/* * S390x MMU related functions * * Copyright (c) 2011 Alexander Graf * Copyright (c) 2015 Thomas Huth, IBM Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "qemu/osdep.h" #include "qemu/error-report.h" #include "exec/address-spaces.h" #include "cpu.h" #include "internal.h" #include "kvm_s390x.h" #include "sysemu/kvm.h" #include "sysemu/tcg.h" #include "exec/exec-all.h" #include "trace.h" #include "hw/hw.h" #include "hw/s390x/storage-keys.h" /* Fetch/store bits in the translation exception code: */ #define FS_READ 0x800 #define FS_WRITE 0x400 static void trigger_access_exception(CPUS390XState *env, uint32_t type, uint64_t tec) { S390CPU *cpu = env_archcpu(env); if (kvm_enabled()) { kvm_s390_access_exception(cpu, type, tec); } else { CPUState *cs = env_cpu(env); if (type != PGM_ADDRESSING) { stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec); } trigger_pgm_exception(env, type); } } /* check whether the address would be proteted by Low-Address Protection */ static bool is_low_address(uint64_t addr) { return addr <= 511 || (addr >= 4096 && addr <= 4607); } /* check whether Low-Address Protection is enabled for mmu_translate() */ static bool lowprot_enabled(const CPUS390XState *env, uint64_t asc) { if (!(env->cregs[0] & CR0_LOWPROT)) { return false; } if (!(env->psw.mask & PSW_MASK_DAT)) { return true; } /* Check the private-space control bit */ switch (asc) { case PSW_ASC_PRIMARY: return !(env->cregs[1] & ASCE_PRIVATE_SPACE); case PSW_ASC_SECONDARY: return !(env->cregs[7] & ASCE_PRIVATE_SPACE); case PSW_ASC_HOME: return !(env->cregs[13] & ASCE_PRIVATE_SPACE); default: /* We don't support access register mode */ error_report("unsupported addressing mode"); exit(1); } } /** * Translate real address to absolute (= physical) * address by taking care of the prefix mapping. */ target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr) { if (raddr < 0x2000) { return raddr + env->psa; /* Map the lowcore. */ } else if (raddr >= env->psa && raddr < env->psa + 0x2000) { return raddr - env->psa; /* Map the 0 page. */ } return raddr; } static inline bool read_table_entry(CPUS390XState *env, hwaddr gaddr, uint64_t *entry) { CPUState *cs = env_cpu(env); /* * According to the PoP, these table addresses are "unpredictably real * or absolute". Also, "it is unpredictable whether the address wraps * or an addressing exception is recognized". * * We treat them as absolute addresses and don't wrap them. */ if (unlikely(address_space_read(cs->as, gaddr, MEMTXATTRS_UNSPECIFIED, entry, sizeof(*entry)) != MEMTX_OK)) { return false; } *entry = be64_to_cpu(*entry); return true; } static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr, uint64_t asc, uint64_t asce, target_ulong *raddr, int *flags, int rw) { const bool edat1 = (env->cregs[0] & CR0_EDAT) && s390_has_feat(S390_FEAT_EDAT); const bool edat2 = edat1 && s390_has_feat(S390_FEAT_EDAT_2); const bool iep = (env->cregs[0] & CR0_IEP) && s390_has_feat(S390_FEAT_INSTRUCTION_EXEC_PROT); const int asce_tl = asce & ASCE_TABLE_LENGTH; const int asce_p = asce & ASCE_PRIVATE_SPACE; hwaddr gaddr = asce & ASCE_ORIGIN; uint64_t entry; if (asce & ASCE_REAL_SPACE) { /* direct mapping */ *raddr = vaddr; return 0; } switch (asce & ASCE_TYPE_MASK) { case ASCE_TYPE_REGION1: if (VADDR_REGION1_TL(vaddr) > asce_tl) { return PGM_REG_FIRST_TRANS; } gaddr += VADDR_REGION1_TX(vaddr) * 8; break; case ASCE_TYPE_REGION2: if (VADDR_REGION1_TX(vaddr)) { return PGM_ASCE_TYPE; } if (VADDR_REGION2_TL(vaddr) > asce_tl) { return PGM_REG_SEC_TRANS; } gaddr += VADDR_REGION2_TX(vaddr) * 8; break; case ASCE_TYPE_REGION3: if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr)) { return PGM_ASCE_TYPE; } if (VADDR_REGION3_TL(vaddr) > asce_tl) { return PGM_REG_THIRD_TRANS; } gaddr += VADDR_REGION3_TX(vaddr) * 8; break; case ASCE_TYPE_SEGMENT: if (VADDR_REGION1_TX(vaddr) || VADDR_REGION2_TX(vaddr) || VADDR_REGION3_TX(vaddr)) { return PGM_ASCE_TYPE; } if (VADDR_SEGMENT_TL(vaddr) > asce_tl) { return PGM_SEGMENT_TRANS; } gaddr += VADDR_SEGMENT_TX(vaddr) * 8; break; } switch (asce & ASCE_TYPE_MASK) { case ASCE_TYPE_REGION1: if (!read_table_entry(env, gaddr, &entry)) { return PGM_ADDRESSING; } if (entry & REGION_ENTRY_I) { return PGM_REG_FIRST_TRANS; } if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION1) { return PGM_TRANS_SPEC; } if (VADDR_REGION2_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 || VADDR_REGION2_TL(vaddr) > (entry & REGION_ENTRY_TL)) { return PGM_REG_SEC_TRANS; } if (edat1 && (entry & REGION_ENTRY_P)) { *flags &= ~PAGE_WRITE; } gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION2_TX(vaddr) * 8; /* fall through */ case ASCE_TYPE_REGION2: if (!read_table_entry(env, gaddr, &entry)) { return PGM_ADDRESSING; } if (entry & REGION_ENTRY_I) { return PGM_REG_SEC_TRANS; } if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION2) { return PGM_TRANS_SPEC; } if (VADDR_REGION3_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 || VADDR_REGION3_TL(vaddr) > (entry & REGION_ENTRY_TL)) { return PGM_REG_THIRD_TRANS; } if (edat1 && (entry & REGION_ENTRY_P)) { *flags &= ~PAGE_WRITE; } gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_REGION3_TX(vaddr) * 8; /* fall through */ case ASCE_TYPE_REGION3: if (!read_table_entry(env, gaddr, &entry)) { return PGM_ADDRESSING; } if (entry & REGION_ENTRY_I) { return PGM_REG_THIRD_TRANS; } if ((entry & REGION_ENTRY_TT) != REGION_ENTRY_TT_REGION3) { return PGM_TRANS_SPEC; } if (edat2 && (entry & REGION3_ENTRY_CR) && asce_p) { return PGM_TRANS_SPEC; } if (edat1 && (entry & REGION_ENTRY_P)) { *flags &= ~PAGE_WRITE; } if (edat2 && (entry & REGION3_ENTRY_FC)) { if (iep && (entry & REGION3_ENTRY_IEP)) { *flags &= ~PAGE_EXEC; } *raddr = (entry & REGION3_ENTRY_RFAA) | (vaddr & ~REGION3_ENTRY_RFAA); return 0; } if (VADDR_SEGMENT_TL(vaddr) < (entry & REGION_ENTRY_TF) >> 6 || VADDR_SEGMENT_TL(vaddr) > (entry & REGION_ENTRY_TL)) { return PGM_SEGMENT_TRANS; } gaddr = (entry & REGION_ENTRY_ORIGIN) + VADDR_SEGMENT_TX(vaddr) * 8; /* fall through */ case ASCE_TYPE_SEGMENT: if (!read_table_entry(env, gaddr, &entry)) { return PGM_ADDRESSING; } if (entry & SEGMENT_ENTRY_I) { return PGM_SEGMENT_TRANS; } if ((entry & SEGMENT_ENTRY_TT) != SEGMENT_ENTRY_TT_SEGMENT) { return PGM_TRANS_SPEC; } if ((entry & SEGMENT_ENTRY_CS) && asce_p) { return PGM_TRANS_SPEC; } if (entry & SEGMENT_ENTRY_P) { *flags &= ~PAGE_WRITE; } if (edat1 && (entry & SEGMENT_ENTRY_FC)) { if (iep && (entry & SEGMENT_ENTRY_IEP)) { *flags &= ~PAGE_EXEC; } *raddr = (entry & SEGMENT_ENTRY_SFAA) | (vaddr & ~SEGMENT_ENTRY_SFAA); return 0; } gaddr = (entry & SEGMENT_ENTRY_ORIGIN) + VADDR_PAGE_TX(vaddr) * 8; break; } if (!read_table_entry(env, gaddr, &entry)) { return PGM_ADDRESSING; } if (entry & PAGE_ENTRY_I) { return PGM_PAGE_TRANS; } if (entry & PAGE_ENTRY_0) { return PGM_TRANS_SPEC; } if (entry & PAGE_ENTRY_P) { *flags &= ~PAGE_WRITE; } if (iep && (entry & PAGE_ENTRY_IEP)) { *flags &= ~PAGE_EXEC; } *raddr = entry & TARGET_PAGE_MASK; return 0; } static void mmu_handle_skey(target_ulong addr, int rw, int *flags) { static S390SKeysClass *skeyclass; static S390SKeysState *ss; uint8_t key; int rc; if (unlikely(addr >= ram_size)) { return; } if (unlikely(!ss)) { ss = s390_get_skeys_device(); skeyclass = S390_SKEYS_GET_CLASS(ss); } /* * Whenever we create a new TLB entry, we set the storage key reference * bit. In case we allow write accesses, we set the storage key change * bit. Whenever the guest changes the storage key, we have to flush the * TLBs of all CPUs (the whole TLB or all affected entries), so that the * next reference/change will result in an MMU fault and make us properly * update the storage key here. * * Note 1: "record of references ... is not necessarily accurate", * "change bit may be set in case no storing has occurred". * -> We can set reference/change bits even on exceptions. * Note 2: certain accesses seem to ignore storage keys. For example, * DAT translation does not set reference bits for table accesses. * * TODO: key-controlled protection. Only CPU accesses make use of the * PSW key. CSS accesses are different - we have to pass in the key. * * TODO: we have races between getting and setting the key. */ rc = skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key); if (rc) { trace_get_skeys_nonzero(rc); return; } switch (rw) { case MMU_DATA_LOAD: case MMU_INST_FETCH: /* * The TLB entry has to remain write-protected on read-faults if * the storage key does not indicate a change already. Otherwise * we might miss setting the change bit on write accesses. */ if (!(key & SK_C)) { *flags &= ~PAGE_WRITE; } break; case MMU_DATA_STORE: key |= SK_C; break; default: g_assert_not_reached(); } /* Any store/fetch sets the reference bit */ key |= SK_R; rc = skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key); if (rc) { trace_set_skeys_nonzero(rc); } } /** * Translate a virtual (logical) address into a physical (absolute) address. * @param vaddr the virtual address * @param rw 0 = read, 1 = write, 2 = code fetch * @param asc address space control (one of the PSW_ASC_* modes) * @param raddr the translated address is stored to this pointer * @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer * @param exc true = inject a program check if a fault occurred * @return 0 = success, != 0, the exception to raise */ int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc, target_ulong *raddr, int *flags, uint64_t *tec) { uint64_t asce; int r; *tec = (vaddr & TARGET_PAGE_MASK) | (asc >> 46) | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ); *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC; if (is_low_address(vaddr & TARGET_PAGE_MASK) && lowprot_enabled(env, asc)) { /* * If any part of this page is currently protected, make sure the * TLB entry will not be reused. * * As the protected range is always the first 512 bytes of the * two first pages, we are able to catch all writes to these areas * just by looking at the start address (triggering the tlb miss). */ *flags |= PAGE_WRITE_INV; if (is_low_address(vaddr) && rw == MMU_DATA_STORE) { /* LAP sets bit 56 */ *tec |= 0x80; return PGM_PROTECTION; } } vaddr &= TARGET_PAGE_MASK; if (!(env->psw.mask & PSW_MASK_DAT)) { *raddr = vaddr; goto nodat; } switch (asc) { case PSW_ASC_PRIMARY: asce = env->cregs[1]; break; case PSW_ASC_HOME: asce = env->cregs[13]; break; case PSW_ASC_SECONDARY: asce = env->cregs[7]; break; case PSW_ASC_ACCREG: default: hw_error("guest switched to unknown asc mode\n"); break; } /* perform the DAT translation */ r = mmu_translate_asce(env, vaddr, asc, asce, raddr, flags, rw); if (unlikely(r)) { return r; } /* check for DAT protection */ if (unlikely(rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE))) { /* DAT sets bit 61 only */ *tec |= 0x4; return PGM_PROTECTION; } /* check for Instruction-Execution-Protection */ if (unlikely(rw == MMU_INST_FETCH && !(*flags & PAGE_EXEC))) { /* IEP sets bit 56 and 61 */ *tec |= 0x84; return PGM_PROTECTION; } nodat: /* Convert real address -> absolute address */ *raddr = mmu_real2abs(env, *raddr); mmu_handle_skey(*raddr, rw, flags); return 0; } /** * translate_pages: Translate a set of consecutive logical page addresses * to absolute addresses. This function is used for TCG and old KVM without * the MEMOP interface. */ static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages, target_ulong *pages, bool is_write, uint64_t *tec) { uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC; CPUS390XState *env = &cpu->env; int ret, i, pflags; for (i = 0; i < nr_pages; i++) { ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, tec); if (ret) { return ret; } if (!address_space_access_valid(&address_space_memory, pages[i], TARGET_PAGE_SIZE, is_write, MEMTXATTRS_UNSPECIFIED)) { *tec = 0; /* unused */ return PGM_ADDRESSING; } addr += TARGET_PAGE_SIZE; } return 0; } int s390_cpu_pv_mem_rw(S390CPU *cpu, unsigned int offset, void *hostbuf, int len, bool is_write) { int ret; if (kvm_enabled()) { ret = kvm_s390_mem_op_pv(cpu, offset, hostbuf, len, is_write); } else { /* Protected Virtualization is a KVM/Hardware only feature */ g_assert_not_reached(); } return ret; } /** * s390_cpu_virt_mem_rw: * @laddr: the logical start address * @ar: the access register number * @hostbuf: buffer in host memory. NULL = do only checks w/o copying * @len: length that should be transferred * @is_write: true = write, false = read * Returns: 0 on success, non-zero if an exception occurred * * Copy from/to guest memory using logical addresses. Note that we inject a * program interrupt in case there is an error while accessing the memory. * * This function will always return (also for TCG), make sure to call * s390_cpu_virt_mem_handle_exc() to properly exit the CPU loop. */ int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf, int len, bool is_write) { int currlen, nr_pages, i; target_ulong *pages; uint64_t tec; int ret; if (kvm_enabled()) { ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write); if (ret >= 0) { return ret; } } nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS) + 1; pages = g_malloc(nr_pages * sizeof(*pages)); ret = translate_pages(cpu, laddr, nr_pages, pages, is_write, &tec); if (ret) { trigger_access_exception(&cpu->env, ret, tec); } else if (hostbuf != NULL) { /* Copy data by stepping through the area page by page */ for (i = 0; i < nr_pages; i++) { currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE)); cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK), hostbuf, currlen, is_write); laddr += currlen; hostbuf += currlen; len -= currlen; } } g_free(pages); return ret; } void s390_cpu_virt_mem_handle_exc(S390CPU *cpu, uintptr_t ra) { /* KVM will handle the interrupt automatically, TCG has to exit the TB */ #ifdef CONFIG_TCG if (tcg_enabled()) { cpu_loop_exit_restore(CPU(cpu), ra); } #endif } /** * Translate a real address into a physical (absolute) address. * @param raddr the real address * @param rw 0 = read, 1 = write, 2 = code fetch * @param addr the translated address is stored to this pointer * @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer * @return 0 = success, != 0, the exception to raise */ int mmu_translate_real(CPUS390XState *env, target_ulong raddr, int rw, target_ulong *addr, int *flags, uint64_t *tec) { const bool lowprot_enabled = env->cregs[0] & CR0_LOWPROT; *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC; if (is_low_address(raddr & TARGET_PAGE_MASK) && lowprot_enabled) { /* see comment in mmu_translate() how this works */ *flags |= PAGE_WRITE_INV; if (is_low_address(raddr) && rw == MMU_DATA_STORE) { /* LAP sets bit 56 */ *tec = (raddr & TARGET_PAGE_MASK) | FS_WRITE | 0x80; return PGM_PROTECTION; } } *addr = mmu_real2abs(env, raddr & TARGET_PAGE_MASK); mmu_handle_skey(*addr, rw, flags); return 0; }