFF0000) #define AHCI_PX_SIG (9) #define AHCI_PX_SIG_SECTOR_COUNT (0xFF) #define AHCI_PX_SIG_LBA_LOW (0xFF00) #define AHCI_PX_SIG_LBA_MID (0xFF0000) #define AHCI_PX_SIG_LBA_HIGH (0xFF000000) #define AHCI_PX_SSTS (10) #define AHCI_PX_SSTS_DET (0x0F) #define AHCI_PX_SSTS_SPD (0xF0) #define AHCI_PX_SSTS_IPM (0xF00) #define AHCI_PX_SSTS_RESERVED (0xFFFFF000) #define SSTS_DET_NO_DEVICE (0x00) #define SSTS_DET_PRESENT (0x01) #define SSTS_DET_ESTABLISHED (0x03) #define SSTS_DET_OFFLINE (0x04) #define AHCI_PX_SCTL (11) #define AHCI_PX_SERR (12) #define AHCI_PX_SERR_ERR (0xFFFF) #define AHCI_PX_SERR_DIAG (0xFFFF0000) #define AHCI_PX_SERR_DIAG_X (0x04000000) #define AHCI_PX_SACT (13) #define AHCI_PX_CI (14) #define AHCI_PX_SNTF (15) #define AHCI_PX_FBS (16) #define AHCI_PX_FBS_EN (0x1) #define AHCI_PX_FBS_DEC (0x2) #define AHCI_PX_FBS_SDE (0x4) #define AHCI_PX_FBS_DEV (0xF00) #define AHCI_PX_FBS_ADO (0xF000) #define AHCI_PX_FBS_DWE (0xF0000) #define AHCI_PX_FBS_RESERVED (0xFFF000F8) #define AHCI_PX_RES2 (17) #define AHCI_PX_VS (28) #define HBA_DATA_REGION_SIZE (256) #define HBA_PORT_DATA_SIZE (128) #define HBA_PORT_NUM_REG (HBA_PORT_DATA_SIZE/4) #define AHCI_VERSION_0_95 (0x00000905) #define AHCI_VERSION_1_0 (0x00010000) #define AHCI_VERSION_1_1 (0x00010100) #define AHCI_VERSION_1_2 (0x00010200) #define AHCI_VERSION_1_3 (0x00010300) /*** Structures ***/ /** * Generic FIS structure. */ typedef struct FIS { uint8_t fis_type; uint8_t flags; char data[0]; } __attribute__((__packed__)) FIS; /** * Register device-to-host FIS structure. */ typedef struct RegD2HFIS { /* DW0 */ uint8_t fis_type; uint8_t flags; uint8_t status; uint8_t error; /* DW1 */ uint8_t lba_low; uint8_t lba_mid; uint8_t lba_high; uint8_t device; /* DW2 */ uint8_t lba3; uint8_t lba4; uint8_t lba5; uint8_t res1; /* DW3 */ uint16_t count; uint8_t res2; uint8_t res3; /* DW4 */ uint16_t res4; uint16_t res5; } __attribute__((__packed__)) RegD2HFIS; /** * Register host-to-device FIS structure. */ typedef struct RegH2DFIS { /* DW0 */ uint8_t fis_type; uint8_t flags; uint8_t command; uint8_t feature_low; /* DW1 */ uint8_t lba_low; uint8_t lba_mid; uint8_t lba_high; uint8_t device; /* DW2 */ uint8_t lba3; uint8_t lba4; uint8_t lba5; uint8_t feature_high; /* DW3 */ uint16_t count; uint8_t icc; uint8_t control; /* DW4 */ uint32_t aux; } __attribute__((__packed__)) RegH2DFIS; /** * Command List entry structure. * The command list contains between 1-32 of these structures. */ typedef struct AHCICommand { uint8_t b1; uint8_t b2; uint16_t prdtl; /* Phys Region Desc. Table Length */ uint32_t prdbc; /* Phys Region Desc. Byte Count */ uint32_t ctba; /* Command Table Descriptor Base Address */ uint32_t ctbau; /* '' Upper */ uint32_t res[4]; } __attribute__((__packed__)) AHCICommand; /** * Physical Region Descriptor; pointed to by the Command List Header, * struct ahci_command. */ typedef struct PRD { uint32_t dba; /* Data Base Address */ uint32_t dbau; /* Data Base Address Upper */ uint32_t res; /* Reserved */ uint32_t dbc; /* Data Byte Count (0-indexed) & Interrupt Flag (bit 2^31) */ } PRD; typedef struct HBACap { uint32_t cap; uint32_t cap2; } HBACap; /*** Globals ***/ static QGuestAllocator *guest_malloc; static QPCIBus *pcibus; static uint64_t barsize; static char tmp_path[] = "/tmp/qtest.XXXXXX"; static bool ahci_pedantic; static uint32_t ahci_fingerprint; /*** Macro Utilities ***/ #define BITANY(data, mask) (((data) & (mask)) != 0) #define BITSET(data, mask) (((data) & (mask)) == (mask)) #define BITCLR(data, mask) (((data) & (mask)) == 0) #define ASSERT_BIT_SET(data, mask) g_assert_cmphex((data) & (mask), ==, (mask)) #define ASSERT_BIT_CLEAR(data, mask) g_assert_cmphex((data) & (mask), ==, 0) /*** IO macros for the AHCI memory registers. ***/ #define AHCI_READ(OFST) qpci_io_readl(ahci, hba_base + (OFST)) #define AHCI_WRITE(OFST, VAL) qpci_io_writel(ahci, hba_base + (OFST), (VAL)) #define AHCI_RREG(regno) AHCI_READ(4 * (regno)) #define AHCI_WREG(regno, val) AHCI_WRITE(4 * (regno), (val)) #define AHCI_SET(regno, mask) AHCI_WREG((regno), AHCI_RREG(regno) | (mask)) #define AHCI_CLR(regno, mask) AHCI_WREG((regno), AHCI_RREG(regno) & ~(mask)) /*** IO macros for port-specific offsets inside of AHCI memory. ***/ #define PX_OFST(port, regno) (HBA_PORT_NUM_REG * (port) + AHCI_PORTS + (regno)) #define PX_RREG(port, regno) AHCI_RREG(PX_OFST((port), (regno))) #define PX_WREG(port, regno, val) AHCI_WREG(PX_OFST((port), (regno)), (val)) #define PX_SET(port, reg, mask) PX_WREG((port), (reg), \ PX_RREG((port), (reg)) | (mask)); #define PX_CLR(port, reg, mask) PX_WREG((port), (reg), \ PX_RREG((port), (reg)) & ~(mask)); /* For calculating how big the PRD table needs to be: */ #define CMD_TBL_SIZ(n) ((0x80 + ((n) * sizeof(PRD)) + 0x7F) & ~0x7F) /*** Function Declarations ***/ static QPCIDevice *get_ahci_device(void); static QPCIDevice *start_ahci_device(QPCIDevice *dev, void **hba_base); static void free_ahci_device(QPCIDevice *dev); static void ahci_test_port_spec(QPCIDevice *ahci, void *hba_base, HBACap *hcap, uint8_t port); static void ahci_test_pci_spec(QPCIDevice *ahci); static void ahci_test_pci_caps(QPCIDevice *ahci, uint16_t header, uint8_t offset); static void ahci_test_satacap(QPCIDevice *ahci, uint8_t offset); static void ahci_test_msicap(QPCIDevice *ahci, uint8_t offset); static void ahci_test_pmcap(QPCIDevice *ahci, uint8_t offset); /*** Utilities ***/ static void string_bswap16(uint16_t *s, size_t bytes) { g_assert_cmphex((bytes & 1), ==, 0); bytes /= 2; while (bytes--) { *s = bswap16(*s); s++; } } /** * Locate, verify, and return a handle to the AHCI device. */ static QPCIDevice *get_ahci_device(void) { QPCIDevice *ahci; pcibus = qpci_init_pc(); /* Find the AHCI PCI device and verify it's the right one. */ ahci = qpci_device_find(pcibus, QPCI_DEVFN(0x1F, 0x02)); g_assert(ahci != NULL); ahci_fingerprint = qpci_config_readl(ahci, PCI_VENDOR_ID); switch (ahci_fingerprint) { case AHCI_INTEL_ICH9: break; default: /* Unknown device. */ g_assert_not_reached(); } return ahci; } static void free_ahci_device(QPCIDevice *ahci) { /* libqos doesn't have a function for this, so free it manually */ g_free(ahci); if (pcibus) { qpci_free_pc(pcibus); pcibus = NULL; } /* Clear our cached barsize information. */ barsize = 0; } /*** Test Setup & Teardown ***/ /** * Launch QEMU with the given command line, * and then set up interrupts and our guest malloc interface. */ static void qtest_boot(const char *cmdline_fmt, ...) { va_list ap; char *cmdline; va_start(ap, cmdline_fmt); cmdline = g_strdup_vprintf(cmdline_fmt, ap); va_end(ap); qtest_start(cmdline); qtest_irq_intercept_in(global_qtest, "ioapic"); guest_malloc = pc_alloc_init(); g_free(cmdline); } /** * Tear down the QEMU instance. */ static void qtest_shutdown(void) { g_free(guest_malloc); guest_malloc = NULL; qtest_end(); } /** * Start a Q35 machine and bookmark a handle to the AHCI device. */ static QPCIDevice *ahci_boot(void) { qtest_boot("-drive if=none,id=drive0,file=%s,cache=writeback,serial=%s" " -M q35 " "-device ide-hd,drive=drive0 " "-global ide-hd.ver=%s", tmp_path, "testdisk", "version"); /* Verify that we have an AHCI device present. */ return get_ahci_device(); } /** * Clean up the PCI device, then terminate the QEMU instance. */ static void ahci_shutdown(QPCIDevice *ahci) { free_ahci_device(ahci); qtest_shutdown(); } /*** Logical Device Initialization ***/ /** * Start the PCI device and sanity-check default operation. */ static void ahci_pci_enable(QPCIDevice *ahci, void **hba_base) { uint8_t reg; start_ahci_device(ahci, hba_base); switch (ahci_fingerprint) { case AHCI_INTEL_ICH9: /* ICH9 has a register at PCI 0x92 that * acts as a master port enabler mask. */ reg = qpci_config_readb(ahci, 0x92); reg |= 0x3F; qpci_config_writeb(ahci, 0x92, reg); /* 0...0111111b -- bit significant, ports 0-5 enabled. */ ASSERT_BIT_SET(qpci_config_readb(ahci, 0x92), 0x3F); break; } } /** * Map BAR5/ABAR, and engage the PCI device. */ static QPCIDevice *start_ahci_device(QPCIDevice *ahci, void **hba_base) { /* Map AHCI's ABAR (BAR5) */ *hba_base = qpci_iomap(ahci, 5, &barsize); /* turns on pci.cmd.iose, pci.cmd.mse and pci.cmd.bme */ qpci_device_enable(ahci); return ahci; } /** * Test and initialize the AHCI's HBA memory areas. * Initialize and start any ports with devices attached. * Bring the HBA into the idle state. */ static void ahci_hba_enable(QPCIDevice *ahci, void *hba_base) { /* Bits of interest in this section: * GHC.AE Global Host Control / AHCI Enable * PxCMD.ST Port Command: Start * PxCMD.SUD "Spin Up Device" * PxCMD.POD "Power On Device" * PxCMD.FRE "FIS Receive Enable" * PxCMD.FR "FIS Receive Running" * PxCMD.CR "Command List Running" */ g_assert(ahci != NULL); g_assert(hba_base != NULL); uint32_t reg, ports_impl, clb, fb; uint16_t i; uint8_t num_cmd_slots; g_assert(hba_base != 0); /* Set GHC.AE to 1 */ AHCI_SET(AHCI_GHC, AHCI_GHC_AE); reg = AHCI_RREG(AHCI_GHC); ASSERT_BIT_SET(reg, AHCI_GHC_AE); /* Read CAP.NCS, how many command slots do we have? */ reg = AHCI_RREG(AHCI_CAP); num_cmd_slots = ((reg & AHCI_CAP_NCS) >> ctzl(AHCI_CAP_NCS)) + 1; g_test_message("Number of Command Slots: %u", num_cmd_slots); /* Determine which ports are implemented. */ ports_impl = AHCI_RREG(AHCI_PI); for (i = 0; ports_impl; ports_impl >>= 1, ++i) { if (!(ports_impl & 0x01)) { continue; } g_test_message("Initializing port %u", i); reg = PX_RREG(i, AHCI_PX_CMD); if (BITCLR(reg, AHCI_PX_CMD_ST | AHCI_PX_CMD_CR | AHCI_PX_CMD_FRE | AHCI_PX_CMD_FR)) { g_test_message("port is idle"); } else { g_test_message("port needs to be idled"); PX_CLR(i, AHCI_PX_CMD, (AHCI_PX_CMD_ST | AHCI_PX_CMD_FRE)); /* The port has 500ms to disengage. */ usleep(500000); reg = PX_RREG(i, AHCI_PX_CMD); ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_CR); ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_FR); g_test_message("port is now idle"); /* The spec does allow for possibly needing a PORT RESET * or HBA reset if we fail to idle the port. */ } /* Allocate Memory for the Command List Buffer & FIS Buffer */ /* PxCLB space ... 0x20 per command, as in 4.2.2 p 36 */ clb = guest_alloc(guest_malloc, num_cmd_slots * 0x20); g_test_message("CLB: 0x%08x", clb); PX_WREG(i, AHCI_PX_CLB, clb); g_assert_cmphex(clb, ==, PX_RREG(i, AHCI_PX_CLB)); /* PxFB space ... 0x100, as in 4.2.1 p 35 */ fb = guest_alloc(guest_malloc, 0x100); g_test_message("FB: 0x%08x", fb); PX_WREG(i, AHCI_PX_FB, fb); g_assert_cmphex(fb, ==, PX_RREG(i, AHCI_PX_FB)); /* Clear PxSERR, PxIS, then IS.IPS[x] by writing '1's. */ PX_WREG(i, AHCI_PX_SERR, 0xFFFFFFFF); PX_WREG(i, AHCI_PX_IS, 0xFFFFFFFF); AHCI_WREG(AHCI_IS, (1 << i)); /* Verify Interrupts Cleared */ reg = PX_RREG(i, AHCI_PX_SERR); g_assert_cmphex(reg, ==, 0); reg = PX_RREG(i, AHCI_PX_IS); g_assert_cmphex(reg, ==, 0); reg = AHCI_RREG(AHCI_IS); ASSERT_BIT_CLEAR(reg, (1 << i)); /* Enable All Interrupts: */ PX_WREG(i, AHCI_PX_IE, 0xFFFFFFFF); reg = PX_RREG(i, AHCI_PX_IE); g_assert_cmphex(reg, ==, ~((uint32_t)AHCI_PX_IE_RESERVED)); /* Enable the FIS Receive Engine. */ PX_SET(i, AHCI_PX_CMD, AHCI_PX_CMD_FRE); reg = PX_RREG(i, AHCI_PX_CMD); ASSERT_BIT_SET(reg, AHCI_PX_CMD_FR); /* AHCI 1.3 spec: if !STS.BSY, !STS.DRQ and PxSSTS.DET indicates * physical presence, a device is present and may be started. However, * PxSERR.DIAG.X /may/ need to be cleared a priori. */ reg = PX_RREG(i, AHCI_PX_SERR); if (BITSET(reg, AHCI_PX_SERR_DIAG_X)) { PX_SET(i, AHCI_PX_SERR, AHCI_PX_SERR_DIAG_X); } reg = PX_RREG(i, AHCI_PX_TFD); if (BITCLR(reg, AHCI_PX_TFD_STS_BSY | AHCI_PX_TFD_STS_DRQ)) { reg = PX_RREG(i, AHCI_PX_SSTS); if ((reg & AHCI_PX_SSTS_DET) == SSTS_DET_ESTABLISHED) { /* Device Found: set PxCMD.ST := 1 */ PX_SET(i, AHCI_PX_CMD, AHCI_PX_CMD_ST); ASSERT_BIT_SET(PX_RREG(i, AHCI_PX_CMD), AHCI_PX_CMD_CR); g_test_message("Started Device %u", i); } else if ((reg & AHCI_PX_SSTS_DET)) { /* Device present, but in some unknown state. */ g_assert_not_reached(); } } } /* Enable GHC.IE */ AHCI_SET(AHCI_GHC, AHCI_GHC_IE); reg = AHCI_RREG(AHCI_GHC); ASSERT_BIT_SET(reg, AHCI_GHC_IE); /* TODO: The device should now be idling and waiting for commands. * In the future, a small test-case to inspect the Register D2H FIS * and clear the initial interrupts might be good. */ } /*** Specification Adherence Tests ***/ /** * Implementation for test_pci_spec. Ensures PCI configuration space is sane. */ static void ahci_test_pci_spec(QPCIDevice *ahci) { uint8_t datab; uint16_t data; uint32_t datal; /* Most of these bits should start cleared until we turn them on. */ data = qpci_config_readw(ahci, PCI_COMMAND); ASSERT_BIT_CLEAR(data, PCI_COMMAND_MEMORY); ASSERT_BIT_CLEAR(data, PCI_COMMAND_MASTER); ASSERT_BIT_CLEAR(data, PCI_COMMAND_SPECIAL); /* Reserved */ ASSERT_BIT_CLEAR(data, PCI_COMMAND_VGA_PALETTE); /* Reserved */ ASSERT_BIT_CLEAR(data, PCI_COMMAND_PARITY); ASSERT_BIT_CLEAR(data, PCI_COMMAND_WAIT); /* Reserved */ ASSERT_BIT_CLEAR(data, PCI_COMMAND_SERR); ASSERT_BIT_CLEAR(data, PCI_COMMAND_FAST_BACK); ASSERT_BIT_CLEAR(data, PCI_COMMAND_INTX_DISABLE); ASSERT_BIT_CLEAR(data, 0xF800); /* Reserved */ data = qpci_config_readw(ahci, PCI_STATUS); ASSERT_BIT_CLEAR(data, 0x01 | 0x02 | 0x04); /* Reserved */ ASSERT_BIT_CLEAR(data, PCI_STATUS_INTERRUPT); ASSERT_BIT_SET(data, PCI_STATUS_CAP_LIST); /* must be set */ ASSERT_BIT_CLEAR(data, PCI_STATUS_UDF); /* Reserved */ ASSERT_BIT_CLEAR(data, PCI_STATUS_PARITY); ASSERT_BIT_CLEAR(data, PCI_STATUS_SIG_TARGET_ABORT); ASSERT_BIT_CLEAR(data, PCI_STATUS_REC_TARGET_ABORT); ASSERT_BIT_CLEAR(data, PCI_STATUS_REC_MASTER_ABORT); ASSERT_BIT_CLEAR(data, PCI_STATUS_SIG_SYSTEM_ERROR); ASSERT_BIT_CLEAR(data, PCI_STATUS_DETECTED_PARITY); /* RID occupies the low byte, CCs occupy the high three. */ datal = qpci_config_readl(ahci, PCI_CLASS_REVISION); if (ahci_pedantic) { /* AHCI 1.3 specifies that at-boot, the RID should reset to 0x00, * Though in practice this is likely seldom true. */ ASSERT_BIT_CLEAR(datal, 0xFF); } /* BCC *must* equal 0x01. */ g_assert_cmphex(PCI_BCC(datal), ==, 0x01); if (PCI_SCC(datal) == 0x01) { /* IDE */ ASSERT_BIT_SET(0x80000000, datal); ASSERT_BIT_CLEAR(0x60000000, datal); } else if (PCI_SCC(datal) == 0x04) { /* RAID */ g_assert_cmphex(PCI_PI(datal), ==, 0); } else if (PCI_SCC(datal) == 0x06) { /* AHCI */ g_assert_cmphex(PCI_PI(datal), ==, 0x01); } else { g_assert_not_reached(); } datab = qpci_config_readb(ahci, PCI_CACHE_LINE_SIZE); g_assert_cmphex(datab, ==, 0); datab = qpci_config_readb(ahci, PCI_LATENCY_TIMER); g_assert_cmphex(datab, ==, 0); /* Only the bottom 7 bits must be off. */ datab = qpci_config_readb(ahci, PCI_HEADER_TYPE); ASSERT_BIT_CLEAR(datab, 0x7F); /* BIST is optional, but the low 7 bits must always start off regardless. */ datab = qpci_config_readb(ahci, PCI_BIST); ASSERT_BIT_CLEAR(datab, 0x7F); /* BARS 0-4 do not have a boot spec, but ABAR/BAR5 must be clean. */ datal = qpci_config_readl(ahci, PCI_BASE_ADDRESS_5); g_assert_cmphex(datal, ==, 0); qpci_config_writel(ahci, PCI_BASE_ADDRESS_5, 0xFFFFFFFF); datal = qpci_config_readl(ahci, PCI_BASE_ADDRESS_5); /* ABAR must be 32-bit, memory mapped, non-prefetchable and * must be >= 512 bytes. To that end, bits 0-8 must be off. */ ASSERT_BIT_CLEAR(datal, 0xFF); /* Capability list MUST be present, */ datal = qpci_config_readl(ahci, PCI_CAPABILITY_LIST); /* But these bits are reserved. */ ASSERT_BIT_CLEAR(datal, ~0xFF); g_assert_cmphex(datal, !=, 0); /* Check specification adherence for capability extenstions. */ data = qpci_config_readw(ahci, datal); switch (ahci_fingerprint) { case AHCI_INTEL_ICH9: /* Intel ICH9 Family Datasheet 14.1.19 p.550 */ g_assert_cmphex((data & 0xFF), ==, PCI_CAP_ID_MSI); break; default: /* AHCI 1.3, Section 2.1.14 -- CAP must point to PMCAP. */ g_assert_cmphex((data & 0xFF), ==, PCI_CAP_ID_PM); } ahci_test_pci_caps(ahci, data, (uint8_t)datal); /* Reserved. */ datal = qpci_config_readl(ahci, PCI_CAPABILITY_LIST + 4); g_assert_cmphex(datal, ==, 0); /* IPIN might vary, but ILINE must be off. */ datab = qpci_config_readb(ahci, PCI_INTERRUPT_LINE); g_assert_cmphex(datab, ==, 0); } /** * Test PCI capabilities for AHCI specification adherence. */ static void ahci_test_pci_caps(QPCIDevice *ahci, uint16_t header, uint8_t offset) { uint8_t cid = header & 0xFF; uint8_t next = header >> 8; g_test_message("CID: %02x; next: %02x", cid, next); switch (cid) { case PCI_CAP_ID_PM: ahci_test_pmcap(ahci, offset); break; case PCI_CAP_ID_MSI: ahci_test_msicap(ahci, offset); break; case PCI_CAP_ID_SATA: ahci_test_satacap(ahci, offset); break; default: g_test_message("Unknown CAP 0x%02x", cid); } if (next) { ahci_test_pci_caps(ahci, qpci_config_readw(ahci, next), next); } } /** * Test SATA PCI capabilitity for AHCI specification adherence. */ static void ahci_test_satacap(QPCIDevice *ahci, uint8_t offset) { uint16_t dataw; uint32_t datal; g_test_message("Verifying SATACAP"); /* Assert that the SATACAP version is 1.0, And reserved bits are empty. */ dataw = qpci_config_readw(ahci, offset + 2); g_assert_cmphex(dataw, ==, 0x10); /* Grab the SATACR1 register. */ datal = qpci_config_readw(ahci, offset + 4); switch (datal & 0x0F) { case 0x04: /* BAR0 */ case 0x05: /* BAR1 */ case 0x06: case 0x07: case 0x08: case 0x09: /* BAR5 */ case 0x0F: /* Immediately following SATACR1 in PCI config space. */ break; default: /* Invalid BARLOC for the Index Data Pair. */ g_assert_not_reached(); } /* Reserved. */ g_assert_cmphex((datal >> 24), ==, 0x00); } /** * Test MSI PCI capability for AHCI specification adherence. */ static void ahci_test_msicap(QPCIDevice *ahci, uint8_t offset) { uint16_t dataw; uint32_t datal; g_test_message("Verifying MSICAP"); dataw = qpci_config_readw(ahci, offset + PCI_MSI_FLAGS); ASSERT_BIT_CLEAR(dataw, PCI_MSI_FLAGS_ENABLE); ASSERT_BIT_CLEAR(dataw, PCI_MSI_FLAGS_QSIZE); ASSERT_BIT_CLEAR(dataw, PCI_MSI_FLAGS_RESERVED); datal = qpci_config_readl(ahci, offset + PCI_MSI_ADDRESS_LO); g_assert_cmphex(datal, ==, 0); if (dataw & PCI_MSI_FLAGS_64BIT) { g_test_message("MSICAP is 64bit"); datal = qpci_config_readl(ahci, offset + PCI_MSI_ADDRESS_HI); g_assert_cmphex(datal, ==, 0); dataw = qpci_config_readw(ahci, offset + PCI_MSI_DATA_64); g_assert_cmphex(dataw, ==, 0); } else { g_test_message("MSICAP is 32bit"); dataw = qpci_config_readw(ahci, offset + PCI_MSI_DATA_32); g_assert_cmphex(dataw, ==, 0); } } /** * Test Power Management PCI capability for AHCI specification adherence. */ static void ahci_test_pmcap(QPCIDevice *ahci, uint8_t offset) { uint16_t dataw; g_test_message("Verifying PMCAP"); dataw = qpci_config_readw(ahci, offset + PCI_PM_PMC); ASSERT_BIT_CLEAR(dataw, PCI_PM_CAP_PME_CLOCK); ASSERT_BIT_CLEAR(dataw, PCI_PM_CAP_RESERVED); ASSERT_BIT_CLEAR(dataw, PCI_PM_CAP_D1); ASSERT_BIT_CLEAR(dataw, PCI_PM_CAP_D2); dataw = qpci_config_readw(ahci, offset + PCI_PM_CTRL); ASSERT_BIT_CLEAR(dataw, PCI_PM_CTRL_STATE_MASK); ASSERT_BIT_CLEAR(dataw, PCI_PM_CTRL_RESERVED); ASSERT_BIT_CLEAR(dataw, PCI_PM_CTRL_DATA_SEL_MASK); ASSERT_BIT_CLEAR(dataw, PCI_PM_CTRL_DATA_SCALE_MASK); } static void ahci_test_hba_spec(QPCIDevice *ahci, void *hba_base) { HBACap hcap; unsigned i; uint32_t cap, cap2, reg; uint32_t ports; uint8_t nports_impl; uint8_t maxports; g_assert(ahci != 0); g_assert(hba_base != 0); /* * Note that the AHCI spec does expect the BIOS to set up a few things: * CAP.SSS - Support for staggered spin-up (t/f) * CAP.SMPS - Support for mechanical presence switches (t/f) * PI - Ports Implemented (1-32) * PxCMD.HPCP - Hot Plug Capable Port * PxCMD.MPSP - Mechanical Presence Switch Present * PxCMD.CPD - Cold Presence Detection support * * Additional items are touched if CAP.SSS is on, see AHCI 10.1.1 p.97: * Foreach Port Implemented: * -PxCMD.ST, PxCMD.CR, PxCMD.FRE, PxCMD.FR, PxSCTL.DET are 0 * -PxCLB/U and PxFB/U are set to valid regions in memory * -PxSUD is set to 1. * -PxSSTS.DET is polled for presence; if detected, we continue: * -PxSERR is cleared with 1's. * -If PxTFD.STS.BSY, PxTFD.STS.DRQ, and PxTFD.STS.ERR are all zero, * the device is ready. */ /* 1 CAP - Capabilities Register */ cap = AHCI_RREG(AHCI_CAP); ASSERT_BIT_CLEAR(cap, AHCI_CAP_RESERVED); /* 2 GHC - Global Host Control */ reg = AHCI_RREG(AHCI_GHC); ASSERT_BIT_CLEAR(reg, AHCI_GHC_HR); ASSERT_BIT_CLEAR(reg, AHCI_GHC_IE); ASSERT_BIT_CLEAR(reg, AHCI_GHC_MRSM); if (BITSET(cap, AHCI_CAP_SAM)) { g_test_message("Supports AHCI-Only Mode: GHC_AE is Read-Only."); ASSERT_BIT_SET(reg, AHCI_GHC_AE); } else { g_test_message("Supports AHCI/Legacy mix."); ASSERT_BIT_CLEAR(reg, AHCI_GHC_AE); } /* 3 IS - Interrupt Status */ reg = AHCI_RREG(AHCI_IS); g_assert_cmphex(reg, ==, 0); /* 4 PI - Ports Implemented */ ports = AHCI_RREG(AHCI_PI); /* Ports Implemented must be non-zero. */ g_assert_cmphex(ports, !=, 0); /* Ports Implemented must be <= Number of Ports. */ nports_impl = ctpopl(ports); g_assert_cmpuint(((AHCI_CAP_NP & cap) + 1), >=, nports_impl); g_assert_cmphex(barsize, >, 0); /* Ports must be within the proper range. Given a mapping of SIZE, * 256 bytes are used for global HBA control, and the rest is used * for ports data, at 0x80 bytes each. */ maxports = (barsize - HBA_DATA_REGION_SIZE) / HBA_PORT_DATA_SIZE; /* e.g, 30 ports for 4K of memory. (4096 - 256) / 128 = 30 */ g_assert_cmphex((reg >> maxports), ==, 0); /* 5 AHCI Version */ reg = AHCI_RREG(AHCI_VS); switch (reg) { case AHCI_VERSION_0_95: case AHCI_VERSION_1_0: case AHCI_VERSION_1_1: case AHCI_VERSION_1_2: case AHCI_VERSION_1_3: break; default: g_assert_not_reached(); } /* 6 Command Completion Coalescing Control: depends on CAP.CCCS. */ reg = AHCI_RREG(AHCI_CCCCTL); if (BITSET(cap, AHCI_CAP_CCCS)) { ASSERT_BIT_CLEAR(reg, AHCI_CCCCTL_EN); ASSERT_BIT_CLEAR(reg, AHCI_CCCCTL_RESERVED); ASSERT_BIT_SET(reg, AHCI_CCCCTL_CC); ASSERT_BIT_SET(reg, AHCI_CCCCTL_TV); } else { g_assert_cmphex(reg, ==, 0); } /* 7 CCC_PORTS */ reg = AHCI_RREG(AHCI_CCCPORTS); /* Must be zeroes initially regardless of CAP.CCCS */ g_assert_cmphex(reg, ==, 0); /* 8 EM_LOC */ reg = AHCI_RREG(AHCI_EMLOC); if (BITCLR(cap, AHCI_CAP_EMS)) { g_assert_cmphex(reg, ==, 0); } /* 9 EM_CTL */ reg = AHCI_RREG(AHCI_EMCTL); if (BITSET(cap, AHCI_CAP_EMS)) { ASSERT_BIT_CLEAR(reg, AHCI_EMCTL_STSMR); ASSERT_BIT_CLEAR(reg, AHCI_EMCTL_CTLTM); ASSERT_BIT_CLEAR(reg, AHCI_EMCTL_CTLRST); ASSERT_BIT_CLEAR(reg, AHCI_EMCTL_RESERVED); } else { g_assert_cmphex(reg, ==, 0); } /* 10 CAP2 -- Capabilities Extended */ cap2 = AHCI_RREG(AHCI_CAP2); ASSERT_BIT_CLEAR(cap2, AHCI_CAP2_RESERVED); /* 11 BOHC -- Bios/OS Handoff Control */ reg = AHCI_RREG(AHCI_BOHC); g_assert_cmphex(reg, ==, 0); /* 12 -- 23: Reserved */ g_test_message("Verifying HBA reserved area is empty."); for (i = AHCI_RESERVED; i < AHCI_NVMHCI; ++i) { reg = AHCI_RREG(i); g_assert_cmphex(reg, ==, 0); } /* 24 -- 39: NVMHCI */ if (BITCLR(cap2, AHCI_CAP2_NVMP)) { g_test_message("Verifying HBA/NVMHCI area is empty."); for (i = AHCI_NVMHCI; i < AHCI_VENDOR; ++i) { reg = AHCI_RREG(i); g_assert_cmphex(reg, ==, 0); } } /* 40 -- 63: Vendor */ g_test_message("Verifying HBA/Vendor area is empty."); for (i = AHCI_VENDOR; i < AHCI_PORTS; ++i) { reg = AHCI_RREG(i); g_assert_cmphex(reg, ==, 0); } /* 64 -- XX: Port Space */ hcap.cap = cap; hcap.cap2 = cap2; for (i = 0; ports || (i < maxports); ports >>= 1, ++i) { if (BITSET(ports, 0x1)) { g_test_message("Testing port %u for spec", i); ahci_test_port_spec(ahci, hba_base, &hcap, i); } else { uint16_t j; uint16_t low = AHCI_PORTS + (32 * i); uint16_t high = AHCI_PORTS + (32 * (i + 1)); g_test_message("Asserting unimplemented port %u " "(reg [%u-%u]) is empty.", i, low, high - 1); for (j = low; j < high; ++j) { reg = AHCI_RREG(j); g_assert_cmphex(reg, ==, 0); } } } } /** * Test the memory space for one port for specification adherence. */ static void ahci_test_port_spec(QPCIDevice *ahci, void *hba_base, HBACap *hcap, uint8_t port) { uint32_t reg; unsigned i; /* (0) CLB */ reg = PX_RREG(port, AHCI_PX_CLB); ASSERT_BIT_CLEAR(reg, AHCI_PX_CLB_RESERVED); /* (1) CLBU */ if (BITCLR(hcap->cap, AHCI_CAP_S64A)) { reg = PX_RREG(port, AHCI_PX_CLBU); g_assert_cmphex(reg, ==, 0); } /* (2) FB */ reg = PX_RREG(port, AHCI_PX_FB); ASSERT_BIT_CLEAR(reg, AHCI_PX_FB_RESERVED); /* (3) FBU */ if (BITCLR(hcap->cap, AHCI_CAP_S64A)) { reg = PX_RREG(port, AHCI_PX_FBU); g_assert_cmphex(reg, ==, 0); } /* (4) IS */ reg = PX_RREG(port, AHCI_PX_IS); g_assert_cmphex(reg, ==, 0); /* (5) IE */ reg = PX_RREG(port, AHCI_PX_IE); g_assert_cmphex(reg, ==, 0); /* (6) CMD */ reg = PX_RREG(port, AHCI_PX_CMD); ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_FRE); ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_RESERVED); ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_CCS); ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_FR); ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_CR); ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_PMA); /* And RW only if CAP.SPM */ ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_APSTE); /* RW only if CAP2.APST */ ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_ATAPI); ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_DLAE); ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_ALPE); /* RW only if CAP.SALP */ ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_ASP); /* RW only if CAP.SALP */ ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_ICC); /* If CPDetect support does not exist, CPState must be off. */ if (BITCLR(reg, AHCI_PX_CMD_CPD)) { ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_CPS); } /* If MPSPresence is not set, MPSState must be off. */ if (BITCLR(reg, AHCI_PX_CMD_MPSP)) { ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_MPSS); } /* If we do not support MPS, MPSS and MPSP must be off. */ if (BITCLR(hcap->cap, AHCI_CAP_SMPS)) { ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_MPSS); ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_MPSP); } /* If, via CPD or MPSP we detect a drive, HPCP must be on. */ if (BITANY(reg, AHCI_PX_CMD_CPD || AHCI_PX_CMD_MPSP)) { ASSERT_BIT_SET(reg, AHCI_PX_CMD_HPCP); } /* HPCP and ESP cannot both be active. */ g_assert(!BITSET(reg, AHCI_PX_CMD_HPCP | AHCI_PX_CMD_ESP)); /* If CAP.FBSS is not set, FBSCP must not be set. */ if (BITCLR(hcap->cap, AHCI_CAP_FBSS)) { ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_FBSCP); } /* (7) RESERVED */ reg = PX_RREG(port, AHCI_PX_RES1); g_assert_cmphex(reg, ==, 0); /* (8) TFD */ reg = PX_RREG(port, AHCI_PX_TFD); /* At boot, prior to an FIS being received, the TFD register should be 0x7F, * which breaks down as follows, as seen in AHCI 1.3 sec 3.3.8, p. 27. */ ASSERT_BIT_SET(reg, AHCI_PX_TFD_STS_ERR); ASSERT_BIT_SET(reg, AHCI_PX_TFD_STS_CS1); ASSERT_BIT_SET(reg, AHCI_PX_TFD_STS_DRQ); ASSERT_BIT_SET(reg, AHCI_PX_TFD_STS_CS2); ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_STS_BSY); ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_ERR); ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_RESERVED); /* (9) SIG */ /* Though AHCI specifies the boot value should be 0xFFFFFFFF, * Even when GHC.ST is zero, the AHCI HBA may receive the initial * D2H register FIS and update the signature asynchronously, * so we cannot expect a value here. AHCI 1.3, sec 3.3.9, pp 27-28 */ /* (10) SSTS / SCR0: SStatus */ reg = PX_RREG(port, AHCI_PX_SSTS); ASSERT_BIT_CLEAR(reg, AHCI_PX_SSTS_RESERVED); /* Even though the register should be 0 at boot, it is asynchronous and * prone to change, so we cannot test any well known value. */ /* (11) SCTL / SCR2: SControl */ reg = PX_RREG(port, AHCI_PX_SCTL); g_assert_cmphex(reg, ==, 0); /* (12) SERR / SCR1: SError */ reg = PX_RREG(port, AHCI_PX_SERR); g_assert_cmphex(reg, ==, 0); /* (13) SACT / SCR3: SActive */ reg = PX_RREG(port, AHCI_PX_SACT); g_assert_cmphex(reg, ==, 0); /* (14) CI */ reg = PX_RREG(port, AHCI_PX_CI); g_assert_cmphex(reg, ==, 0); /* (15) SNTF */ reg = PX_RREG(port, AHCI_PX_SNTF); g_assert_cmphex(reg, ==, 0); /* (16) FBS */ reg = PX_RREG(port, AHCI_PX_FBS); ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_EN); ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_DEC); ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_SDE); ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_DEV); ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_DWE); ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_RESERVED); if (BITSET(hcap->cap, AHCI_CAP_FBSS)) { /* if Port-Multiplier FIS-based switching avail, ADO must >= 2 */ g_assert((reg & AHCI_PX_FBS_ADO) >> ctzl(AHCI_PX_FBS_ADO) >= 2); } /* [17 -- 27] RESERVED */ for (i = AHCI_PX_RES2; i < AHCI_PX_VS; ++i) { reg = PX_RREG(port, i); g_assert_cmphex(reg, ==, 0); } /* [28 -- 31] Vendor-Specific */ for (i = AHCI_PX_VS; i < 32; ++i) { reg = PX_RREG(port, i); if (reg) { g_test_message("INFO: Vendor register %u non-empty", i); } } } /** * Utilizing an initialized AHCI HBA, issue an IDENTIFY command to the first * device we see, then read and check the response. */ static void ahci_test_identify(QPCIDevice *ahci, void *hba_base) { RegD2HFIS *d2h = g_malloc0(0x20); RegD2HFIS *pio = g_malloc0(0x20); RegH2DFIS fis; AHCICommand cmd; PRD prd; uint32_t ports, reg, clb, table, fb, data_ptr; uint16_t buff[256]; unsigned i; int rc; g_assert(ahci != NULL); g_assert(hba_base != NULL); /* We need to: * (1) Create a Command Table Buffer and update the Command List Slot #0 * to point to this buffer. * (2) Construct an FIS host-to-device command structure, and write it to * the top of the command table buffer. * (3) Create a data buffer for the IDENTIFY response to be sent to * (4) Create a Physical Region Descriptor that points to the data buffer, * and write it to the bottom (offset 0x80) of the command table. * (5) Now, PxCLB points to the command list, command 0 points to * our table, and our table contains an FIS instruction and a * PRD that points to our rx buffer. * (6) We inform the HBA via PxCI that there is a command ready in slot #0. */ /* Pick the first implemented and running port */ ports = AHCI_RREG(AHCI_PI); for (i = 0; i < 32; ports >>= 1, ++i) { if (ports == 0) { i = 32; } if (!(ports & 0x01)) { continue; } reg = PX_RREG(i, AHCI_PX_CMD); if (BITSET(reg, AHCI_PX_CMD_ST)) { break; } } g_assert_cmphex(i, <, 32); g_test_message("Selected port %u for test", i); /* Clear out this port's interrupts (ignore the init register d2h fis) */ reg = PX_RREG(i, AHCI_PX_IS); PX_WREG(i, AHCI_PX_IS, reg); g_assert_cmphex(PX_RREG(i, AHCI_PX_IS), ==, 0); /* Wipe the FIS-Recieve Buffer */ fb = PX_RREG(i, AHCI_PX_FB); g_assert_cmphex(fb, !=, 0); qmemset(fb, 0x00, 0x100); /* Create a Command Table buffer. 0x80 is the smallest with a PRDTL of 0. */ /* We need at least one PRD, so round up to the nearest 0x80 multiple. */ table = guest_alloc(guest_malloc, CMD_TBL_SIZ(1)); g_assert(table); ASSERT_BIT_CLEAR(table, 0x7F); /* Create a data buffer ... where we will dump the IDENTIFY data to. */ data_ptr = guest_alloc(guest_malloc, 512); g_assert(data_ptr); /* Grab the Command List Buffer pointer */ clb = PX_RREG(i, AHCI_PX_CLB); g_assert(clb); /* Copy the existing Command #0 structure from the CLB into local memory, * and build a new command #0. */ memread(clb, &cmd, sizeof(cmd)); cmd.b1 = 5; /* reg_h2d_fis is 5 double-words long */ cmd.b2 = 0x04; /* clear PxTFD.STS.BSY when done */ cmd.prdtl = cpu_to_le16(1); /* One PRD table entry. */ cmd.prdbc = 0; cmd.ctba = cpu_to_le32(table); cmd.ctbau = 0; /* Construct our PRD, noting that DBC is 0-indexed. */ prd.dba = cpu_to_le32(data_ptr); prd.dbau = 0; prd.res = 0; /* 511+1 bytes, request DPS interrupt */ prd.dbc = cpu_to_le32(511 | 0x80000000); /* Construct our Command FIS, Based on http://wiki.osdev.org/AHCI */ memset(&fis, 0x00, sizeof(fis)); fis.fis_type = 0x27; /* Register Host-to-Device FIS */ fis.command = 0xEC; /* IDENTIFY */ fis.device = 0; fis.flags = 0x80; /* Indicate this is a command FIS */ /* We've committed nothing yet, no interrupts should be posted yet. */ g_assert_cmphex(PX_RREG(i, AHCI_PX_IS), ==, 0); /* Commit the Command FIS to the Command Table */ memwrite(table, &fis, sizeof(fis)); /* Commit the PRD entry to the Command Table */ memwrite(table + 0x80, &prd, sizeof(prd)); /* Commit Command #0, pointing to the Table, to the Command List Buffer. */ memwrite(clb, &cmd, sizeof(cmd)); /* Everything is in place, but we haven't given the go-ahead yet. */ g_assert_cmphex(PX_RREG(i, AHCI_PX_IS), ==, 0); /* Issue Command #0 via PxCI */ PX_WREG(i, AHCI_PX_CI, (1 << 0)); while (BITSET(PX_RREG(i, AHCI_PX_TFD), AHCI_PX_TFD_STS_BSY)) { usleep(50); } /* Check for expected interrupts */ reg = PX_RREG(i, AHCI_PX_IS); ASSERT_BIT_SET(reg, AHCI_PX_IS_DHRS); ASSERT_BIT_SET(reg, AHCI_PX_IS_PSS); /* BUG: we expect AHCI_PX_IS_DPS to be set. */ ASSERT_BIT_CLEAR(reg, AHCI_PX_IS_DPS); /* Clear expected interrupts and assert all interrupts now cleared. */ PX_WREG(i, AHCI_PX_IS, AHCI_PX_IS_DHRS | AHCI_PX_IS_PSS | AHCI_PX_IS_DPS); g_assert_cmphex(PX_RREG(i, AHCI_PX_IS), ==, 0); /* Check for errors. */ reg = PX_RREG(i, AHCI_PX_SERR); g_assert_cmphex(reg, ==, 0); reg = PX_RREG(i, AHCI_PX_TFD); ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_STS_ERR); ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_ERR); /* Investigate CMD #0, assert that we read 512 bytes */ memread(clb, &cmd, sizeof(cmd)); g_assert_cmphex(512, ==, le32_to_cpu(cmd.prdbc)); /* Investigate FIS responses */ memread(fb + 0x20, pio, 0x20); memread(fb + 0x40, d2h, 0x20); g_assert_cmphex(pio->fis_type, ==, 0x5f); g_assert_cmphex(d2h->fis_type, ==, 0x34); g_assert_cmphex(pio->flags, ==, d2h->flags); g_assert_cmphex(pio->status, ==, d2h->status); g_assert_cmphex(pio->error, ==, d2h->error); reg = PX_RREG(i, AHCI_PX_TFD); g_assert_cmphex((reg & AHCI_PX_TFD_ERR), ==, pio->error); g_assert_cmphex((reg & AHCI_PX_TFD_STS), ==, pio->status); /* The PIO Setup FIS contains a "bytes read" field, which is a * 16-bit value. The Physical Region Descriptor Byte Count is * 32-bit, but for small transfers using one PRD, it should match. */ g_assert_cmphex(le16_to_cpu(pio->res4), ==, le32_to_cpu(cmd.prdbc)); /* Last, but not least: Investigate the IDENTIFY response data. */ memread(data_ptr, &buff, 512); /* Check serial number/version in the buffer */ /* NB: IDENTIFY strings are packed in 16bit little endian chunks. * Since we copy byte-for-byte in ahci-test, on both LE and BE, we need to * unchunk this data. By contrast, ide-test copies 2 bytes at a time, and * as a consequence, only needs to unchunk the data on LE machines. */ string_bswap16(&buff[10], 20); rc = memcmp(&buff[10], "testdisk ", 20); g_assert_cmphex(rc, ==, 0); string_bswap16(&buff[23], 8); rc = memcmp(&buff[23], "version ", 8); g_assert_cmphex(rc, ==, 0); g_free(d2h); g_free(pio); } /******************************************************************************/ /* Test Interfaces */ /******************************************************************************/ /** * Basic sanity test to boot a machine, find an AHCI device, and shutdown. */ static void test_sanity(void) { QPCIDevice *ahci; ahci = ahci_boot(); ahci_shutdown(ahci); } /** * Ensure that the PCI configuration space for the AHCI device is in-line with * the AHCI 1.3 specification for initial values. */ static void test_pci_spec(void) { QPCIDevice *ahci; ahci = ahci_boot(); ahci_test_pci_spec(ahci); ahci_shutdown(ahci); } /** * Engage the PCI AHCI device and sanity check the response. * Perform additional PCI config space bringup for the HBA. */ static void test_pci_enable(void) { QPCIDevice *ahci; void *hba_base; ahci = ahci_boot(); ahci_pci_enable(ahci, &hba_base); ahci_shutdown(ahci); } /** * Investigate the memory mapped regions of the HBA, * and test them for AHCI specification adherence. */ static void test_hba_spec(void) { QPCIDevice *ahci; void *hba_base; ahci = ahci_boot(); ahci_pci_enable(ahci, &hba_base); ahci_test_hba_spec(ahci, hba_base); ahci_shutdown(ahci); } /** * Engage the HBA functionality of the AHCI PCI device, * and bring it into a functional idle state. */ static void test_hba_enable(void) { QPCIDevice *ahci; void *hba_base; ahci = ahci_boot(); ahci_pci_enable(ahci, &hba_base); ahci_hba_enable(ahci, hba_base); ahci_shutdown(ahci); } /** * Bring up the device and issue an IDENTIFY command. * Inspect the state of the HBA device and the data returned. */ static void test_identify(void) { QPCIDevice *ahci; void *hba_base; ahci = ahci_boot(); ahci_pci_enable(ahci, &hba_base); ahci_hba_enable(ahci, hba_base); ahci_test_identify(ahci, hba_base); ahci_shutdown(ahci); } /******************************************************************************/ int main(int argc, char **argv) { const char *arch; int fd; int ret; int c; static struct option long_options[] = { {"pedantic", no_argument, 0, 'p' }, {0, 0, 0, 0}, }; /* Should be first to utilize g_test functionality, So we can see errors. */ g_test_init(&argc, &argv, NULL); while (1) { c = getopt_long(argc, argv, "", long_options, NULL); if (c == -1) { break; } switch (c) { case -1: break; case 'p': ahci_pedantic = 1; break; default: fprintf(stderr, "Unrecognized ahci_test option.\n"); g_assert_not_reached(); } } /* Check architecture */ arch = qtest_get_arch(); if (strcmp(arch, "i386") && strcmp(arch, "x86_64")) { g_test_message("Skipping test for non-x86"); return 0; } /* Create a temporary raw image */ fd = mkstemp(tmp_path); g_assert(fd >= 0); ret = ftruncate(fd, TEST_IMAGE_SIZE); g_assert(ret == 0); close(fd); /* Run the tests */ qtest_add_func("/ahci/sanity", test_sanity); qtest_add_func("/ahci/pci_spec", test_pci_spec); qtest_add_func("/ahci/pci_enable", test_pci_enable); qtest_add_func("/ahci/hba_spec", test_hba_spec); qtest_add_func("/ahci/hba_enable", test_hba_enable); qtest_add_func("/ahci/identify", test_identify); ret = g_test_run(); /* Cleanup */ unlink(tmp_path); return ret; }