/* * Tiny Code Generator for QEMU * * Copyright (c) 2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #ifndef TCG_H #define TCG_H #include "qemu-common.h" #include "cpu.h" #include "exec/tb-context.h" #include "qemu/bitops.h" #include "qemu/queue.h" #include "tcg-mo.h" #include "tcg-target.h" /* XXX: make safe guess about sizes */ #define MAX_OP_PER_INSTR 266 #if HOST_LONG_BITS == 32 #define MAX_OPC_PARAM_PER_ARG 2 #else #define MAX_OPC_PARAM_PER_ARG 1 #endif #define MAX_OPC_PARAM_IARGS 6 #define MAX_OPC_PARAM_OARGS 1 #define MAX_OPC_PARAM_ARGS (MAX_OPC_PARAM_IARGS + MAX_OPC_PARAM_OARGS) /* A Call op needs up to 4 + 2N parameters on 32-bit archs, * and up to 4 + N parameters on 64-bit archs * (N = number of input arguments + output arguments). */ #define MAX_OPC_PARAM (4 + (MAX_OPC_PARAM_PER_ARG * MAX_OPC_PARAM_ARGS)) #define CPU_TEMP_BUF_NLONGS 128 /* Default target word size to pointer size. */ #ifndef TCG_TARGET_REG_BITS # if UINTPTR_MAX == UINT32_MAX # define TCG_TARGET_REG_BITS 32 # elif UINTPTR_MAX == UINT64_MAX # define TCG_TARGET_REG_BITS 64 # else # error Unknown pointer size for tcg target # endif #endif #if TCG_TARGET_REG_BITS == 32 typedef int32_t tcg_target_long; typedef uint32_t tcg_target_ulong; #define TCG_PRIlx PRIx32 #define TCG_PRIld PRId32 #elif TCG_TARGET_REG_BITS == 64 typedef int64_t tcg_target_long; typedef uint64_t tcg_target_ulong; #define TCG_PRIlx PRIx64 #define TCG_PRIld PRId64 #else #error unsupported #endif /* Oversized TCG guests make things like MTTCG hard * as we can't use atomics for cputlb updates. */ #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS #define TCG_OVERSIZED_GUEST 1 #else #define TCG_OVERSIZED_GUEST 0 #endif #if TCG_TARGET_NB_REGS <= 32 typedef uint32_t TCGRegSet; #elif TCG_TARGET_NB_REGS <= 64 typedef uint64_t TCGRegSet; #else #error unsupported #endif #if TCG_TARGET_REG_BITS == 32 /* Turn some undef macros into false macros. */ #define TCG_TARGET_HAS_extrl_i64_i32 0 #define TCG_TARGET_HAS_extrh_i64_i32 0 #define TCG_TARGET_HAS_div_i64 0 #define TCG_TARGET_HAS_rem_i64 0 #define TCG_TARGET_HAS_div2_i64 0 #define TCG_TARGET_HAS_rot_i64 0 #define TCG_TARGET_HAS_ext8s_i64 0 #define TCG_TARGET_HAS_ext16s_i64 0 #define TCG_TARGET_HAS_ext32s_i64 0 #define TCG_TARGET_HAS_ext8u_i64 0 #define TCG_TARGET_HAS_ext16u_i64 0 #define TCG_TARGET_HAS_ext32u_i64 0 #define TCG_TARGET_HAS_bswap16_i64 0 #define TCG_TARGET_HAS_bswap32_i64 0 #define TCG_TARGET_HAS_bswap64_i64 0 #define TCG_TARGET_HAS_neg_i64 0 #define TCG_TARGET_HAS_not_i64 0 #define TCG_TARGET_HAS_andc_i64 0 #define TCG_TARGET_HAS_orc_i64 0 #define TCG_TARGET_HAS_eqv_i64 0 #define TCG_TARGET_HAS_nand_i64 0 #define TCG_TARGET_HAS_nor_i64 0 #define TCG_TARGET_HAS_clz_i64 0 #define TCG_TARGET_HAS_ctz_i64 0 #define TCG_TARGET_HAS_ctpop_i64 0 #define TCG_TARGET_HAS_deposit_i64 0 #define TCG_TARGET_HAS_extract_i64 0 #define TCG_TARGET_HAS_sextract_i64 0 #define TCG_TARGET_HAS_movcond_i64 0 #define TCG_TARGET_HAS_add2_i64 0 #define TCG_TARGET_HAS_sub2_i64 0 #define TCG_TARGET_HAS_mulu2_i64 0 #define TCG_TARGET_HAS_muls2_i64 0 #define TCG_TARGET_HAS_muluh_i64 0 #define TCG_TARGET_HAS_mulsh_i64 0 /* Turn some undef macros into true macros. */ #define TCG_TARGET_HAS_add2_i32 1 #define TCG_TARGET_HAS_sub2_i32 1 #endif #ifndef TCG_TARGET_deposit_i32_valid #define TCG_TARGET_deposit_i32_valid(ofs, len) 1 #endif #ifndef TCG_TARGET_deposit_i64_valid #define TCG_TARGET_deposit_i64_valid(ofs, len) 1 #endif #ifndef TCG_TARGET_extract_i32_valid #define TCG_TARGET_extract_i32_valid(ofs, len) 1 #endif #ifndef TCG_TARGET_extract_i64_valid #define TCG_TARGET_extract_i64_valid(ofs, len) 1 #endif /* Only one of DIV or DIV2 should be defined. */ #if defined(TCG_TARGET_HAS_div_i32) #define TCG_TARGET_HAS_div2_i32 0 #elif defined(TCG_TARGET_HAS_div2_i32) #define TCG_TARGET_HAS_div_i32 0 #define TCG_TARGET_HAS_rem_i32 0 #endif #if defined(TCG_TARGET_HAS_div_i64) #define TCG_TARGET_HAS_div2_i64 0 #elif defined(TCG_TARGET_HAS_div2_i64) #define TCG_TARGET_HAS_div_i64 0 #define TCG_TARGET_HAS_rem_i64 0 #endif /* For 32-bit targets, some sort of unsigned widening multiply is required. */ #if TCG_TARGET_REG_BITS == 32 \ && !(defined(TCG_TARGET_HAS_mulu2_i32) \ || defined(TCG_TARGET_HAS_muluh_i32)) # error "Missing unsigned widening multiply" #endif #if !defined(TCG_TARGET_HAS_v64) \ && !defined(TCG_TARGET_HAS_v128) \ && !defined(TCG_TARGET_HAS_v256) #define TCG_TARGET_MAYBE_vec 0 #define TCG_TARGET_HAS_neg_vec 0 #define TCG_TARGET_HAS_not_vec 0 #define TCG_TARGET_HAS_andc_vec 0 #define TCG_TARGET_HAS_orc_vec 0 #define TCG_TARGET_HAS_shi_vec 0 #define TCG_TARGET_HAS_shs_vec 0 #define TCG_TARGET_HAS_shv_vec 0 #define TCG_TARGET_HAS_mul_vec 0 #else #define TCG_TARGET_MAYBE_vec 1 #endif #ifndef TCG_TARGET_HAS_v64 #define TCG_TARGET_HAS_v64 0 #endif #ifndef TCG_TARGET_HAS_v128 #define TCG_TARGET_HAS_v128 0 #endif #ifndef TCG_TARGET_HAS_v256 #define TCG_TARGET_HAS_v256 0 #endif #ifndef TARGET_INSN_START_EXTRA_WORDS # define TARGET_INSN_START_WORDS 1 #else # define TARGET_INSN_START_WORDS (1 + TARGET_INSN_START_EXTRA_WORDS) #endif typedef enum TCGOpcode { #define DEF(name, oargs, iargs, cargs, flags) INDEX_op_ ## name, #include "tcg-opc.h" #undef DEF NB_OPS, } TCGOpcode; #define tcg_regset_set_reg(d, r) ((d) |= (TCGRegSet)1 << (r)) #define tcg_regset_reset_reg(d, r) ((d) &= ~((TCGRegSet)1 << (r))) #define tcg_regset_test_reg(d, r) (((d) >> (r)) & 1) #ifndef TCG_TARGET_INSN_UNIT_SIZE # error "Missing TCG_TARGET_INSN_UNIT_SIZE" #elif TCG_TARGET_INSN_UNIT_SIZE == 1 typedef uint8_t tcg_insn_unit; #elif TCG_TARGET_INSN_UNIT_SIZE == 2 typedef uint16_t tcg_insn_unit; #elif TCG_TARGET_INSN_UNIT_SIZE == 4 typedef uint32_t tcg_insn_unit; #elif TCG_TARGET_INSN_UNIT_SIZE == 8 typedef uint64_t tcg_insn_unit; #else /* The port better have done this. */ #endif #if defined CONFIG_DEBUG_TCG || defined QEMU_STATIC_ANALYSIS # define tcg_debug_assert(X) do { assert(X); } while (0) #elif QEMU_GNUC_PREREQ(4, 5) # define tcg_debug_assert(X) \ do { if (!(X)) { __builtin_unreachable(); } } while (0) #else # define tcg_debug_assert(X) do { (void)(X); } while (0) #endif typedef struct TCGRelocation { struct TCGRelocation *next; int type; tcg_insn_unit *ptr; intptr_t addend; } TCGRelocation; typedef struct TCGLabel { unsigned has_value : 1; unsigned id : 31; union { uintptr_t value; tcg_insn_unit *value_ptr; TCGRelocation *first_reloc; } u; } TCGLabel; typedef struct TCGPool { struct TCGPool *next; int size; uint8_t data[0] __attribute__ ((aligned)); } TCGPool; #define TCG_POOL_CHUNK_SIZE 32768 #define TCG_MAX_TEMPS 512 #define TCG_MAX_INSNS 512 /* when the size of the arguments of a called function is smaller than this value, they are statically allocated in the TB stack frame */ #define TCG_STATIC_CALL_ARGS_SIZE 128 typedef enum TCGType { TCG_TYPE_I32, TCG_TYPE_I64, TCG_TYPE_V64, TCG_TYPE_V128, TCG_TYPE_V256, TCG_TYPE_COUNT, /* number of different types */ /* An alias for the size of the host register. */ #if TCG_TARGET_REG_BITS == 32 TCG_TYPE_REG = TCG_TYPE_I32, #else TCG_TYPE_REG = TCG_TYPE_I64, #endif /* An alias for the size of the native pointer. */ #if UINTPTR_MAX == UINT32_MAX TCG_TYPE_PTR = TCG_TYPE_I32, #else TCG_TYPE_PTR = TCG_TYPE_I64, #endif /* An alias for the size of the target "long", aka register. */ #if TARGET_LONG_BITS == 64 TCG_TYPE_TL = TCG_TYPE_I64, #else TCG_TYPE_TL = TCG_TYPE_I32, #endif } TCGType; /* Constants for qemu_ld and qemu_st for the Memory Operation field. */ typedef enum TCGMemOp { MO_8 = 0, MO_16 = 1, MO_32 = 2, MO_64 = 3, MO_SIZE = 3, /* Mask for the above. */ MO_SIGN = 4, /* Sign-extended, otherwise zero-extended. */ MO_BSWAP = 8, /* Host reverse endian. */ #ifdef HOST_WORDS_BIGENDIAN MO_LE = MO_BSWAP, MO_BE = 0, #else MO_LE = 0, MO_BE = MO_BSWAP, #endif #ifdef TARGET_WORDS_BIGENDIAN MO_TE = MO_BE, #else MO_TE = MO_LE, #endif /* MO_UNALN accesses are never checked for alignment. * MO_ALIGN accesses will result in a call to the CPU's * do_unaligned_access hook if the guest address is not aligned. * The default depends on whether the target CPU defines ALIGNED_ONLY. * * Some architectures (e.g. ARMv8) need the address which is aligned * to a size more than the size of the memory access. * Some architectures (e.g. SPARCv9) need an address which is aligned, * but less strictly than the natural alignment. * * MO_ALIGN supposes the alignment size is the size of a memory access. * * There are three options: * - unaligned access permitted (MO_UNALN). * - an alignment to the size of an access (MO_ALIGN); * - an alignment to a specified size, which may be more or less than * the access size (MO_ALIGN_x where 'x' is a size in bytes); */ MO_ASHIFT = 4, MO_AMASK = 7 << MO_ASHIFT, #ifdef ALIGNED_ONLY MO_ALIGN = 0, MO_UNALN = MO_AMASK, #else MO_ALIGN = MO_AMASK, MO_UNALN = 0, #endif MO_ALIGN_2 = 1 << MO_ASHIFT, MO_ALIGN_4 = 2 << MO_ASHIFT, MO_ALIGN_8 = 3 << MO_ASHIFT, MO_ALIGN_16 = 4 << MO_ASHIFT, MO_ALIGN_32 = 5 << MO_ASHIFT, MO_ALIGN_64 = 6 << MO_ASHIFT, /* Combinations of the above, for ease of use. */ MO_UB = MO_8, MO_UW = MO_16, MO_UL = MO_32, MO_SB = MO_SIGN | MO_8, MO_SW = MO_SIGN | MO_16, MO_SL = MO_SIGN | MO_32, MO_Q = MO_64, MO_LEUW = MO_LE | MO_UW, MO_LEUL = MO_LE | MO_UL, MO_LESW = MO_LE | MO_SW, MO_LESL = MO_LE | MO_SL, MO_LEQ = MO_LE | MO_Q, MO_BEUW = MO_BE | MO_UW, MO_BEUL = MO_BE | MO_UL, MO_BESW = MO_BE | MO_SW, MO_BESL = MO_BE | MO_SL, MO_BEQ = MO_BE | MO_Q, MO_TEUW = MO_TE | MO_UW, MO_TEUL = MO_TE | MO_UL, MO_TESW = MO_TE | MO_SW, MO_TESL = MO_TE | MO_SL, MO_TEQ = MO_TE | MO_Q, MO_SSIZE = MO_SIZE | MO_SIGN, } TCGMemOp; /** * get_alignment_bits * @memop: TCGMemOp value * * Extract the alignment size from the memop. */ static inline unsigned get_alignment_bits(TCGMemOp memop) { unsigned a = memop & MO_AMASK; if (a == MO_UNALN) { /* No alignment required. */ a = 0; } else if (a == MO_ALIGN) { /* A natural alignment requirement. */ a = memop & MO_SIZE; } else { /* A specific alignment requirement. */ a = a >> MO_ASHIFT; } #if defined(CONFIG_SOFTMMU) /* The requested alignment cannot overlap the TLB flags. */ tcg_debug_assert((TLB_FLAGS_MASK & ((1 << a) - 1)) == 0); #endif return a; } typedef tcg_target_ulong TCGArg; /* Define type and accessor macros for TCG variables. TCG variables are the inputs and outputs of TCG ops, as described in tcg/README. Target CPU front-end code uses these types to deal with TCG variables as it emits TCG code via the tcg_gen_* functions. They come in several flavours: * TCGv_i32 : 32 bit integer type * TCGv_i64 : 64 bit integer type * TCGv_ptr : a host pointer type * TCGv_vec : a host vector type; the exact size is not exposed to the CPU front-end code. * TCGv : an integer type the same size as target_ulong (an alias for either TCGv_i32 or TCGv_i64) The compiler's type checking will complain if you mix them up and pass the wrong sized TCGv to a function. Users of tcg_gen_* don't need to know about any of the internal details of these, and should treat them as opaque types. You won't be able to look inside them in a debugger either. Internal implementation details follow: Note that there is no definition of the structs TCGv_i32_d etc anywhere. This is deliberate, because the values we store in variables of type TCGv_i32 are not really pointers-to-structures. They're just small integers, but keeping them in pointer types like this means that the compiler will complain if you accidentally pass a TCGv_i32 to a function which takes a TCGv_i64, and so on. Only the internals of TCG need to care about the actual contents of the types. */ typedef struct TCGv_i32_d *TCGv_i32; typedef struct TCGv_i64_d *TCGv_i64; typedef struct TCGv_ptr_d *TCGv_ptr; typedef struct TCGv_vec_d *TCGv_vec; typedef TCGv_ptr TCGv_env; #if TARGET_LONG_BITS == 32 #define TCGv TCGv_i32 #elif TARGET_LONG_BITS == 64 #define TCGv TCGv_i64 #else #error Unhandled TARGET_LONG_BITS value #endif /* call flags */ /* Helper does not read globals (either directly or through an exception). It implies TCG_CALL_NO_WRITE_GLOBALS. */ #define TCG_CALL_NO_READ_GLOBALS 0x0010 /* Helper does not write globals */ #define TCG_CALL_NO_WRITE_GLOBALS 0x0020 /* Helper can be safely suppressed if the return value is not used. */ #define TCG_CALL_NO_SIDE_EFFECTS 0x0040 /* convenience version of most used call flags */ #define TCG_CALL_NO_RWG TCG_CALL_NO_READ_GLOBALS #define TCG_CALL_NO_WG TCG_CALL_NO_WRITE_GLOBALS #define TCG_CALL_NO_SE TCG_CALL_NO_SIDE_EFFECTS #define TCG_CALL_NO_RWG_SE (TCG_CALL_NO_RWG | TCG_CALL_NO_SE) #define TCG_CALL_NO_WG_SE (TCG_CALL_NO_WG | TCG_CALL_NO_SE) /* Used to align parameters. See the comment before tcgv_i32_temp. */ #define TCG_CALL_DUMMY_ARG ((TCGArg)0) /* Conditions. Note that these are laid out for easy manipulation by the functions below: bit 0 is used for inverting; bit 1 is signed, bit 2 is unsigned, bit 3 is used with bit 0 for swapping signed/unsigned. */ typedef enum { /* non-signed */ TCG_COND_NEVER = 0 | 0 | 0 | 0, TCG_COND_ALWAYS = 0 | 0 | 0 | 1, TCG_COND_EQ = 8 | 0 | 0 | 0, TCG_COND_NE = 8 | 0 | 0 | 1, /* signed */ TCG_COND_LT = 0 | 0 | 2 | 0, TCG_COND_GE = 0 | 0 | 2 | 1, TCG_COND_LE = 8 | 0 | 2 | 0, TCG_COND_GT = 8 | 0 | 2 | 1, /* unsigned */ TCG_COND_LTU = 0 | 4 | 0 | 0, TCG_COND_GEU = 0 | 4 | 0 | 1, TCG_COND_LEU = 8 | 4 | 0 | 0, TCG_COND_GTU = 8 | 4 | 0 | 1, } TCGCond; /* Invert the sense of the comparison. */ static inline TCGCond tcg_invert_cond(TCGCond c) { return (TCGCond)(c ^ 1); } /* Swap the operands in a comparison. */ static inline TCGCond tcg_swap_cond(TCGCond c) { return c & 6 ? (TCGCond)(c ^ 9) : c; } /* Create an "unsigned" version of a "signed" comparison. */ static inline TCGCond tcg_unsigned_cond(TCGCond c) { return c & 2 ? (TCGCond)(c ^ 6) : c; } /* Create a "signed" version of an "unsigned" comparison. */ static inline TCGCond tcg_signed_cond(TCGCond c) { return c & 4 ? (TCGCond)(c ^ 6) : c; } /* Must a comparison be considered unsigned? */ static inline bool is_unsigned_cond(TCGCond c) { return (c & 4) != 0; } /* Create a "high" version of a double-word comparison. This removes equality from a LTE or GTE comparison. */ static inline TCGCond tcg_high_cond(TCGCond c) { switch (c) { case TCG_COND_GE: case TCG_COND_LE: case TCG_COND_GEU: case TCG_COND_LEU: return (TCGCond)(c ^ 8); default: return c; } } typedef enum TCGTempVal { TEMP_VAL_DEAD, TEMP_VAL_REG, TEMP_VAL_MEM, TEMP_VAL_CONST, } TCGTempVal; typedef struct TCGTemp { TCGReg reg:8; TCGTempVal val_type:8; TCGType base_type:8; TCGType type:8; unsigned int fixed_reg:1; unsigned int indirect_reg:1; unsigned int indirect_base:1; unsigned int mem_coherent:1; unsigned int mem_allocated:1; /* If true, the temp is saved across both basic blocks and translation blocks. */ unsigned int temp_global:1; /* If true, the temp is saved across basic blocks but dead at the end of translation blocks. If false, the temp is dead at the end of basic blocks. */ unsigned int temp_local:1; unsigned int temp_allocated:1; tcg_target_long val; struct TCGTemp *mem_base; intptr_t mem_offset; const char *name; /* Pass-specific information that can be stored for a temporary. One word worth of integer data, and one pointer to data allocated separately. */ uintptr_t state; void *state_ptr; } TCGTemp; typedef struct TCGContext TCGContext; typedef struct TCGTempSet { unsigned long l[BITS_TO_LONGS(TCG_MAX_TEMPS)]; } TCGTempSet; /* While we limit helpers to 6 arguments, for 32-bit hosts, with padding, this imples a max of 6*2 (64-bit in) + 2 (64-bit out) = 14 operands. There are never more than 2 outputs, which means that we can store all dead + sync data within 16 bits. */ #define DEAD_ARG 4 #define SYNC_ARG 1 typedef uint16_t TCGLifeData; /* The layout here is designed to avoid a bitfield crossing of a 32-bit boundary, which would cause GCC to add extra padding. */ typedef struct TCGOp { TCGOpcode opc : 8; /* 8 */ /* Parameters for this opcode. See below. */ unsigned param1 : 4; /* 12 */ unsigned param2 : 4; /* 16 */ /* Lifetime data of the operands. */ unsigned life : 16; /* 32 */ /* Next and previous opcodes. */ QTAILQ_ENTRY(TCGOp) link; /* Arguments for the opcode. */ TCGArg args[MAX_OPC_PARAM]; } TCGOp; #define TCGOP_CALLI(X) (X)->param1 #define TCGOP_CALLO(X) (X)->param2 #define TCGOP_VECL(X) (X)->param1 #define TCGOP_VECE(X) (X)->param2 /* Make sure operands fit in the bitfields above. */ QEMU_BUILD_BUG_ON(NB_OPS > (1 << 8)); typedef struct TCGProfile { int64_t tb_count1; int64_t tb_count; int64_t op_count; /* total insn count */ int op_count_max; /* max insn per TB */ int64_t temp_count; int temp_count_max; int64_t del_op_count; int64_t code_in_len; int64_t code_out_len; int64_t search_out_len; int64_t interm_time; int64_t code_time; int64_t la_time; int64_t opt_time; int64_t restore_count; int64_t restore_time; int64_t table_op_count[NB_OPS]; } TCGProfile; struct TCGContext { uint8_t *pool_cur, *pool_end; TCGPool *pool_first, *pool_current, *pool_first_large; int nb_labels; int nb_globals; int nb_temps; int nb_indirects; /* goto_tb support */ tcg_insn_unit *code_buf; uint16_t *tb_jmp_reset_offset; /* tb->jmp_reset_offset */ uintptr_t *tb_jmp_insn_offset; /* tb->jmp_target_arg if direct_jump */ uintptr_t *tb_jmp_target_addr; /* tb->jmp_target_arg if !direct_jump */ TCGRegSet reserved_regs; uint32_t tb_cflags; /* cflags of the current TB */ intptr_t current_frame_offset; intptr_t frame_start; intptr_t frame_end; TCGTemp *frame_temp; tcg_insn_unit *code_ptr; #ifdef CONFIG_PROFILER TCGProfile prof; #endif #ifdef CONFIG_DEBUG_TCG int temps_in_use; int goto_tb_issue_mask; #endif /* Code generation. Note that we specifically do not use tcg_insn_unit here, because there's too much arithmetic throughout that relies on addition and subtraction working on bytes. Rely on the GCC extension that allows arithmetic on void*. */ void *code_gen_prologue; void *code_gen_epilogue; void *code_gen_buffer; size_t code_gen_buffer_size; void *code_gen_ptr; void *data_gen_ptr; /* Threshold to flush the translated code buffer. */ void *code_gen_highwater; /* Track which vCPU triggers events */ CPUState *cpu; /* *_trans */ /* These structures are private to tcg-target.inc.c. */ #ifdef TCG_TARGET_NEED_LDST_LABELS struct TCGLabelQemuLdst *ldst_labels; #endif #ifdef TCG_TARGET_NEED_POOL_LABELS struct TCGLabelPoolData *pool_labels; #endif TCGLabel *exitreq_label; TCGTempSet free_temps[TCG_TYPE_COUNT * 2]; TCGTemp temps[TCG_MAX_TEMPS]; /* globals first, temps after */ QTAILQ_HEAD(TCGOpHead, TCGOp) ops, free_ops; /* Tells which temporary holds a given register. It does not take into account fixed registers */ TCGTemp *reg_to_temp[TCG_TARGET_NB_REGS]; uint16_t gen_insn_end_off[TCG_MAX_INSNS]; target_ulong gen_insn_data[TCG_MAX_INSNS][TARGET_INSN_START_WORDS]; }; extern TCGContext tcg_init_ctx; extern __thread TCGContext *tcg_ctx; extern TCGv_env cpu_env; static inline size_t temp_idx(TCGTemp *ts) { ptrdiff_t n = ts - tcg_ctx->temps; tcg_debug_assert(n >= 0 && n < tcg_ctx->nb_temps); return n; } static inline TCGArg temp_arg(TCGTemp *ts) { return (uintptr_t)ts; } static inline TCGTemp *arg_temp(TCGArg a) { return (TCGTemp *)(uintptr_t)a; } /* Using the offset of a temporary, relative to TCGContext, rather than its index means that we don't use 0. That leaves offset 0 free for a NULL representation without having to leave index 0 unused. */ static inline TCGTemp *tcgv_i32_temp(TCGv_i32 v) { uintptr_t o = (uintptr_t)v; TCGTemp *t = (void *)tcg_ctx + o; tcg_debug_assert(offsetof(TCGContext, temps[temp_idx(t)]) == o); return t; } static inline TCGTemp *tcgv_i64_temp(TCGv_i64 v) { return tcgv_i32_temp((TCGv_i32)v); } static inline TCGTemp *tcgv_ptr_temp(TCGv_ptr v) { return tcgv_i32_temp((TCGv_i32)v); } static inline TCGTemp *tcgv_vec_temp(TCGv_vec v) { return tcgv_i32_temp((TCGv_i32)v); } static inline TCGArg tcgv_i32_arg(TCGv_i32 v) { return temp_arg(tcgv_i32_temp(v)); } static inline TCGArg tcgv_i64_arg(TCGv_i64 v) { return temp_arg(tcgv_i64_temp(v)); } static inline TCGArg tcgv_ptr_arg(TCGv_ptr v) { return temp_arg(tcgv_ptr_temp(v)); } static inline TCGArg tcgv_vec_arg(TCGv_vec v) { return temp_arg(tcgv_vec_temp(v)); } static inline TCGv_i32 temp_tcgv_i32(TCGTemp *t) { (void)temp_idx(t); /* trigger embedded assert */ return (TCGv_i32)((void *)t - (void *)tcg_ctx); } static inline TCGv_i64 temp_tcgv_i64(TCGTemp *t) { return (TCGv_i64)temp_tcgv_i32(t); } static inline TCGv_ptr temp_tcgv_ptr(TCGTemp *t) { return (TCGv_ptr)temp_tcgv_i32(t); } static inline TCGv_vec temp_tcgv_vec(TCGTemp *t) { return (TCGv_vec)temp_tcgv_i32(t); } #if TCG_TARGET_REG_BITS == 32 static inline TCGv_i32 TCGV_LOW(TCGv_i64 t) { return temp_tcgv_i32(tcgv_i64_temp(t)); } static inline TCGv_i32 TCGV_HIGH(TCGv_i64 t) { return temp_tcgv_i32(tcgv_i64_temp(t) + 1); } #endif static inline void tcg_set_insn_param(TCGOp *op, int arg, TCGArg v) { op->args[arg] = v; } static inline void tcg_set_insn_start_param(TCGOp *op, int arg, target_ulong v) { #if TARGET_LONG_BITS <= TCG_TARGET_REG_BITS tcg_set_insn_param(op, arg, v); #else tcg_set_insn_param(op, arg * 2, v); tcg_set_insn_param(op, arg * 2 + 1, v >> 32); #endif } /* The last op that was emitted. */ static inline TCGOp *tcg_last_op(void) { return QTAILQ_LAST(&tcg_ctx->ops, TCGOpHead); } /* Test for whether to terminate the TB for using too many opcodes. */ static inline bool tcg_op_buf_full(void) { return false; } /* pool based memory allocation */ /* user-mode: tb_lock must be held for tcg_malloc_internal. */ void *tcg_malloc_internal(TCGContext *s, int size); void tcg_pool_reset(TCGContext *s); TranslationBlock *tcg_tb_alloc(TCGContext *s); void tcg_region_init(void); void tcg_region_reset_all(void); size_t tcg_code_size(void); size_t tcg_code_capacity(void); /* user-mode: Called with tb_lock held. */ static inline void *tcg_malloc(int size) { TCGContext *s = tcg_ctx; uint8_t *ptr, *ptr_end; /* ??? This is a weak placeholder for minimum malloc alignment. */ size = QEMU_ALIGN_UP(size, 8); ptr = s->pool_cur; ptr_end = ptr + size; if (unlikely(ptr_end > s->pool_end)) { return tcg_malloc_internal(tcg_ctx, size); } else { s->pool_cur = ptr_end; return ptr; } } void tcg_context_init(TCGContext *s); void tcg_register_thread(void); void tcg_prologue_init(TCGContext *s); void tcg_func_start(TCGContext *s); int tcg_gen_code(TCGContext *s, TranslationBlock *tb); void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size); TCGTemp *tcg_global_mem_new_internal(TCGType, TCGv_ptr, intptr_t, const char *); TCGv_i32 tcg_temp_new_internal_i32(int temp_local); TCGv_i64 tcg_temp_new_internal_i64(int temp_local); TCGv_vec tcg_temp_new_vec(TCGType type); TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match); void tcg_temp_free_i32(TCGv_i32 arg); void tcg_temp_free_i64(TCGv_i64 arg); void tcg_temp_free_vec(TCGv_vec arg); static inline TCGv_i32 tcg_global_mem_new_i32(TCGv_ptr reg, intptr_t offset, const char *name) { TCGTemp *t = tcg_global_mem_new_internal(TCG_TYPE_I32, reg, offset, name); return temp_tcgv_i32(t); } static inline TCGv_i32 tcg_temp_new_i32(void) { return tcg_temp_new_internal_i32(0); } static inline TCGv_i32 tcg_temp_local_new_i32(void) { return tcg_temp_new_internal_i32(1); } static inline TCGv_i64 tcg_global_mem_new_i64(TCGv_ptr reg, intptr_t offset, const char *name) { TCGTemp *t = tcg_global_mem_new_internal(TCG_TYPE_I64, reg, offset, name); return temp_tcgv_i64(t); } static inline TCGv_i64 tcg_temp_new_i64(void) { return tcg_temp_new_internal_i64(0); } static inline TCGv_i64 tcg_temp_local_new_i64(void) { return tcg_temp_new_internal_i64(1); } #if defined(CONFIG_DEBUG_TCG) /* If you call tcg_clear_temp_count() at the start of a section of * code which is not supposed to leak any TCG temporaries, then * calling tcg_check_temp_count() at the end of the section will * return 1 if the section did in fact leak a temporary. */ void tcg_clear_temp_count(void); int tcg_check_temp_count(void); #else #define tcg_clear_temp_count() do { } while (0) #define tcg_check_temp_count() 0 #endif void tcg_dump_info(FILE *f, fprintf_function cpu_fprintf); void tcg_dump_op_count(FILE *f, fprintf_function cpu_fprintf); #define TCG_CT_ALIAS 0x80 #define TCG_CT_IALIAS 0x40 #define TCG_CT_NEWREG 0x20 /* output requires a new register */ #define TCG_CT_REG 0x01 #define TCG_CT_CONST 0x02 /* any constant of register size */ typedef struct TCGArgConstraint { uint16_t ct; uint8_t alias_index; union { TCGRegSet regs; } u; } TCGArgConstraint; #define TCG_MAX_OP_ARGS 16 /* Bits for TCGOpDef->flags, 8 bits available. */ enum { /* Instruction defines the end of a basic block. */ TCG_OPF_BB_END = 0x01, /* Instruction clobbers call registers and potentially update globals. */ TCG_OPF_CALL_CLOBBER = 0x02, /* Instruction has side effects: it cannot be removed if its outputs are not used, and might trigger exceptions. */ TCG_OPF_SIDE_EFFECTS = 0x04, /* Instruction operands are 64-bits (otherwise 32-bits). */ TCG_OPF_64BIT = 0x08, /* Instruction is optional and not implemented by the host, or insn is generic and should not be implemened by the host. */ TCG_OPF_NOT_PRESENT = 0x10, /* Instruction operands are vectors. */ TCG_OPF_VECTOR = 0x20, }; typedef struct TCGOpDef { const char *name; uint8_t nb_oargs, nb_iargs, nb_cargs, nb_args; uint8_t flags; TCGArgConstraint *args_ct; int *sorted_args; #if defined(CONFIG_DEBUG_TCG) int used; #endif } TCGOpDef; extern TCGOpDef tcg_op_defs[]; extern const size_t tcg_op_defs_max; typedef struct TCGTargetOpDef { TCGOpcode op; const char *args_ct_str[TCG_MAX_OP_ARGS]; } TCGTargetOpDef; #define tcg_abort() \ do {\ fprintf(stderr, "%s:%d: tcg fatal error\n", __FILE__, __LINE__);\ abort();\ } while (0) #if UINTPTR_MAX == UINT32_MAX static inline TCGv_ptr TCGV_NAT_TO_PTR(TCGv_i32 n) { return (TCGv_ptr)n; } static inline TCGv_i32 TCGV_PTR_TO_NAT(TCGv_ptr n) { return (TCGv_i32)n; } #define tcg_const_ptr(V) TCGV_NAT_TO_PTR(tcg_const_i32((intptr_t)(V))) #define tcg_global_mem_new_ptr(R, O, N) \ TCGV_NAT_TO_PTR(tcg_global_mem_new_i32((R), (O), (N))) #define tcg_temp_new_ptr() TCGV_NAT_TO_PTR(tcg_temp_new_i32()) #define tcg_temp_free_ptr(T) tcg_temp_free_i32(TCGV_PTR_TO_NAT(T)) #else static inline TCGv_ptr TCGV_NAT_TO_PTR(TCGv_i64 n) { return (TCGv_ptr)n; } static inline TCGv_i64 TCGV_PTR_TO_NAT(TCGv_ptr n) { return (TCGv_i64)n; } #define tcg_const_ptr(V) TCGV_NAT_TO_PTR(tcg_const_i64((intptr_t)(V))) #define tcg_global_mem_new_ptr(R, O, N) \ TCGV_NAT_TO_PTR(tcg_global_mem_new_i64((R), (O), (N))) #define tcg_temp_new_ptr() TCGV_NAT_TO_PTR(tcg_temp_new_i64()) #define tcg_temp_free_ptr(T) tcg_temp_free_i64(TCGV_PTR_TO_NAT(T)) #endif bool tcg_op_supported(TCGOpcode op); void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args); TCGOp *tcg_emit_op(TCGOpcode opc); void tcg_op_remove(TCGContext *s, TCGOp *op); TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *op, TCGOpcode opc, int narg); TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *op, TCGOpcode opc, int narg); void tcg_optimize(TCGContext *s); /* only used for debugging purposes */ void tcg_dump_ops(TCGContext *s); TCGv_i32 tcg_const_i32(int32_t val); TCGv_i64 tcg_const_i64(int64_t val); TCGv_i32 tcg_const_local_i32(int32_t val); TCGv_i64 tcg_const_local_i64(int64_t val); TCGv_vec tcg_const_zeros_vec(TCGType); TCGv_vec tcg_const_ones_vec(TCGType); TCGv_vec tcg_const_zeros_vec_matching(TCGv_vec); TCGv_vec tcg_const_ones_vec_matching(TCGv_vec); TCGLabel *gen_new_label(void); /** * label_arg * @l: label * * Encode a label for storage in the TCG opcode stream. */ static inline TCGArg label_arg(TCGLabel *l) { return (uintptr_t)l; } /** * arg_label * @i: value * * The opposite of label_arg. Retrieve a label from the * encoding of the TCG opcode stream. */ static inline TCGLabel *arg_label(TCGArg i) { return (TCGLabel *)(uintptr_t)i; } /** * tcg_ptr_byte_diff * @a, @b: addresses to be differenced * * There are many places within the TCG backends where we need a byte * difference between two pointers. While this can be accomplished * with local casting, it's easy to get wrong -- especially if one is * concerned with the signedness of the result. * * This version relies on GCC's void pointer arithmetic to get the * correct result. */ static inline ptrdiff_t tcg_ptr_byte_diff(void *a, void *b) { return a - b; } /** * tcg_pcrel_diff * @s: the tcg context * @target: address of the target * * Produce a pc-relative difference, from the current code_ptr * to the destination address. */ static inline ptrdiff_t tcg_pcrel_diff(TCGContext *s, void *target) { return tcg_ptr_byte_diff(target, s->code_ptr); } /** * tcg_current_code_size * @s: the tcg context * * Compute the current code size within the translation block. * This is used to fill in qemu's data structures for goto_tb. */ static inline size_t tcg_current_code_size(TCGContext *s) { return tcg_ptr_byte_diff(s->code_ptr, s->code_buf); } /* Combine the TCGMemOp and mmu_idx parameters into a single value. */ typedef uint32_t TCGMemOpIdx; /** * make_memop_idx * @op: memory operation * @idx: mmu index * * Encode these values into a single parameter. */ static inline TCGMemOpIdx make_memop_idx(TCGMemOp op, unsigned idx) { tcg_debug_assert(idx <= 15); return (op << 4) | idx; } /** * get_memop * @oi: combined op/idx parameter * * Extract the memory operation from the combined value. */ static inline TCGMemOp get_memop(TCGMemOpIdx oi) { return oi >> 4; } /** * get_mmuidx * @oi: combined op/idx parameter * * Extract the mmu index from the combined value. */ static inline unsigned get_mmuidx(TCGMemOpIdx oi) { return oi & 15; } /** * tcg_qemu_tb_exec: * @env: pointer to CPUArchState for the CPU * @tb_ptr: address of generated code for the TB to execute * * Start executing code from a given translation block. * Where translation blocks have been linked, execution * may proceed from the given TB into successive ones. * Control eventually returns only when some action is needed * from the top-level loop: either control must pass to a TB * which has not yet been directly linked, or an asynchronous * event such as an interrupt needs handling. * * Return: The return value is the value passed to the corresponding * tcg_gen_exit_tb() at translation time of the last TB attempted to execute. * The value is either zero or a 4-byte aligned pointer to that TB combined * with additional information in its two least significant bits. The * additional information is encoded as follows: * 0, 1: the link between this TB and the next is via the specified * TB index (0 or 1). That is, we left the TB via (the equivalent * of) "goto_tb ". The main loop uses this to determine * how to link the TB just executed to the next. * 2: we are using instruction counting code generation, and we * did not start executing this TB because the instruction counter * would hit zero midway through it. In this case the pointer * returned is the TB we were about to execute, and the caller must * arrange to execute the remaining count of instructions. * 3: we stopped because the CPU's exit_request flag was set * (usually meaning that there is an interrupt that needs to be * handled). The pointer returned is the TB we were about to execute * when we noticed the pending exit request. * * If the bottom two bits indicate an exit-via-index then the CPU * state is correctly synchronised and ready for execution of the next * TB (and in particular the guest PC is the address to execute next). * Otherwise, we gave up on execution of this TB before it started, and * the caller must fix up the CPU state by calling the CPU's * synchronize_from_tb() method with the TB pointer we return (falling * back to calling the CPU's set_pc method with tb->pb if no * synchronize_from_tb() method exists). * * Note that TCG targets may use a different definition of tcg_qemu_tb_exec * to this default (which just calls the prologue.code emitted by * tcg_target_qemu_prologue()). */ #define TB_EXIT_MASK 3 #define TB_EXIT_IDX0 0 #define TB_EXIT_IDX1 1 #define TB_EXIT_REQUESTED 3 #ifdef HAVE_TCG_QEMU_TB_EXEC uintptr_t tcg_qemu_tb_exec(CPUArchState *env, uint8_t *tb_ptr); #else # define tcg_qemu_tb_exec(env, tb_ptr) \ ((uintptr_t (*)(void *, void *))tcg_ctx->code_gen_prologue)(env, tb_ptr) #endif void tcg_register_jit(void *buf, size_t buf_size); #if TCG_TARGET_MAYBE_vec /* Return zero if the tuple (opc, type, vece) is unsupportable; return > 0 if it is directly supportable; return < 0 if we must call tcg_expand_vec_op. */ int tcg_can_emit_vec_op(TCGOpcode, TCGType, unsigned); #else static inline int tcg_can_emit_vec_op(TCGOpcode o, TCGType t, unsigned ve) { return 0; } #endif /* Expand the tuple (opc, type, vece) on the given arguments. */ void tcg_expand_vec_op(TCGOpcode, TCGType, unsigned, TCGArg, ...); /* Replicate a constant C accoring to the log2 of the element size. */ uint64_t dup_const(unsigned vece, uint64_t c); #define dup_const(VECE, C) \ (__builtin_constant_p(VECE) \ ? ( (VECE) == MO_8 ? 0x0101010101010101ull * (uint8_t)(C) \ : (VECE) == MO_16 ? 0x0001000100010001ull * (uint16_t)(C) \ : (VECE) == MO_32 ? 0x0000000100000001ull * (uint32_t)(C) \ : dup_const(VECE, C)) \ : dup_const(VECE, C)) /* * Memory helpers that will be used by TCG generated code. */ #ifdef CONFIG_SOFTMMU /* Value zero-extended to tcg register size. */ tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); /* Value sign-extended to tcg register size. */ tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, TCGMemOpIdx oi, uintptr_t retaddr); void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, TCGMemOpIdx oi, uintptr_t retaddr); void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, TCGMemOpIdx oi, uintptr_t retaddr); void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, TCGMemOpIdx oi, uintptr_t retaddr); void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, TCGMemOpIdx oi, uintptr_t retaddr); void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, TCGMemOpIdx oi, uintptr_t retaddr); void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, TCGMemOpIdx oi, uintptr_t retaddr); uint8_t helper_ret_ldb_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); uint16_t helper_le_ldw_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); uint32_t helper_le_ldl_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); uint64_t helper_le_ldq_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); uint16_t helper_be_ldw_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); uint32_t helper_be_ldl_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); uint64_t helper_be_ldq_cmmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); /* Temporary aliases until backends are converted. */ #ifdef TARGET_WORDS_BIGENDIAN # define helper_ret_ldsw_mmu helper_be_ldsw_mmu # define helper_ret_lduw_mmu helper_be_lduw_mmu # define helper_ret_ldsl_mmu helper_be_ldsl_mmu # define helper_ret_ldul_mmu helper_be_ldul_mmu # define helper_ret_ldl_mmu helper_be_ldul_mmu # define helper_ret_ldq_mmu helper_be_ldq_mmu # define helper_ret_stw_mmu helper_be_stw_mmu # define helper_ret_stl_mmu helper_be_stl_mmu # define helper_ret_stq_mmu helper_be_stq_mmu # define helper_ret_ldw_cmmu helper_be_ldw_cmmu # define helper_ret_ldl_cmmu helper_be_ldl_cmmu # define helper_ret_ldq_cmmu helper_be_ldq_cmmu #else # define helper_ret_ldsw_mmu helper_le_ldsw_mmu # define helper_ret_lduw_mmu helper_le_lduw_mmu # define helper_ret_ldsl_mmu helper_le_ldsl_mmu # define helper_ret_ldul_mmu helper_le_ldul_mmu # define helper_ret_ldl_mmu helper_le_ldul_mmu # define helper_ret_ldq_mmu helper_le_ldq_mmu # define helper_ret_stw_mmu helper_le_stw_mmu # define helper_ret_stl_mmu helper_le_stl_mmu # define helper_ret_stq_mmu helper_le_stq_mmu # define helper_ret_ldw_cmmu helper_le_ldw_cmmu # define helper_ret_ldl_cmmu helper_le_ldl_cmmu # define helper_ret_ldq_cmmu helper_le_ldq_cmmu #endif uint32_t helper_atomic_cmpxchgb_mmu(CPUArchState *env, target_ulong addr, uint32_t cmpv, uint32_t newv, TCGMemOpIdx oi, uintptr_t retaddr); uint32_t helper_atomic_cmpxchgw_le_mmu(CPUArchState *env, target_ulong addr, uint32_t cmpv, uint32_t newv, TCGMemOpIdx oi, uintptr_t retaddr); uint32_t helper_atomic_cmpxchgl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t cmpv, uint32_t newv, TCGMemOpIdx oi, uintptr_t retaddr); uint64_t helper_atomic_cmpxchgq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t cmpv, uint64_t newv, TCGMemOpIdx oi, uintptr_t retaddr); uint32_t helper_atomic_cmpxchgw_be_mmu(CPUArchState *env, target_ulong addr, uint32_t cmpv, uint32_t newv, TCGMemOpIdx oi, uintptr_t retaddr); uint32_t helper_atomic_cmpxchgl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t cmpv, uint32_t newv, TCGMemOpIdx oi, uintptr_t retaddr); uint64_t helper_atomic_cmpxchgq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t cmpv, uint64_t newv, TCGMemOpIdx oi, uintptr_t retaddr); #define GEN_ATOMIC_HELPER(NAME, TYPE, SUFFIX) \ TYPE helper_atomic_ ## NAME ## SUFFIX ## _mmu \ (CPUArchState *env, target_ulong addr, TYPE val, \ TCGMemOpIdx oi, uintptr_t retaddr); #ifdef CONFIG_ATOMIC64 #define GEN_ATOMIC_HELPER_ALL(NAME) \ GEN_ATOMIC_HELPER(NAME, uint32_t, b) \ GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \ GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \ GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \ GEN_ATOMIC_HELPER(NAME, uint32_t, l_be) \ GEN_ATOMIC_HELPER(NAME, uint64_t, q_le) \ GEN_ATOMIC_HELPER(NAME, uint64_t, q_be) #else #define GEN_ATOMIC_HELPER_ALL(NAME) \ GEN_ATOMIC_HELPER(NAME, uint32_t, b) \ GEN_ATOMIC_HELPER(NAME, uint32_t, w_le) \ GEN_ATOMIC_HELPER(NAME, uint32_t, w_be) \ GEN_ATOMIC_HELPER(NAME, uint32_t, l_le) \ GEN_ATOMIC_HELPER(NAME, uint32_t, l_be) #endif GEN_ATOMIC_HELPER_ALL(fetch_add) GEN_ATOMIC_HELPER_ALL(fetch_sub) GEN_ATOMIC_HELPER_ALL(fetch_and) GEN_ATOMIC_HELPER_ALL(fetch_or) GEN_ATOMIC_HELPER_ALL(fetch_xor) GEN_ATOMIC_HELPER_ALL(add_fetch) GEN_ATOMIC_HELPER_ALL(sub_fetch) GEN_ATOMIC_HELPER_ALL(and_fetch) GEN_ATOMIC_HELPER_ALL(or_fetch) GEN_ATOMIC_HELPER_ALL(xor_fetch) GEN_ATOMIC_HELPER_ALL(xchg) #undef GEN_ATOMIC_HELPER_ALL #undef GEN_ATOMIC_HELPER #endif /* CONFIG_SOFTMMU */ #ifdef CONFIG_ATOMIC128 #include "qemu/int128.h" /* These aren't really a "proper" helpers because TCG cannot manage Int128. However, use the same format as the others, for use by the backends. */ Int128 helper_atomic_cmpxchgo_le_mmu(CPUArchState *env, target_ulong addr, Int128 cmpv, Int128 newv, TCGMemOpIdx oi, uintptr_t retaddr); Int128 helper_atomic_cmpxchgo_be_mmu(CPUArchState *env, target_ulong addr, Int128 cmpv, Int128 newv, TCGMemOpIdx oi, uintptr_t retaddr); Int128 helper_atomic_ldo_le_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); Int128 helper_atomic_ldo_be_mmu(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr); void helper_atomic_sto_le_mmu(CPUArchState *env, target_ulong addr, Int128 val, TCGMemOpIdx oi, uintptr_t retaddr); void helper_atomic_sto_be_mmu(CPUArchState *env, target_ulong addr, Int128 val, TCGMemOpIdx oi, uintptr_t retaddr); #endif /* CONFIG_ATOMIC128 */ #endif /* TCG_H */