#include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "hw/isa/isa.h" #include "migration/cpu.h" #include "kvm/hyperv.h" #include "hw/i386/x86.h" #include "kvm/kvm_i386.h" #include "sysemu/kvm.h" #include "sysemu/tcg.h" #include "qemu/error-report.h" static const VMStateDescription vmstate_segment = { .name = "segment", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(selector, SegmentCache), VMSTATE_UINTTL(base, SegmentCache), VMSTATE_UINT32(limit, SegmentCache), VMSTATE_UINT32(flags, SegmentCache), VMSTATE_END_OF_LIST() } }; #define VMSTATE_SEGMENT(_field, _state) { \ .name = (stringify(_field)), \ .size = sizeof(SegmentCache), \ .vmsd = &vmstate_segment, \ .flags = VMS_STRUCT, \ .offset = offsetof(_state, _field) \ + type_check(SegmentCache,typeof_field(_state, _field)) \ } #define VMSTATE_SEGMENT_ARRAY(_field, _state, _n) \ VMSTATE_STRUCT_ARRAY(_field, _state, _n, 0, vmstate_segment, SegmentCache) static const VMStateDescription vmstate_xmm_reg = { .name = "xmm_reg", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT64(ZMM_Q(0), ZMMReg), VMSTATE_UINT64(ZMM_Q(1), ZMMReg), VMSTATE_END_OF_LIST() } }; #define VMSTATE_XMM_REGS(_field, _state, _start) \ VMSTATE_STRUCT_SUB_ARRAY(_field, _state, _start, CPU_NB_REGS, 0, \ vmstate_xmm_reg, ZMMReg) /* YMMH format is the same as XMM, but for bits 128-255 */ static const VMStateDescription vmstate_ymmh_reg = { .name = "ymmh_reg", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT64(ZMM_Q(2), ZMMReg), VMSTATE_UINT64(ZMM_Q(3), ZMMReg), VMSTATE_END_OF_LIST() } }; #define VMSTATE_YMMH_REGS_VARS(_field, _state, _start, _v) \ VMSTATE_STRUCT_SUB_ARRAY(_field, _state, _start, CPU_NB_REGS, _v, \ vmstate_ymmh_reg, ZMMReg) static const VMStateDescription vmstate_zmmh_reg = { .name = "zmmh_reg", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT64(ZMM_Q(4), ZMMReg), VMSTATE_UINT64(ZMM_Q(5), ZMMReg), VMSTATE_UINT64(ZMM_Q(6), ZMMReg), VMSTATE_UINT64(ZMM_Q(7), ZMMReg), VMSTATE_END_OF_LIST() } }; #define VMSTATE_ZMMH_REGS_VARS(_field, _state, _start) \ VMSTATE_STRUCT_SUB_ARRAY(_field, _state, _start, CPU_NB_REGS, 0, \ vmstate_zmmh_reg, ZMMReg) #ifdef TARGET_X86_64 static const VMStateDescription vmstate_hi16_zmm_reg = { .name = "hi16_zmm_reg", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT64(ZMM_Q(0), ZMMReg), VMSTATE_UINT64(ZMM_Q(1), ZMMReg), VMSTATE_UINT64(ZMM_Q(2), ZMMReg), VMSTATE_UINT64(ZMM_Q(3), ZMMReg), VMSTATE_UINT64(ZMM_Q(4), ZMMReg), VMSTATE_UINT64(ZMM_Q(5), ZMMReg), VMSTATE_UINT64(ZMM_Q(6), ZMMReg), VMSTATE_UINT64(ZMM_Q(7), ZMMReg), VMSTATE_END_OF_LIST() } }; #define VMSTATE_Hi16_ZMM_REGS_VARS(_field, _state, _start) \ VMSTATE_STRUCT_SUB_ARRAY(_field, _state, _start, CPU_NB_REGS, 0, \ vmstate_hi16_zmm_reg, ZMMReg) #endif static const VMStateDescription vmstate_bnd_regs = { .name = "bnd_regs", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT64(lb, BNDReg), VMSTATE_UINT64(ub, BNDReg), VMSTATE_END_OF_LIST() } }; #define VMSTATE_BND_REGS(_field, _state, _n) \ VMSTATE_STRUCT_ARRAY(_field, _state, _n, 0, vmstate_bnd_regs, BNDReg) static const VMStateDescription vmstate_mtrr_var = { .name = "mtrr_var", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT64(base, MTRRVar), VMSTATE_UINT64(mask, MTRRVar), VMSTATE_END_OF_LIST() } }; #define VMSTATE_MTRR_VARS(_field, _state, _n, _v) \ VMSTATE_STRUCT_ARRAY(_field, _state, _n, _v, vmstate_mtrr_var, MTRRVar) typedef struct x86_FPReg_tmp { FPReg *parent; uint64_t tmp_mant; uint16_t tmp_exp; } x86_FPReg_tmp; static void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, floatx80 f) { CPU_LDoubleU temp; temp.d = f; *pmant = temp.l.lower; *pexp = temp.l.upper; } static floatx80 cpu_set_fp80(uint64_t mant, uint16_t upper) { CPU_LDoubleU temp; temp.l.upper = upper; temp.l.lower = mant; return temp.d; } static int fpreg_pre_save(void *opaque) { x86_FPReg_tmp *tmp = opaque; /* we save the real CPU data (in case of MMX usage only 'mant' contains the MMX register */ cpu_get_fp80(&tmp->tmp_mant, &tmp->tmp_exp, tmp->parent->d); return 0; } static int fpreg_post_load(void *opaque, int version) { x86_FPReg_tmp *tmp = opaque; tmp->parent->d = cpu_set_fp80(tmp->tmp_mant, tmp->tmp_exp); return 0; } static const VMStateDescription vmstate_fpreg_tmp = { .name = "fpreg_tmp", .post_load = fpreg_post_load, .pre_save = fpreg_pre_save, .fields = (VMStateField[]) { VMSTATE_UINT64(tmp_mant, x86_FPReg_tmp), VMSTATE_UINT16(tmp_exp, x86_FPReg_tmp), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_fpreg = { .name = "fpreg", .fields = (VMStateField[]) { VMSTATE_WITH_TMP(FPReg, x86_FPReg_tmp, vmstate_fpreg_tmp), VMSTATE_END_OF_LIST() } }; static int cpu_pre_save(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; int i; /* FPU */ env->fpus_vmstate = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; env->fptag_vmstate = 0; for(i = 0; i < 8; i++) { env->fptag_vmstate |= ((!env->fptags[i]) << i); } env->fpregs_format_vmstate = 0; /* * Real mode guest segments register DPL should be zero. * Older KVM version were setting it wrongly. * Fixing it will allow live migration to host with unrestricted guest * support (otherwise the migration will fail with invalid guest state * error). */ if (!(env->cr[0] & CR0_PE_MASK) && (env->segs[R_CS].flags >> DESC_DPL_SHIFT & 3) != 0) { env->segs[R_CS].flags &= ~(env->segs[R_CS].flags & DESC_DPL_MASK); env->segs[R_DS].flags &= ~(env->segs[R_DS].flags & DESC_DPL_MASK); env->segs[R_ES].flags &= ~(env->segs[R_ES].flags & DESC_DPL_MASK); env->segs[R_FS].flags &= ~(env->segs[R_FS].flags & DESC_DPL_MASK); env->segs[R_GS].flags &= ~(env->segs[R_GS].flags & DESC_DPL_MASK); env->segs[R_SS].flags &= ~(env->segs[R_SS].flags & DESC_DPL_MASK); } #ifdef CONFIG_KVM /* * In case vCPU may have enabled VMX, we need to make sure kernel have * required capabilities in order to perform migration correctly: * * 1) We must be able to extract vCPU nested-state from KVM. * * 2) In case vCPU is running in guest-mode and it has a pending exception, * we must be able to determine if it's in a pending or injected state. * Note that in case KVM don't have required capability to do so, * a pending/injected exception will always appear as an * injected exception. */ if (kvm_enabled() && cpu_vmx_maybe_enabled(env) && (!env->nested_state || (!kvm_has_exception_payload() && (env->hflags & HF_GUEST_MASK) && env->exception_injected))) { error_report("Guest maybe enabled nested virtualization but kernel " "does not support required capabilities to save vCPU " "nested state"); return -EINVAL; } #endif /* * When vCPU is running L2 and exception is still pending, * it can potentially be intercepted by L1 hypervisor. * In contrast to an injected exception which cannot be * intercepted anymore. * * Furthermore, when a L2 exception is intercepted by L1 * hypervisor, its exception payload (CR2/DR6 on #PF/#DB) * should not be set yet in the respective vCPU register. * Thus, in case an exception is pending, it is * important to save the exception payload seperately. * * Therefore, if an exception is not in a pending state * or vCPU is not in guest-mode, it is not important to * distinguish between a pending and injected exception * and we don't need to store seperately the exception payload. * * In order to preserve better backwards-compatible migration, * convert a pending exception to an injected exception in * case it is not important to distinguish between them * as described above. */ if (env->exception_pending && !(env->hflags & HF_GUEST_MASK)) { env->exception_pending = 0; env->exception_injected = 1; if (env->exception_has_payload) { if (env->exception_nr == EXCP01_DB) { env->dr[6] = env->exception_payload; } else if (env->exception_nr == EXCP0E_PAGE) { env->cr[2] = env->exception_payload; } } } return 0; } static int cpu_post_load(void *opaque, int version_id) { X86CPU *cpu = opaque; CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; int i; if (env->tsc_khz && env->user_tsc_khz && env->tsc_khz != env->user_tsc_khz) { error_report("Mismatch between user-specified TSC frequency and " "migrated TSC frequency"); return -EINVAL; } if (env->fpregs_format_vmstate) { error_report("Unsupported old non-softfloat CPU state"); return -EINVAL; } /* * Real mode guest segments register DPL should be zero. * Older KVM version were setting it wrongly. * Fixing it will allow live migration from such host that don't have * restricted guest support to a host with unrestricted guest support * (otherwise the migration will fail with invalid guest state * error). */ if (!(env->cr[0] & CR0_PE_MASK) && (env->segs[R_CS].flags >> DESC_DPL_SHIFT & 3) != 0) { env->segs[R_CS].flags &= ~(env->segs[R_CS].flags & DESC_DPL_MASK); env->segs[R_DS].flags &= ~(env->segs[R_DS].flags & DESC_DPL_MASK); env->segs[R_ES].flags &= ~(env->segs[R_ES].flags & DESC_DPL_MASK); env->segs[R_FS].flags &= ~(env->segs[R_FS].flags & DESC_DPL_MASK); env->segs[R_GS].flags &= ~(env->segs[R_GS].flags & DESC_DPL_MASK); env->segs[R_SS].flags &= ~(env->segs[R_SS].flags & DESC_DPL_MASK); } /* Older versions of QEMU incorrectly used CS.DPL as the CPL when * running under KVM. This is wrong for conforming code segments. * Luckily, in our implementation the CPL field of hflags is redundant * and we can get the right value from the SS descriptor privilege level. */ env->hflags &= ~HF_CPL_MASK; env->hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; #ifdef CONFIG_KVM if ((env->hflags & HF_GUEST_MASK) && (!env->nested_state || !(env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE))) { error_report("vCPU set in guest-mode inconsistent with " "migrated kernel nested state"); return -EINVAL; } #endif /* * There are cases that we can get valid exception_nr with both * exception_pending and exception_injected being cleared. * This can happen in one of the following scenarios: * 1) Source is older QEMU without KVM_CAP_EXCEPTION_PAYLOAD support. * 2) Source is running on kernel without KVM_CAP_EXCEPTION_PAYLOAD support. * 3) "cpu/exception_info" subsection not sent because there is no exception * pending or guest wasn't running L2 (See comment in cpu_pre_save()). * * In those cases, we can just deduce that a valid exception_nr means * we can treat the exception as already injected. */ if ((env->exception_nr != -1) && !env->exception_pending && !env->exception_injected) { env->exception_injected = 1; } env->fpstt = (env->fpus_vmstate >> 11) & 7; env->fpus = env->fpus_vmstate & ~0x3800; env->fptag_vmstate ^= 0xff; for(i = 0; i < 8; i++) { env->fptags[i] = (env->fptag_vmstate >> i) & 1; } if (tcg_enabled()) { target_ulong dr7; update_fp_status(env); update_mxcsr_status(env); cpu_breakpoint_remove_all(cs, BP_CPU); cpu_watchpoint_remove_all(cs, BP_CPU); /* Indicate all breakpoints disabled, as they are, then let the helper re-enable them. */ dr7 = env->dr[7]; env->dr[7] = dr7 & ~(DR7_GLOBAL_BP_MASK | DR7_LOCAL_BP_MASK); cpu_x86_update_dr7(env, dr7); } tlb_flush(cs); return 0; } static bool async_pf_msr_needed(void *opaque) { X86CPU *cpu = opaque; return cpu->env.async_pf_en_msr != 0; } static bool async_pf_int_msr_needed(void *opaque) { X86CPU *cpu = opaque; return cpu->env.async_pf_int_msr != 0; } static bool pv_eoi_msr_needed(void *opaque) { X86CPU *cpu = opaque; return cpu->env.pv_eoi_en_msr != 0; } static bool steal_time_msr_needed(void *opaque) { X86CPU *cpu = opaque; return cpu->env.steal_time_msr != 0; } static bool exception_info_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; /* * It is important to save exception-info only in case * we need to distinguish between a pending and injected * exception. Which is only required in case there is a * pending exception and vCPU is running L2. * For more info, refer to comment in cpu_pre_save(). */ return env->exception_pending && (env->hflags & HF_GUEST_MASK); } static const VMStateDescription vmstate_exception_info = { .name = "cpu/exception_info", .version_id = 1, .minimum_version_id = 1, .needed = exception_info_needed, .fields = (VMStateField[]) { VMSTATE_UINT8(env.exception_pending, X86CPU), VMSTATE_UINT8(env.exception_injected, X86CPU), VMSTATE_UINT8(env.exception_has_payload, X86CPU), VMSTATE_UINT64(env.exception_payload, X86CPU), VMSTATE_END_OF_LIST() } }; /* Poll control MSR enabled by default */ static bool poll_control_msr_needed(void *opaque) { X86CPU *cpu = opaque; return cpu->env.poll_control_msr != 1; } static const VMStateDescription vmstate_steal_time_msr = { .name = "cpu/steal_time_msr", .version_id = 1, .minimum_version_id = 1, .needed = steal_time_msr_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.steal_time_msr, X86CPU), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_async_pf_msr = { .name = "cpu/async_pf_msr", .version_id = 1, .minimum_version_id = 1, .needed = async_pf_msr_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.async_pf_en_msr, X86CPU), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_async_pf_int_msr = { .name = "cpu/async_pf_int_msr", .version_id = 1, .minimum_version_id = 1, .needed = async_pf_int_msr_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.async_pf_int_msr, X86CPU), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_pv_eoi_msr = { .name = "cpu/async_pv_eoi_msr", .version_id = 1, .minimum_version_id = 1, .needed = pv_eoi_msr_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.pv_eoi_en_msr, X86CPU), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_poll_control_msr = { .name = "cpu/poll_control_msr", .version_id = 1, .minimum_version_id = 1, .needed = poll_control_msr_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.poll_control_msr, X86CPU), VMSTATE_END_OF_LIST() } }; static bool fpop_ip_dp_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return env->fpop != 0 || env->fpip != 0 || env->fpdp != 0; } static const VMStateDescription vmstate_fpop_ip_dp = { .name = "cpu/fpop_ip_dp", .version_id = 1, .minimum_version_id = 1, .needed = fpop_ip_dp_needed, .fields = (VMStateField[]) { VMSTATE_UINT16(env.fpop, X86CPU), VMSTATE_UINT64(env.fpip, X86CPU), VMSTATE_UINT64(env.fpdp, X86CPU), VMSTATE_END_OF_LIST() } }; static bool tsc_adjust_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return env->tsc_adjust != 0; } static const VMStateDescription vmstate_msr_tsc_adjust = { .name = "cpu/msr_tsc_adjust", .version_id = 1, .minimum_version_id = 1, .needed = tsc_adjust_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.tsc_adjust, X86CPU), VMSTATE_END_OF_LIST() } }; static bool msr_smi_count_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return cpu->migrate_smi_count && env->msr_smi_count != 0; } static const VMStateDescription vmstate_msr_smi_count = { .name = "cpu/msr_smi_count", .version_id = 1, .minimum_version_id = 1, .needed = msr_smi_count_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.msr_smi_count, X86CPU), VMSTATE_END_OF_LIST() } }; static bool tscdeadline_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return env->tsc_deadline != 0; } static const VMStateDescription vmstate_msr_tscdeadline = { .name = "cpu/msr_tscdeadline", .version_id = 1, .minimum_version_id = 1, .needed = tscdeadline_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.tsc_deadline, X86CPU), VMSTATE_END_OF_LIST() } }; static bool misc_enable_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return env->msr_ia32_misc_enable != MSR_IA32_MISC_ENABLE_DEFAULT; } static bool feature_control_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return env->msr_ia32_feature_control != 0; } static const VMStateDescription vmstate_msr_ia32_misc_enable = { .name = "cpu/msr_ia32_misc_enable", .version_id = 1, .minimum_version_id = 1, .needed = misc_enable_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.msr_ia32_misc_enable, X86CPU), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_msr_ia32_feature_control = { .name = "cpu/msr_ia32_feature_control", .version_id = 1, .minimum_version_id = 1, .needed = feature_control_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.msr_ia32_feature_control, X86CPU), VMSTATE_END_OF_LIST() } }; static bool pmu_enable_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; int i; if (env->msr_fixed_ctr_ctrl || env->msr_global_ctrl || env->msr_global_status || env->msr_global_ovf_ctrl) { return true; } for (i = 0; i < MAX_FIXED_COUNTERS; i++) { if (env->msr_fixed_counters[i]) { return true; } } for (i = 0; i < MAX_GP_COUNTERS; i++) { if (env->msr_gp_counters[i] || env->msr_gp_evtsel[i]) { return true; } } return false; } static const VMStateDescription vmstate_msr_architectural_pmu = { .name = "cpu/msr_architectural_pmu", .version_id = 1, .minimum_version_id = 1, .needed = pmu_enable_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.msr_fixed_ctr_ctrl, X86CPU), VMSTATE_UINT64(env.msr_global_ctrl, X86CPU), VMSTATE_UINT64(env.msr_global_status, X86CPU), VMSTATE_UINT64(env.msr_global_ovf_ctrl, X86CPU), VMSTATE_UINT64_ARRAY(env.msr_fixed_counters, X86CPU, MAX_FIXED_COUNTERS), VMSTATE_UINT64_ARRAY(env.msr_gp_counters, X86CPU, MAX_GP_COUNTERS), VMSTATE_UINT64_ARRAY(env.msr_gp_evtsel, X86CPU, MAX_GP_COUNTERS), VMSTATE_END_OF_LIST() } }; static bool mpx_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; unsigned int i; for (i = 0; i < 4; i++) { if (env->bnd_regs[i].lb || env->bnd_regs[i].ub) { return true; } } if (env->bndcs_regs.cfgu || env->bndcs_regs.sts) { return true; } return !!env->msr_bndcfgs; } static const VMStateDescription vmstate_mpx = { .name = "cpu/mpx", .version_id = 1, .minimum_version_id = 1, .needed = mpx_needed, .fields = (VMStateField[]) { VMSTATE_BND_REGS(env.bnd_regs, X86CPU, 4), VMSTATE_UINT64(env.bndcs_regs.cfgu, X86CPU), VMSTATE_UINT64(env.bndcs_regs.sts, X86CPU), VMSTATE_UINT64(env.msr_bndcfgs, X86CPU), VMSTATE_END_OF_LIST() } }; static bool hyperv_hypercall_enable_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return env->msr_hv_hypercall != 0 || env->msr_hv_guest_os_id != 0; } static const VMStateDescription vmstate_msr_hypercall_hypercall = { .name = "cpu/msr_hyperv_hypercall", .version_id = 1, .minimum_version_id = 1, .needed = hyperv_hypercall_enable_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.msr_hv_guest_os_id, X86CPU), VMSTATE_UINT64(env.msr_hv_hypercall, X86CPU), VMSTATE_END_OF_LIST() } }; static bool hyperv_vapic_enable_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return env->msr_hv_vapic != 0; } static const VMStateDescription vmstate_msr_hyperv_vapic = { .name = "cpu/msr_hyperv_vapic", .version_id = 1, .minimum_version_id = 1, .needed = hyperv_vapic_enable_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.msr_hv_vapic, X86CPU), VMSTATE_END_OF_LIST() } }; static bool hyperv_time_enable_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return env->msr_hv_tsc != 0; } static const VMStateDescription vmstate_msr_hyperv_time = { .name = "cpu/msr_hyperv_time", .version_id = 1, .minimum_version_id = 1, .needed = hyperv_time_enable_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.msr_hv_tsc, X86CPU), VMSTATE_END_OF_LIST() } }; static bool hyperv_crash_enable_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; int i; for (i = 0; i < HV_CRASH_PARAMS; i++) { if (env->msr_hv_crash_params[i]) { return true; } } return false; } static const VMStateDescription vmstate_msr_hyperv_crash = { .name = "cpu/msr_hyperv_crash", .version_id = 1, .minimum_version_id = 1, .needed = hyperv_crash_enable_needed, .fields = (VMStateField[]) { VMSTATE_UINT64_ARRAY(env.msr_hv_crash_params, X86CPU, HV_CRASH_PARAMS), VMSTATE_END_OF_LIST() } }; static bool hyperv_runtime_enable_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; if (!hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) { return false; } return env->msr_hv_runtime != 0; } static const VMStateDescription vmstate_msr_hyperv_runtime = { .name = "cpu/msr_hyperv_runtime", .version_id = 1, .minimum_version_id = 1, .needed = hyperv_runtime_enable_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.msr_hv_runtime, X86CPU), VMSTATE_END_OF_LIST() } }; static bool hyperv_synic_enable_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; int i; if (env->msr_hv_synic_control != 0 || env->msr_hv_synic_evt_page != 0 || env->msr_hv_synic_msg_page != 0) { return true; } for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { if (env->msr_hv_synic_sint[i] != 0) { return true; } } return false; } static int hyperv_synic_post_load(void *opaque, int version_id) { X86CPU *cpu = opaque; hyperv_x86_synic_update(cpu); return 0; } static const VMStateDescription vmstate_msr_hyperv_synic = { .name = "cpu/msr_hyperv_synic", .version_id = 1, .minimum_version_id = 1, .needed = hyperv_synic_enable_needed, .post_load = hyperv_synic_post_load, .fields = (VMStateField[]) { VMSTATE_UINT64(env.msr_hv_synic_control, X86CPU), VMSTATE_UINT64(env.msr_hv_synic_evt_page, X86CPU), VMSTATE_UINT64(env.msr_hv_synic_msg_page, X86CPU), VMSTATE_UINT64_ARRAY(env.msr_hv_synic_sint, X86CPU, HV_SINT_COUNT), VMSTATE_END_OF_LIST() } }; static bool hyperv_stimer_enable_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; int i; for (i = 0; i < ARRAY_SIZE(env->msr_hv_stimer_config); i++) { if (env->msr_hv_stimer_config[i] || env->msr_hv_stimer_count[i]) { return true; } } return false; } static const VMStateDescription vmstate_msr_hyperv_stimer = { .name = "cpu/msr_hyperv_stimer", .version_id = 1, .minimum_version_id = 1, .needed = hyperv_stimer_enable_needed, .fields = (VMStateField[]) { VMSTATE_UINT64_ARRAY(env.msr_hv_stimer_config, X86CPU, HV_STIMER_COUNT), VMSTATE_UINT64_ARRAY(env.msr_hv_stimer_count, X86CPU, HV_STIMER_COUNT), VMSTATE_END_OF_LIST() } }; static bool hyperv_reenlightenment_enable_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return env->msr_hv_reenlightenment_control != 0 || env->msr_hv_tsc_emulation_control != 0 || env->msr_hv_tsc_emulation_status != 0; } static const VMStateDescription vmstate_msr_hyperv_reenlightenment = { .name = "cpu/msr_hyperv_reenlightenment", .version_id = 1, .minimum_version_id = 1, .needed = hyperv_reenlightenment_enable_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.msr_hv_reenlightenment_control, X86CPU), VMSTATE_UINT64(env.msr_hv_tsc_emulation_control, X86CPU), VMSTATE_UINT64(env.msr_hv_tsc_emulation_status, X86CPU), VMSTATE_END_OF_LIST() } }; static bool avx512_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; unsigned int i; for (i = 0; i < NB_OPMASK_REGS; i++) { if (env->opmask_regs[i]) { return true; } } for (i = 0; i < CPU_NB_REGS; i++) { #define ENV_XMM(reg, field) (env->xmm_regs[reg].ZMM_Q(field)) if (ENV_XMM(i, 4) || ENV_XMM(i, 6) || ENV_XMM(i, 5) || ENV_XMM(i, 7)) { return true; } #ifdef TARGET_X86_64 if (ENV_XMM(i+16, 0) || ENV_XMM(i+16, 1) || ENV_XMM(i+16, 2) || ENV_XMM(i+16, 3) || ENV_XMM(i+16, 4) || ENV_XMM(i+16, 5) || ENV_XMM(i+16, 6) || ENV_XMM(i+16, 7)) { return true; } #endif } return false; } static const VMStateDescription vmstate_avx512 = { .name = "cpu/avx512", .version_id = 1, .minimum_version_id = 1, .needed = avx512_needed, .fields = (VMStateField[]) { VMSTATE_UINT64_ARRAY(env.opmask_regs, X86CPU, NB_OPMASK_REGS), VMSTATE_ZMMH_REGS_VARS(env.xmm_regs, X86CPU, 0), #ifdef TARGET_X86_64 VMSTATE_Hi16_ZMM_REGS_VARS(env.xmm_regs, X86CPU, 16), #endif VMSTATE_END_OF_LIST() } }; static bool xss_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return env->xss != 0; } static const VMStateDescription vmstate_xss = { .name = "cpu/xss", .version_id = 1, .minimum_version_id = 1, .needed = xss_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.xss, X86CPU), VMSTATE_END_OF_LIST() } }; static bool umwait_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return env->umwait != 0; } static const VMStateDescription vmstate_umwait = { .name = "cpu/umwait", .version_id = 1, .minimum_version_id = 1, .needed = umwait_needed, .fields = (VMStateField[]) { VMSTATE_UINT32(env.umwait, X86CPU), VMSTATE_END_OF_LIST() } }; static bool pkru_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return env->pkru != 0; } static const VMStateDescription vmstate_pkru = { .name = "cpu/pkru", .version_id = 1, .minimum_version_id = 1, .needed = pkru_needed, .fields = (VMStateField[]){ VMSTATE_UINT32(env.pkru, X86CPU), VMSTATE_END_OF_LIST() } }; static bool pkrs_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return env->pkrs != 0; } static const VMStateDescription vmstate_pkrs = { .name = "cpu/pkrs", .version_id = 1, .minimum_version_id = 1, .needed = pkrs_needed, .fields = (VMStateField[]){ VMSTATE_UINT32(env.pkrs, X86CPU), VMSTATE_END_OF_LIST() } }; static bool tsc_khz_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); X86MachineClass *x86mc = X86_MACHINE_CLASS(mc); return env->tsc_khz && x86mc->save_tsc_khz; } static const VMStateDescription vmstate_tsc_khz = { .name = "cpu/tsc_khz", .version_id = 1, .minimum_version_id = 1, .needed = tsc_khz_needed, .fields = (VMStateField[]) { VMSTATE_INT64(env.tsc_khz, X86CPU), VMSTATE_END_OF_LIST() } }; #ifdef CONFIG_KVM static bool vmx_vmcs12_needed(void *opaque) { struct kvm_nested_state *nested_state = opaque; return (nested_state->size > offsetof(struct kvm_nested_state, data.vmx[0].vmcs12)); } static const VMStateDescription vmstate_vmx_vmcs12 = { .name = "cpu/kvm_nested_state/vmx/vmcs12", .version_id = 1, .minimum_version_id = 1, .needed = vmx_vmcs12_needed, .fields = (VMStateField[]) { VMSTATE_UINT8_ARRAY(data.vmx[0].vmcs12, struct kvm_nested_state, KVM_STATE_NESTED_VMX_VMCS_SIZE), VMSTATE_END_OF_LIST() } }; static bool vmx_shadow_vmcs12_needed(void *opaque) { struct kvm_nested_state *nested_state = opaque; return (nested_state->size > offsetof(struct kvm_nested_state, data.vmx[0].shadow_vmcs12)); } static const VMStateDescription vmstate_vmx_shadow_vmcs12 = { .name = "cpu/kvm_nested_state/vmx/shadow_vmcs12", .version_id = 1, .minimum_version_id = 1, .needed = vmx_shadow_vmcs12_needed, .fields = (VMStateField[]) { VMSTATE_UINT8_ARRAY(data.vmx[0].shadow_vmcs12, struct kvm_nested_state, KVM_STATE_NESTED_VMX_VMCS_SIZE), VMSTATE_END_OF_LIST() } }; static bool vmx_nested_state_needed(void *opaque) { struct kvm_nested_state *nested_state = opaque; return (nested_state->format == KVM_STATE_NESTED_FORMAT_VMX && nested_state->hdr.vmx.vmxon_pa != -1ull); } static const VMStateDescription vmstate_vmx_nested_state = { .name = "cpu/kvm_nested_state/vmx", .version_id = 1, .minimum_version_id = 1, .needed = vmx_nested_state_needed, .fields = (VMStateField[]) { VMSTATE_U64(hdr.vmx.vmxon_pa, struct kvm_nested_state), VMSTATE_U64(hdr.vmx.vmcs12_pa, struct kvm_nested_state), VMSTATE_U16(hdr.vmx.smm.flags, struct kvm_nested_state), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_vmx_vmcs12, &vmstate_vmx_shadow_vmcs12, NULL, } }; static bool svm_nested_state_needed(void *opaque) { struct kvm_nested_state *nested_state = opaque; /* * HF_GUEST_MASK and HF2_GIF_MASK are already serialized * via hflags and hflags2, all that's left is the opaque * nested state blob. */ return (nested_state->format == KVM_STATE_NESTED_FORMAT_SVM && nested_state->size > offsetof(struct kvm_nested_state, data)); } static const VMStateDescription vmstate_svm_nested_state = { .name = "cpu/kvm_nested_state/svm", .version_id = 1, .minimum_version_id = 1, .needed = svm_nested_state_needed, .fields = (VMStateField[]) { VMSTATE_U64(hdr.svm.vmcb_pa, struct kvm_nested_state), VMSTATE_UINT8_ARRAY(data.svm[0].vmcb12, struct kvm_nested_state, KVM_STATE_NESTED_SVM_VMCB_SIZE), VMSTATE_END_OF_LIST() } }; static bool nested_state_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return (env->nested_state && (vmx_nested_state_needed(env->nested_state) || svm_nested_state_needed(env->nested_state))); } static int nested_state_post_load(void *opaque, int version_id) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; struct kvm_nested_state *nested_state = env->nested_state; int min_nested_state_len = offsetof(struct kvm_nested_state, data); int max_nested_state_len = kvm_max_nested_state_length(); /* * If our kernel don't support setting nested state * and we have received nested state from migration stream, * we need to fail migration */ if (max_nested_state_len <= 0) { error_report("Received nested state when kernel cannot restore it"); return -EINVAL; } /* * Verify that the size of received nested_state struct * at least cover required header and is not larger * than the max size that our kernel support */ if (nested_state->size < min_nested_state_len) { error_report("Received nested state size less than min: " "len=%d, min=%d", nested_state->size, min_nested_state_len); return -EINVAL; } if (nested_state->size > max_nested_state_len) { error_report("Recieved unsupported nested state size: " "nested_state->size=%d, max=%d", nested_state->size, max_nested_state_len); return -EINVAL; } /* Verify format is valid */ if ((nested_state->format != KVM_STATE_NESTED_FORMAT_VMX) && (nested_state->format != KVM_STATE_NESTED_FORMAT_SVM)) { error_report("Received invalid nested state format: %d", nested_state->format); return -EINVAL; } return 0; } static const VMStateDescription vmstate_kvm_nested_state = { .name = "cpu/kvm_nested_state", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_U16(flags, struct kvm_nested_state), VMSTATE_U16(format, struct kvm_nested_state), VMSTATE_U32(size, struct kvm_nested_state), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_vmx_nested_state, &vmstate_svm_nested_state, NULL } }; static const VMStateDescription vmstate_nested_state = { .name = "cpu/nested_state", .version_id = 1, .minimum_version_id = 1, .needed = nested_state_needed, .post_load = nested_state_post_load, .fields = (VMStateField[]) { VMSTATE_STRUCT_POINTER(env.nested_state, X86CPU, vmstate_kvm_nested_state, struct kvm_nested_state), VMSTATE_END_OF_LIST() } }; #endif static bool mcg_ext_ctl_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return cpu->enable_lmce && env->mcg_ext_ctl; } static const VMStateDescription vmstate_mcg_ext_ctl = { .name = "cpu/mcg_ext_ctl", .version_id = 1, .minimum_version_id = 1, .needed = mcg_ext_ctl_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.mcg_ext_ctl, X86CPU), VMSTATE_END_OF_LIST() } }; static bool spec_ctrl_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return env->spec_ctrl != 0; } static const VMStateDescription vmstate_spec_ctrl = { .name = "cpu/spec_ctrl", .version_id = 1, .minimum_version_id = 1, .needed = spec_ctrl_needed, .fields = (VMStateField[]){ VMSTATE_UINT64(env.spec_ctrl, X86CPU), VMSTATE_END_OF_LIST() } }; static bool intel_pt_enable_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; int i; if (env->msr_rtit_ctrl || env->msr_rtit_status || env->msr_rtit_output_base || env->msr_rtit_output_mask || env->msr_rtit_cr3_match) { return true; } for (i = 0; i < MAX_RTIT_ADDRS; i++) { if (env->msr_rtit_addrs[i]) { return true; } } return false; } static const VMStateDescription vmstate_msr_intel_pt = { .name = "cpu/intel_pt", .version_id = 1, .minimum_version_id = 1, .needed = intel_pt_enable_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.msr_rtit_ctrl, X86CPU), VMSTATE_UINT64(env.msr_rtit_status, X86CPU), VMSTATE_UINT64(env.msr_rtit_output_base, X86CPU), VMSTATE_UINT64(env.msr_rtit_output_mask, X86CPU), VMSTATE_UINT64(env.msr_rtit_cr3_match, X86CPU), VMSTATE_UINT64_ARRAY(env.msr_rtit_addrs, X86CPU, MAX_RTIT_ADDRS), VMSTATE_END_OF_LIST() } }; static bool virt_ssbd_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return env->virt_ssbd != 0; } static const VMStateDescription vmstate_msr_virt_ssbd = { .name = "cpu/virt_ssbd", .version_id = 1, .minimum_version_id = 1, .needed = virt_ssbd_needed, .fields = (VMStateField[]){ VMSTATE_UINT64(env.virt_ssbd, X86CPU), VMSTATE_END_OF_LIST() } }; static bool svm_npt_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return !!(env->hflags2 & HF2_NPT_MASK); } static const VMStateDescription vmstate_svm_npt = { .name = "cpu/svn_npt", .version_id = 1, .minimum_version_id = 1, .needed = svm_npt_needed, .fields = (VMStateField[]){ VMSTATE_UINT64(env.nested_cr3, X86CPU), VMSTATE_UINT32(env.nested_pg_mode, X86CPU), VMSTATE_END_OF_LIST() } }; #ifndef TARGET_X86_64 static bool intel_efer32_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return env->efer != 0; } static const VMStateDescription vmstate_efer32 = { .name = "cpu/efer32", .version_id = 1, .minimum_version_id = 1, .needed = intel_efer32_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(env.efer, X86CPU), VMSTATE_END_OF_LIST() } }; #endif static bool msr_tsx_ctrl_needed(void *opaque) { X86CPU *cpu = opaque; CPUX86State *env = &cpu->env; return env->features[FEAT_ARCH_CAPABILITIES] & ARCH_CAP_TSX_CTRL_MSR; } static const VMStateDescription vmstate_msr_tsx_ctrl = { .name = "cpu/msr_tsx_ctrl", .version_id = 1, .minimum_version_id = 1, .needed = msr_tsx_ctrl_needed, .fields = (VMStateField[]) { VMSTATE_UINT32(env.tsx_ctrl, X86CPU), VMSTATE_END_OF_LIST() } }; VMStateDescription vmstate_x86_cpu = { .name = "cpu", .version_id = 12, .minimum_version_id = 11, .pre_save = cpu_pre_save, .post_load = cpu_post_load, .fields = (VMStateField[]) { VMSTATE_UINTTL_ARRAY(env.regs, X86CPU, CPU_NB_REGS), VMSTATE_UINTTL(env.eip, X86CPU), VMSTATE_UINTTL(env.eflags, X86CPU), VMSTATE_UINT32(env.hflags, X86CPU), /* FPU */ VMSTATE_UINT16(env.fpuc, X86CPU), VMSTATE_UINT16(env.fpus_vmstate, X86CPU), VMSTATE_UINT16(env.fptag_vmstate, X86CPU), VMSTATE_UINT16(env.fpregs_format_vmstate, X86CPU), VMSTATE_STRUCT_ARRAY(env.fpregs, X86CPU, 8, 0, vmstate_fpreg, FPReg), VMSTATE_SEGMENT_ARRAY(env.segs, X86CPU, 6), VMSTATE_SEGMENT(env.ldt, X86CPU), VMSTATE_SEGMENT(env.tr, X86CPU), VMSTATE_SEGMENT(env.gdt, X86CPU), VMSTATE_SEGMENT(env.idt, X86CPU), VMSTATE_UINT32(env.sysenter_cs, X86CPU), VMSTATE_UINTTL(env.sysenter_esp, X86CPU), VMSTATE_UINTTL(env.sysenter_eip, X86CPU), VMSTATE_UINTTL(env.cr[0], X86CPU), VMSTATE_UINTTL(env.cr[2], X86CPU), VMSTATE_UINTTL(env.cr[3], X86CPU), VMSTATE_UINTTL(env.cr[4], X86CPU), VMSTATE_UINTTL_ARRAY(env.dr, X86CPU, 8), /* MMU */ VMSTATE_INT32(env.a20_mask, X86CPU), /* XMM */ VMSTATE_UINT32(env.mxcsr, X86CPU), VMSTATE_XMM_REGS(env.xmm_regs, X86CPU, 0), #ifdef TARGET_X86_64 VMSTATE_UINT64(env.efer, X86CPU), VMSTATE_UINT64(env.star, X86CPU), VMSTATE_UINT64(env.lstar, X86CPU), VMSTATE_UINT64(env.cstar, X86CPU), VMSTATE_UINT64(env.fmask, X86CPU), VMSTATE_UINT64(env.kernelgsbase, X86CPU), #endif VMSTATE_UINT32(env.smbase, X86CPU), VMSTATE_UINT64(env.pat, X86CPU), VMSTATE_UINT32(env.hflags2, X86CPU), VMSTATE_UINT64(env.vm_hsave, X86CPU), VMSTATE_UINT64(env.vm_vmcb, X86CPU), VMSTATE_UINT64(env.tsc_offset, X86CPU), VMSTATE_UINT64(env.intercept, X86CPU), VMSTATE_UINT16(env.intercept_cr_read, X86CPU), VMSTATE_UINT16(env.intercept_cr_write, X86CPU), VMSTATE_UINT16(env.intercept_dr_read, X86CPU), VMSTATE_UINT16(env.intercept_dr_write, X86CPU), VMSTATE_UINT32(env.intercept_exceptions, X86CPU), VMSTATE_UINT8(env.v_tpr, X86CPU), /* MTRRs */ VMSTATE_UINT64_ARRAY(env.mtrr_fixed, X86CPU, 11), VMSTATE_UINT64(env.mtrr_deftype, X86CPU), VMSTATE_MTRR_VARS(env.mtrr_var, X86CPU, MSR_MTRRcap_VCNT, 8), /* KVM-related states */ VMSTATE_INT32(env.interrupt_injected, X86CPU), VMSTATE_UINT32(env.mp_state, X86CPU), VMSTATE_UINT64(env.tsc, X86CPU), VMSTATE_INT32(env.exception_nr, X86CPU), VMSTATE_UINT8(env.soft_interrupt, X86CPU), VMSTATE_UINT8(env.nmi_injected, X86CPU), VMSTATE_UINT8(env.nmi_pending, X86CPU), VMSTATE_UINT8(env.has_error_code, X86CPU), VMSTATE_UINT32(env.sipi_vector, X86CPU), /* MCE */ VMSTATE_UINT64(env.mcg_cap, X86CPU), VMSTATE_UINT64(env.mcg_status, X86CPU), VMSTATE_UINT64(env.mcg_ctl, X86CPU), VMSTATE_UINT64_ARRAY(env.mce_banks, X86CPU, MCE_BANKS_DEF * 4), /* rdtscp */ VMSTATE_UINT64(env.tsc_aux, X86CPU), /* KVM pvclock msr */ VMSTATE_UINT64(env.system_time_msr, X86CPU), VMSTATE_UINT64(env.wall_clock_msr, X86CPU), /* XSAVE related fields */ VMSTATE_UINT64_V(env.xcr0, X86CPU, 12), VMSTATE_UINT64_V(env.xstate_bv, X86CPU, 12), VMSTATE_YMMH_REGS_VARS(env.xmm_regs, X86CPU, 0, 12), VMSTATE_END_OF_LIST() /* The above list is not sorted /wrt version numbers, watch out! */ }, .subsections = (const VMStateDescription*[]) { &vmstate_exception_info, &vmstate_async_pf_msr, &vmstate_async_pf_int_msr, &vmstate_pv_eoi_msr, &vmstate_steal_time_msr, &vmstate_poll_control_msr, &vmstate_fpop_ip_dp, &vmstate_msr_tsc_adjust, &vmstate_msr_tscdeadline, &vmstate_msr_ia32_misc_enable, &vmstate_msr_ia32_feature_control, &vmstate_msr_architectural_pmu, &vmstate_mpx, &vmstate_msr_hypercall_hypercall, &vmstate_msr_hyperv_vapic, &vmstate_msr_hyperv_time, &vmstate_msr_hyperv_crash, &vmstate_msr_hyperv_runtime, &vmstate_msr_hyperv_synic, &vmstate_msr_hyperv_stimer, &vmstate_msr_hyperv_reenlightenment, &vmstate_avx512, &vmstate_xss, &vmstate_umwait, &vmstate_tsc_khz, &vmstate_msr_smi_count, &vmstate_pkru, &vmstate_pkrs, &vmstate_spec_ctrl, &vmstate_mcg_ext_ctl, &vmstate_msr_intel_pt, &vmstate_msr_virt_ssbd, &vmstate_svm_npt, #ifndef TARGET_X86_64 &vmstate_efer32, #endif #ifdef CONFIG_KVM &vmstate_nested_state, #endif &vmstate_msr_tsx_ctrl, NULL } };