/* * PowerPC memory access emulation helpers for QEMU. * * Copyright (c) 2003-2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "qemu/host-utils.h" #include "qemu/main-loop.h" #include "exec/helper-proto.h" #include "helper_regs.h" #include "exec/cpu_ldst.h" #include "tcg/tcg.h" #include "internal.h" #include "qemu/atomic128.h" /* #define DEBUG_OP */ static inline bool needs_byteswap(const CPUPPCState *env) { #if defined(TARGET_WORDS_BIGENDIAN) return msr_le; #else return !msr_le; #endif } /*****************************************************************************/ /* Memory load and stores */ static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr, target_long arg) { #if defined(TARGET_PPC64) if (!msr_is_64bit(env, env->msr)) { return (uint32_t)(addr + arg); } else #endif { return addr + arg; } } static void *probe_contiguous(CPUPPCState *env, target_ulong addr, uint32_t nb, MMUAccessType access_type, int mmu_idx, uintptr_t raddr) { void *host1, *host2; uint32_t nb_pg1, nb_pg2; nb_pg1 = -(addr | TARGET_PAGE_MASK); if (likely(nb <= nb_pg1)) { /* The entire operation is on a single page. */ return probe_access(env, addr, nb, access_type, mmu_idx, raddr); } /* The operation spans two pages. */ nb_pg2 = nb - nb_pg1; host1 = probe_access(env, addr, nb_pg1, access_type, mmu_idx, raddr); addr = addr_add(env, addr, nb_pg1); host2 = probe_access(env, addr, nb_pg2, access_type, mmu_idx, raddr); /* If the two host pages are contiguous, optimize. */ if (host2 == host1 + nb_pg1) { return host1; } return NULL; } void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg) { uintptr_t raddr = GETPC(); int mmu_idx = cpu_mmu_index(env, false); void *host = probe_contiguous(env, addr, (32 - reg) * 4, MMU_DATA_LOAD, mmu_idx, raddr); if (likely(host)) { /* Fast path -- the entire operation is in RAM at host. */ for (; reg < 32; reg++) { env->gpr[reg] = (uint32_t)ldl_be_p(host); host += 4; } } else { /* Slow path -- at least some of the operation requires i/o. */ for (; reg < 32; reg++) { env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr); addr = addr_add(env, addr, 4); } } } void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg) { uintptr_t raddr = GETPC(); int mmu_idx = cpu_mmu_index(env, false); void *host = probe_contiguous(env, addr, (32 - reg) * 4, MMU_DATA_STORE, mmu_idx, raddr); if (likely(host)) { /* Fast path -- the entire operation is in RAM at host. */ for (; reg < 32; reg++) { stl_be_p(host, env->gpr[reg]); host += 4; } } else { /* Slow path -- at least some of the operation requires i/o. */ for (; reg < 32; reg++) { cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr); addr = addr_add(env, addr, 4); } } } static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg, uintptr_t raddr) { int mmu_idx; void *host; uint32_t val; if (unlikely(nb == 0)) { return; } mmu_idx = cpu_mmu_index(env, false); host = probe_contiguous(env, addr, nb, MMU_DATA_LOAD, mmu_idx, raddr); if (likely(host)) { /* Fast path -- the entire operation is in RAM at host. */ for (; nb > 3; nb -= 4) { env->gpr[reg] = (uint32_t)ldl_be_p(host); reg = (reg + 1) % 32; host += 4; } switch (nb) { default: return; case 1: val = ldub_p(host) << 24; break; case 2: val = lduw_be_p(host) << 16; break; case 3: val = (lduw_be_p(host) << 16) | (ldub_p(host + 2) << 8); break; } } else { /* Slow path -- at least some of the operation requires i/o. */ for (; nb > 3; nb -= 4) { env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr); reg = (reg + 1) % 32; addr = addr_add(env, addr, 4); } switch (nb) { default: return; case 1: val = cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 24; break; case 2: val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16; break; case 3: val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16; addr = addr_add(env, addr, 2); val |= cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 8; break; } } env->gpr[reg] = val; } void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg) { do_lsw(env, addr, nb, reg, GETPC()); } /* * PPC32 specification says we must generate an exception if rA is in * the range of registers to be loaded. In an other hand, IBM says * this is valid, but rA won't be loaded. For now, I'll follow the * spec... */ void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb) { if (likely(xer_bc != 0)) { int num_used_regs = DIV_ROUND_UP(xer_bc, 4); if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) || lsw_reg_in_range(reg, num_used_regs, rb))) { raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_LSWX, GETPC()); } else { do_lsw(env, addr, xer_bc, reg, GETPC()); } } } void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg) { uintptr_t raddr = GETPC(); int mmu_idx; void *host; uint32_t val; if (unlikely(nb == 0)) { return; } mmu_idx = cpu_mmu_index(env, false); host = probe_contiguous(env, addr, nb, MMU_DATA_STORE, mmu_idx, raddr); if (likely(host)) { /* Fast path -- the entire operation is in RAM at host. */ for (; nb > 3; nb -= 4) { stl_be_p(host, env->gpr[reg]); reg = (reg + 1) % 32; host += 4; } val = env->gpr[reg]; switch (nb) { case 1: stb_p(host, val >> 24); break; case 2: stw_be_p(host, val >> 16); break; case 3: stw_be_p(host, val >> 16); stb_p(host + 2, val >> 8); break; } } else { for (; nb > 3; nb -= 4) { cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr); reg = (reg + 1) % 32; addr = addr_add(env, addr, 4); } val = env->gpr[reg]; switch (nb) { case 1: cpu_stb_mmuidx_ra(env, addr, val >> 24, mmu_idx, raddr); break; case 2: cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr); break; case 3: cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr); addr = addr_add(env, addr, 2); cpu_stb_mmuidx_ra(env, addr, val >> 8, mmu_idx, raddr); break; } } } static void dcbz_common(CPUPPCState *env, target_ulong addr, uint32_t opcode, bool epid, uintptr_t retaddr) { target_ulong mask, dcbz_size = env->dcache_line_size; uint32_t i; void *haddr; int mmu_idx = epid ? PPC_TLB_EPID_STORE : env->dmmu_idx; #if defined(TARGET_PPC64) /* Check for dcbz vs dcbzl on 970 */ if (env->excp_model == POWERPC_EXCP_970 && !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) { dcbz_size = 32; } #endif /* Align address */ mask = ~(dcbz_size - 1); addr &= mask; /* Check reservation */ if ((env->reserve_addr & mask) == addr) { env->reserve_addr = (target_ulong)-1ULL; } /* Try fast path translate */ haddr = probe_write(env, addr, dcbz_size, mmu_idx, retaddr); if (haddr) { memset(haddr, 0, dcbz_size); } else { /* Slow path */ for (i = 0; i < dcbz_size; i += 8) { cpu_stq_mmuidx_ra(env, addr + i, 0, mmu_idx, retaddr); } } } void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode) { dcbz_common(env, addr, opcode, false, GETPC()); } void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode) { dcbz_common(env, addr, opcode, true, GETPC()); } void helper_icbi(CPUPPCState *env, target_ulong addr) { addr &= ~(env->dcache_line_size - 1); /* * Invalidate one cache line : * PowerPC specification says this is to be treated like a load * (not a fetch) by the MMU. To be sure it will be so, * do the load "by hand". */ cpu_ldl_data_ra(env, addr, GETPC()); } void helper_icbiep(CPUPPCState *env, target_ulong addr) { #if !defined(CONFIG_USER_ONLY) /* See comments above */ addr &= ~(env->dcache_line_size - 1); cpu_ldl_mmuidx_ra(env, addr, PPC_TLB_EPID_LOAD, GETPC()); #endif } /* XXX: to be tested */ target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb) { int i, c, d; d = 24; for (i = 0; i < xer_bc; i++) { c = cpu_ldub_data_ra(env, addr, GETPC()); addr = addr_add(env, addr, 1); /* ra (if not 0) and rb are never modified */ if (likely(reg != rb && (ra == 0 || reg != ra))) { env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d); } if (unlikely(c == xer_cmp)) { break; } if (likely(d != 0)) { d -= 8; } else { d = 24; reg++; reg = reg & 0x1F; } } return i; } #ifdef TARGET_PPC64 uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr, uint32_t opidx) { Int128 ret; /* We will have raised EXCP_ATOMIC from the translator. */ assert(HAVE_ATOMIC128); ret = helper_atomic_ldo_le_mmu(env, addr, opidx, GETPC()); env->retxh = int128_gethi(ret); return int128_getlo(ret); } uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr, uint32_t opidx) { Int128 ret; /* We will have raised EXCP_ATOMIC from the translator. */ assert(HAVE_ATOMIC128); ret = helper_atomic_ldo_be_mmu(env, addr, opidx, GETPC()); env->retxh = int128_gethi(ret); return int128_getlo(ret); } void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr, uint64_t lo, uint64_t hi, uint32_t opidx) { Int128 val; /* We will have raised EXCP_ATOMIC from the translator. */ assert(HAVE_ATOMIC128); val = int128_make128(lo, hi); helper_atomic_sto_le_mmu(env, addr, val, opidx, GETPC()); } void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr, uint64_t lo, uint64_t hi, uint32_t opidx) { Int128 val; /* We will have raised EXCP_ATOMIC from the translator. */ assert(HAVE_ATOMIC128); val = int128_make128(lo, hi); helper_atomic_sto_be_mmu(env, addr, val, opidx, GETPC()); } uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr, uint64_t new_lo, uint64_t new_hi, uint32_t opidx) { bool success = false; /* We will have raised EXCP_ATOMIC from the translator. */ assert(HAVE_CMPXCHG128); if (likely(addr == env->reserve_addr)) { Int128 oldv, cmpv, newv; cmpv = int128_make128(env->reserve_val2, env->reserve_val); newv = int128_make128(new_lo, new_hi); oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, opidx, GETPC()); success = int128_eq(oldv, cmpv); } env->reserve_addr = -1; return env->so + success * CRF_EQ_BIT; } uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr, uint64_t new_lo, uint64_t new_hi, uint32_t opidx) { bool success = false; /* We will have raised EXCP_ATOMIC from the translator. */ assert(HAVE_CMPXCHG128); if (likely(addr == env->reserve_addr)) { Int128 oldv, cmpv, newv; cmpv = int128_make128(env->reserve_val2, env->reserve_val); newv = int128_make128(new_lo, new_hi); oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, opidx, GETPC()); success = int128_eq(oldv, cmpv); } env->reserve_addr = -1; return env->so + success * CRF_EQ_BIT; } #endif /*****************************************************************************/ /* Altivec extension helpers */ #if defined(HOST_WORDS_BIGENDIAN) #define HI_IDX 0 #define LO_IDX 1 #else #define HI_IDX 1 #define LO_IDX 0 #endif /* * We use msr_le to determine index ordering in a vector. However, * byteswapping is not simply controlled by msr_le. We also need to * take into account endianness of the target. This is done for the * little-endian PPC64 user-mode target. */ #define LVE(name, access, swap, element) \ void helper_##name(CPUPPCState *env, ppc_avr_t *r, \ target_ulong addr) \ { \ size_t n_elems = ARRAY_SIZE(r->element); \ int adjust = HI_IDX * (n_elems - 1); \ int sh = sizeof(r->element[0]) >> 1; \ int index = (addr & 0xf) >> sh; \ if (msr_le) { \ index = n_elems - index - 1; \ } \ \ if (needs_byteswap(env)) { \ r->element[LO_IDX ? index : (adjust - index)] = \ swap(access(env, addr, GETPC())); \ } else { \ r->element[LO_IDX ? index : (adjust - index)] = \ access(env, addr, GETPC()); \ } \ } #define I(x) (x) LVE(lvebx, cpu_ldub_data_ra, I, u8) LVE(lvehx, cpu_lduw_data_ra, bswap16, u16) LVE(lvewx, cpu_ldl_data_ra, bswap32, u32) #undef I #undef LVE #define STVE(name, access, swap, element) \ void helper_##name(CPUPPCState *env, ppc_avr_t *r, \ target_ulong addr) \ { \ size_t n_elems = ARRAY_SIZE(r->element); \ int adjust = HI_IDX * (n_elems - 1); \ int sh = sizeof(r->element[0]) >> 1; \ int index = (addr & 0xf) >> sh; \ if (msr_le) { \ index = n_elems - index - 1; \ } \ \ if (needs_byteswap(env)) { \ access(env, addr, swap(r->element[LO_IDX ? index : \ (adjust - index)]), \ GETPC()); \ } else { \ access(env, addr, r->element[LO_IDX ? index : \ (adjust - index)], GETPC()); \ } \ } #define I(x) (x) STVE(stvebx, cpu_stb_data_ra, I, u8) STVE(stvehx, cpu_stw_data_ra, bswap16, u16) STVE(stvewx, cpu_stl_data_ra, bswap32, u32) #undef I #undef LVE #ifdef TARGET_PPC64 #define GET_NB(rb) ((rb >> 56) & 0xFF) #define VSX_LXVL(name, lj) \ void helper_##name(CPUPPCState *env, target_ulong addr, \ ppc_vsr_t *xt, target_ulong rb) \ { \ ppc_vsr_t t; \ uint64_t nb = GET_NB(rb); \ int i; \ \ t.s128 = int128_zero(); \ if (nb) { \ nb = (nb >= 16) ? 16 : nb; \ if (msr_le && !lj) { \ for (i = 16; i > 16 - nb; i--) { \ t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC()); \ addr = addr_add(env, addr, 1); \ } \ } else { \ for (i = 0; i < nb; i++) { \ t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC()); \ addr = addr_add(env, addr, 1); \ } \ } \ } \ *xt = t; \ } VSX_LXVL(lxvl, 0) VSX_LXVL(lxvll, 1) #undef VSX_LXVL #define VSX_STXVL(name, lj) \ void helper_##name(CPUPPCState *env, target_ulong addr, \ ppc_vsr_t *xt, target_ulong rb) \ { \ target_ulong nb = GET_NB(rb); \ int i; \ \ if (!nb) { \ return; \ } \ \ nb = (nb >= 16) ? 16 : nb; \ if (msr_le && !lj) { \ for (i = 16; i > 16 - nb; i--) { \ cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \ addr = addr_add(env, addr, 1); \ } \ } else { \ for (i = 0; i < nb; i++) { \ cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC()); \ addr = addr_add(env, addr, 1); \ } \ } \ } VSX_STXVL(stxvl, 0) VSX_STXVL(stxvll, 1) #undef VSX_STXVL #undef GET_NB #endif /* TARGET_PPC64 */ #undef HI_IDX #undef LO_IDX void helper_tbegin(CPUPPCState *env) { /* * As a degenerate implementation, always fail tbegin. The reason * given is "Nesting overflow". The "persistent" bit is set, * providing a hint to the error handler to not retry. The TFIAR * captures the address of the failure, which is this tbegin * instruction. Instruction execution will continue with the next * instruction in memory, which is precisely what we want. */ env->spr[SPR_TEXASR] = (1ULL << TEXASR_FAILURE_PERSISTENT) | (1ULL << TEXASR_NESTING_OVERFLOW) | (msr_hv << TEXASR_PRIVILEGE_HV) | (msr_pr << TEXASR_PRIVILEGE_PR) | (1ULL << TEXASR_FAILURE_SUMMARY) | (1ULL << TEXASR_TFIAR_EXACT); env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr; env->spr[SPR_TFHAR] = env->nip + 4; env->crf[0] = 0xB; /* 0b1010 = transaction failure */ }