/* * FPU op helpers * * Copyright (c) 2003-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" #include "fpu/softfloat.h" #define QT0 (env->qt0) #define QT1 (env->qt1) static target_ulong do_check_ieee_exceptions(CPUSPARCState *env, uintptr_t ra) { target_ulong status = get_float_exception_flags(&env->fp_status); target_ulong fsr = env->fsr; if (unlikely(status)) { /* Keep exception flags clear for next time. */ set_float_exception_flags(0, &env->fp_status); /* Copy IEEE 754 flags into FSR */ if (status & float_flag_invalid) { fsr |= FSR_NVC; } if (status & float_flag_overflow) { fsr |= FSR_OFC; } if (status & float_flag_underflow) { fsr |= FSR_UFC; } if (status & float_flag_divbyzero) { fsr |= FSR_DZC; } if (status & float_flag_inexact) { fsr |= FSR_NXC; } if ((fsr & FSR_CEXC_MASK) & ((fsr & FSR_TEM_MASK) >> 23)) { CPUState *cs = env_cpu(env); /* Unmasked exception, generate a trap. Note that while the helper is marked as NO_WG, we can get away with writing to cpu state along the exception path, since TCG generated code will never see the write. */ env->fsr = fsr | FSR_FTT_IEEE_EXCP; cs->exception_index = TT_FP_EXCP; cpu_loop_exit_restore(cs, ra); } else { /* Accumulate exceptions */ fsr |= (fsr & FSR_CEXC_MASK) << 5; } } return fsr; } target_ulong helper_check_ieee_exceptions(CPUSPARCState *env) { return do_check_ieee_exceptions(env, GETPC()); } #define F_HELPER(name, p) void helper_f##name##p(CPUSPARCState *env) #define F_BINOP(name) \ float32 helper_f ## name ## s (CPUSPARCState *env, float32 src1, \ float32 src2) \ { \ return float32_ ## name (src1, src2, &env->fp_status); \ } \ float64 helper_f ## name ## d (CPUSPARCState * env, float64 src1,\ float64 src2) \ { \ return float64_ ## name (src1, src2, &env->fp_status); \ } \ F_HELPER(name, q) \ { \ QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \ } F_BINOP(add); F_BINOP(sub); F_BINOP(mul); F_BINOP(div); #undef F_BINOP float64 helper_fsmuld(CPUSPARCState *env, float32 src1, float32 src2) { return float64_mul(float32_to_float64(src1, &env->fp_status), float32_to_float64(src2, &env->fp_status), &env->fp_status); } void helper_fdmulq(CPUSPARCState *env, float64 src1, float64 src2) { QT0 = float128_mul(float64_to_float128(src1, &env->fp_status), float64_to_float128(src2, &env->fp_status), &env->fp_status); } float32 helper_fnegs(float32 src) { return float32_chs(src); } #ifdef TARGET_SPARC64 float64 helper_fnegd(float64 src) { return float64_chs(src); } F_HELPER(neg, q) { QT0 = float128_chs(QT1); } #endif /* Integer to float conversion. */ float32 helper_fitos(CPUSPARCState *env, int32_t src) { return int32_to_float32(src, &env->fp_status); } float64 helper_fitod(CPUSPARCState *env, int32_t src) { return int32_to_float64(src, &env->fp_status); } void helper_fitoq(CPUSPARCState *env, int32_t src) { QT0 = int32_to_float128(src, &env->fp_status); } #ifdef TARGET_SPARC64 float32 helper_fxtos(CPUSPARCState *env, int64_t src) { return int64_to_float32(src, &env->fp_status); } float64 helper_fxtod(CPUSPARCState *env, int64_t src) { return int64_to_float64(src, &env->fp_status); } void helper_fxtoq(CPUSPARCState *env, int64_t src) { QT0 = int64_to_float128(src, &env->fp_status); } #endif #undef F_HELPER /* floating point conversion */ float32 helper_fdtos(CPUSPARCState *env, float64 src) { return float64_to_float32(src, &env->fp_status); } float64 helper_fstod(CPUSPARCState *env, float32 src) { return float32_to_float64(src, &env->fp_status); } float32 helper_fqtos(CPUSPARCState *env) { return float128_to_float32(QT1, &env->fp_status); } void helper_fstoq(CPUSPARCState *env, float32 src) { QT0 = float32_to_float128(src, &env->fp_status); } float64 helper_fqtod(CPUSPARCState *env) { return float128_to_float64(QT1, &env->fp_status); } void helper_fdtoq(CPUSPARCState *env, float64 src) { QT0 = float64_to_float128(src, &env->fp_status); } /* Float to integer conversion. */ int32_t helper_fstoi(CPUSPARCState *env, float32 src) { return float32_to_int32_round_to_zero(src, &env->fp_status); } int32_t helper_fdtoi(CPUSPARCState *env, float64 src) { return float64_to_int32_round_to_zero(src, &env->fp_status); } int32_t helper_fqtoi(CPUSPARCState *env) { return float128_to_int32_round_to_zero(QT1, &env->fp_status); } #ifdef TARGET_SPARC64 int64_t helper_fstox(CPUSPARCState *env, float32 src) { return float32_to_int64_round_to_zero(src, &env->fp_status); } int64_t helper_fdtox(CPUSPARCState *env, float64 src) { return float64_to_int64_round_to_zero(src, &env->fp_status); } int64_t helper_fqtox(CPUSPARCState *env) { return float128_to_int64_round_to_zero(QT1, &env->fp_status); } #endif float32 helper_fabss(float32 src) { return float32_abs(src); } #ifdef TARGET_SPARC64 float64 helper_fabsd(float64 src) { return float64_abs(src); } void helper_fabsq(CPUSPARCState *env) { QT0 = float128_abs(QT1); } #endif float32 helper_fsqrts(CPUSPARCState *env, float32 src) { return float32_sqrt(src, &env->fp_status); } float64 helper_fsqrtd(CPUSPARCState *env, float64 src) { return float64_sqrt(src, &env->fp_status); } void helper_fsqrtq(CPUSPARCState *env) { QT0 = float128_sqrt(QT1, &env->fp_status); } #define GEN_FCMP(name, size, reg1, reg2, FS, E) \ target_ulong glue(helper_, name) (CPUSPARCState *env) \ { \ int ret; \ target_ulong fsr; \ if (E) { \ ret = glue(size, _compare)(reg1, reg2, &env->fp_status); \ } else { \ ret = glue(size, _compare_quiet)(reg1, reg2, \ &env->fp_status); \ } \ fsr = do_check_ieee_exceptions(env, GETPC()); \ switch (ret) { \ case float_relation_unordered: \ fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \ fsr |= FSR_NVA; \ break; \ case float_relation_less: \ fsr &= ~(FSR_FCC1) << FS; \ fsr |= FSR_FCC0 << FS; \ break; \ case float_relation_greater: \ fsr &= ~(FSR_FCC0) << FS; \ fsr |= FSR_FCC1 << FS; \ break; \ default: \ fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ break; \ } \ return fsr; \ } #define GEN_FCMP_T(name, size, FS, E) \ target_ulong glue(helper_, name)(CPUSPARCState *env, size src1, size src2)\ { \ int ret; \ target_ulong fsr; \ if (E) { \ ret = glue(size, _compare)(src1, src2, &env->fp_status); \ } else { \ ret = glue(size, _compare_quiet)(src1, src2, \ &env->fp_status); \ } \ fsr = do_check_ieee_exceptions(env, GETPC()); \ switch (ret) { \ case float_relation_unordered: \ fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \ break; \ case float_relation_less: \ fsr &= ~(FSR_FCC1 << FS); \ fsr |= FSR_FCC0 << FS; \ break; \ case float_relation_greater: \ fsr &= ~(FSR_FCC0 << FS); \ fsr |= FSR_FCC1 << FS; \ break; \ default: \ fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ break; \ } \ return fsr; \ } GEN_FCMP_T(fcmps, float32, 0, 0); GEN_FCMP_T(fcmpd, float64, 0, 0); GEN_FCMP_T(fcmpes, float32, 0, 1); GEN_FCMP_T(fcmped, float64, 0, 1); GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0); GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1); #ifdef TARGET_SPARC64 GEN_FCMP_T(fcmps_fcc1, float32, 22, 0); GEN_FCMP_T(fcmpd_fcc1, float64, 22, 0); GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0); GEN_FCMP_T(fcmps_fcc2, float32, 24, 0); GEN_FCMP_T(fcmpd_fcc2, float64, 24, 0); GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0); GEN_FCMP_T(fcmps_fcc3, float32, 26, 0); GEN_FCMP_T(fcmpd_fcc3, float64, 26, 0); GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0); GEN_FCMP_T(fcmpes_fcc1, float32, 22, 1); GEN_FCMP_T(fcmped_fcc1, float64, 22, 1); GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1); GEN_FCMP_T(fcmpes_fcc2, float32, 24, 1); GEN_FCMP_T(fcmped_fcc2, float64, 24, 1); GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1); GEN_FCMP_T(fcmpes_fcc3, float32, 26, 1); GEN_FCMP_T(fcmped_fcc3, float64, 26, 1); GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1); #endif #undef GEN_FCMP_T #undef GEN_FCMP static void set_fsr(CPUSPARCState *env, target_ulong fsr) { int rnd_mode; switch (fsr & FSR_RD_MASK) { case FSR_RD_NEAREST: rnd_mode = float_round_nearest_even; break; default: case FSR_RD_ZERO: rnd_mode = float_round_to_zero; break; case FSR_RD_POS: rnd_mode = float_round_up; break; case FSR_RD_NEG: rnd_mode = float_round_down; break; } set_float_rounding_mode(rnd_mode, &env->fp_status); } target_ulong helper_ldfsr(CPUSPARCState *env, target_ulong old_fsr, uint32_t new_fsr) { old_fsr = (new_fsr & FSR_LDFSR_MASK) | (old_fsr & FSR_LDFSR_OLDMASK); set_fsr(env, old_fsr); return old_fsr; } #ifdef TARGET_SPARC64 target_ulong helper_ldxfsr(CPUSPARCState *env, target_ulong old_fsr, uint64_t new_fsr) { old_fsr = (new_fsr & FSR_LDXFSR_MASK) | (old_fsr & FSR_LDXFSR_OLDMASK); set_fsr(env, old_fsr); return old_fsr; } #endif