# AArch32 VFP instruction descriptions (conditional insns) # # Copyright (c) 2019 Linaro, Ltd # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, see . # # This file is processed by scripts/decodetree.py # # Encodings for the conditional VFP instructions are here: # generally anything matching A32 # cccc 11.. .... .... .... 101. .... .... # and T32 # 1110 110. .... .... .... 101. .... .... # 1110 1110 .... .... .... 101. .... .... # (but those patterns might also cover some Neon instructions, # which do not live in this file.) # VFP registers have an odd encoding with a four-bit field # and a one-bit field which are assembled in different orders # depending on whether the register is double or single precision. # Each individual instruction function must do the checks for # "double register selected but CPU does not have double support" # and "double register number has bit 4 set but CPU does not # support D16-D31" (which should UNDEF). %vm_dp 5:1 0:4 %vm_sp 0:4 5:1 %vn_dp 7:1 16:4 %vn_sp 16:4 7:1 %vd_dp 22:1 12:4 %vd_sp 12:4 22:1 %vmov_idx_b 21:1 5:2 %vmov_idx_h 21:1 6:1 %vmov_imm 16:4 0:4 # VMOV scalar to general-purpose register; note that this does # include some Neon cases. VMOV_to_gp ---- 1110 u:1 1. 1 .... rt:4 1011 ... 1 0000 \ vn=%vn_dp size=0 index=%vmov_idx_b VMOV_to_gp ---- 1110 u:1 0. 1 .... rt:4 1011 ..1 1 0000 \ vn=%vn_dp size=1 index=%vmov_idx_h VMOV_to_gp ---- 1110 0 0 index:1 1 .... rt:4 1011 .00 1 0000 \ vn=%vn_dp size=2 u=0 VMOV_from_gp ---- 1110 0 1. 0 .... rt:4 1011 ... 1 0000 \ vn=%vn_dp size=0 index=%vmov_idx_b VMOV_from_gp ---- 1110 0 0. 0 .... rt:4 1011 ..1 1 0000 \ vn=%vn_dp size=1 index=%vmov_idx_h VMOV_from_gp ---- 1110 0 0 index:1 0 .... rt:4 1011 .00 1 0000 \ vn=%vn_dp size=2 VDUP ---- 1110 1 b:1 q:1 0 .... rt:4 1011 . 0 e:1 1 0000 \ vn=%vn_dp VMSR_VMRS ---- 1110 111 l:1 reg:4 rt:4 1010 0001 0000 VMOV_single ---- 1110 000 l:1 .... rt:4 1010 . 001 0000 \ vn=%vn_sp VMOV_64_sp ---- 1100 010 op:1 rt2:4 rt:4 1010 00.1 .... \ vm=%vm_sp VMOV_64_dp ---- 1100 010 op:1 rt2:4 rt:4 1011 00.1 .... \ vm=%vm_dp # Note that the half-precision variants of VLDR and VSTR are # not part of this decodetree at all because they have bits [9:8] == 0b01 VLDR_VSTR_sp ---- 1101 u:1 .0 l:1 rn:4 .... 1010 imm:8 \ vd=%vd_sp VLDR_VSTR_dp ---- 1101 u:1 .0 l:1 rn:4 .... 1011 imm:8 \ vd=%vd_dp # We split the load/store multiple up into two patterns to avoid # overlap with other insns in the "Advanced SIMD load/store and 64-bit move" # grouping: # P=0 U=0 W=0 is 64-bit VMOV # P=1 W=0 is VLDR/VSTR # P=U W=1 is UNDEF # leaving P=0 U=1 W=x and P=1 U=0 W=1 for load/store multiple. # These include FSTM/FLDM. VLDM_VSTM_sp ---- 1100 1 . w:1 l:1 rn:4 .... 1010 imm:8 \ vd=%vd_sp p=0 u=1 VLDM_VSTM_dp ---- 1100 1 . w:1 l:1 rn:4 .... 1011 imm:8 \ vd=%vd_dp p=0 u=1 VLDM_VSTM_sp ---- 1101 0.1 l:1 rn:4 .... 1010 imm:8 \ vd=%vd_sp p=1 u=0 w=1 VLDM_VSTM_dp ---- 1101 0.1 l:1 rn:4 .... 1011 imm:8 \ vd=%vd_dp p=1 u=0 w=1 # 3-register VFP data-processing; bits [23,21:20,6] identify the operation. VMLA_sp ---- 1110 0.00 .... .... 1010 .0.0 .... \ vm=%vm_sp vn=%vn_sp vd=%vd_sp VMLA_dp ---- 1110 0.00 .... .... 1011 .0.0 .... \ vm=%vm_dp vn=%vn_dp vd=%vd_dp VMLS_sp ---- 1110 0.00 .... .... 1010 .1.0 .... \ vm=%vm_sp vn=%vn_sp vd=%vd_sp VMLS_dp ---- 1110 0.00 .... .... 1011 .1.0 .... \ vm=%vm_dp vn=%vn_dp vd=%vd_dp VNMLS_sp ---- 1110 0.01 .... .... 1010 .0.0 .... \ vm=%vm_sp vn=%vn_sp vd=%vd_sp VNMLS_dp ---- 1110 0.01 .... .... 1011 .0.0 .... \ vm=%vm_dp vn=%vn_dp vd=%vd_dp VNMLA_sp ---- 1110 0.01 .... .... 1010 .1.0 .... \ vm=%vm_sp vn=%vn_sp vd=%vd_sp VNMLA_dp ---- 1110 0.01 .... .... 1011 .1.0 .... \ vm=%vm_dp vn=%vn_dp vd=%vd_dp VMUL_sp ---- 1110 0.10 .... .... 1010 .0.0 .... \ vm=%vm_sp vn=%vn_sp vd=%vd_sp VMUL_dp ---- 1110 0.10 .... .... 1011 .0.0 .... \ vm=%vm_dp vn=%vn_dp vd=%vd_dp VNMUL_sp ---- 1110 0.10 .... .... 1010 .1.0 .... \ vm=%vm_sp vn=%vn_sp vd=%vd_sp VNMUL_dp ---- 1110 0.10 .... .... 1011 .1.0 .... \ vm=%vm_dp vn=%vn_dp vd=%vd_dp VADD_sp ---- 1110 0.11 .... .... 1010 .0.0 .... \ vm=%vm_sp vn=%vn_sp vd=%vd_sp VADD_dp ---- 1110 0.11 .... .... 1011 .0.0 .... \ vm=%vm_dp vn=%vn_dp vd=%vd_dp VSUB_sp ---- 1110 0.11 .... .... 1010 .1.0 .... \ vm=%vm_sp vn=%vn_sp vd=%vd_sp VSUB_dp ---- 1110 0.11 .... .... 1011 .1.0 .... \ vm=%vm_dp vn=%vn_dp vd=%vd_dp VDIV_sp ---- 1110 1.00 .... .... 1010 .0.0 .... \ vm=%vm_sp vn=%vn_sp vd=%vd_sp VDIV_dp ---- 1110 1.00 .... .... 1011 .0.0 .... \ vm=%vm_dp vn=%vn_dp vd=%vd_dp VFM_sp ---- 1110 1.01 .... .... 1010 . o2:1 . 0 .... \ vm=%vm_sp vn=%vn_sp vd=%vd_sp o1=1 VFM_dp ---- 1110 1.01 .... .... 1011 . o2:1 . 0 .... \ vm=%vm_dp vn=%vn_dp vd=%vd_dp o1=1 VFM_sp ---- 1110 1.10 .... .... 1010 . o2:1 . 0 .... \ vm=%vm_sp vn=%vn_sp vd=%vd_sp o1=2 VFM_dp ---- 1110 1.10 .... .... 1011 . o2:1 . 0 .... \ vm=%vm_dp vn=%vn_dp vd=%vd_dp o1=2 VMOV_imm_sp ---- 1110 1.11 .... .... 1010 0000 .... \ vd=%vd_sp imm=%vmov_imm VMOV_imm_dp ---- 1110 1.11 .... .... 1011 0000 .... \ vd=%vd_dp imm=%vmov_imm VMOV_reg_sp ---- 1110 1.11 0000 .... 1010 01.0 .... \ vd=%vd_sp vm=%vm_sp VMOV_reg_dp ---- 1110 1.11 0000 .... 1011 01.0 .... \ vd=%vd_dp vm=%vm_dp VABS_sp ---- 1110 1.11 0000 .... 1010 11.0 .... \ vd=%vd_sp vm=%vm_sp VABS_dp ---- 1110 1.11 0000 .... 1011 11.0 .... \ vd=%vd_dp vm=%vm_dp VNEG_sp ---- 1110 1.11 0001 .... 1010 01.0 .... \ vd=%vd_sp vm=%vm_sp VNEG_dp ---- 1110 1.11 0001 .... 1011 01.0 .... \ vd=%vd_dp vm=%vm_dp VSQRT_sp ---- 1110 1.11 0001 .... 1010 11.0 .... \ vd=%vd_sp vm=%vm_sp VSQRT_dp ---- 1110 1.11 0001 .... 1011 11.0 .... \ vd=%vd_dp vm=%vm_dp VCMP_sp ---- 1110 1.11 010 z:1 .... 1010 e:1 1.0 .... \ vd=%vd_sp vm=%vm_sp VCMP_dp ---- 1110 1.11 010 z:1 .... 1011 e:1 1.0 .... \ vd=%vd_dp vm=%vm_dp # VCVTT and VCVTB from f16: Vd format depends on size bit; Vm is always vm_sp VCVT_f32_f16 ---- 1110 1.11 0010 .... 1010 t:1 1.0 .... \ vd=%vd_sp vm=%vm_sp VCVT_f64_f16 ---- 1110 1.11 0010 .... 1011 t:1 1.0 .... \ vd=%vd_dp vm=%vm_sp # VCVTB and VCVTT to f16: Vd format is always vd_sp; Vm format depends on size bit VCVT_f16_f32 ---- 1110 1.11 0011 .... 1010 t:1 1.0 .... \ vd=%vd_sp vm=%vm_sp VCVT_f16_f64 ---- 1110 1.11 0011 .... 1011 t:1 1.0 .... \ vd=%vd_sp vm=%vm_dp VRINTR_sp ---- 1110 1.11 0110 .... 1010 01.0 .... \ vd=%vd_sp vm=%vm_sp VRINTR_dp ---- 1110 1.11 0110 .... 1011 01.0 .... \ vd=%vd_dp vm=%vm_dp VRINTZ_sp ---- 1110 1.11 0110 .... 1010 11.0 .... \ vd=%vd_sp vm=%vm_sp VRINTZ_dp ---- 1110 1.11 0110 .... 1011 11.0 .... \ vd=%vd_dp vm=%vm_dp VRINTX_sp ---- 1110 1.11 0111 .... 1010 01.0 .... \ vd=%vd_sp vm=%vm_sp VRINTX_dp ---- 1110 1.11 0111 .... 1011 01.0 .... \ vd=%vd_dp vm=%vm_dp # VCVT between single and double: Vm precision depends on size; Vd is its reverse VCVT_sp ---- 1110 1.11 0111 .... 1010 11.0 .... \ vd=%vd_dp vm=%vm_sp VCVT_dp ---- 1110 1.11 0111 .... 1011 11.0 .... \ vd=%vd_sp vm=%vm_dp # VCVT from integer to floating point: Vm always single; Vd depends on size VCVT_int_sp ---- 1110 1.11 1000 .... 1010 s:1 1.0 .... \ vd=%vd_sp vm=%vm_sp VCVT_int_dp ---- 1110 1.11 1000 .... 1011 s:1 1.0 .... \ vd=%vd_dp vm=%vm_sp # VJCVT is always dp to sp VJCVT ---- 1110 1.11 1001 .... 1011 11.0 .... \ vd=%vd_sp vm=%vm_dp # VCVT between floating-point and fixed-point. The immediate value # is in the same format as a Vm single-precision register number. # We assemble bits 18 (op), 16 (u) and 7 (sx) into a single opc field # for the convenience of the trans_VCVT_fix functions. %vcvt_fix_op 18:1 16:1 7:1 VCVT_fix_sp ---- 1110 1.11 1.1. .... 1010 .1.0 .... \ vd=%vd_sp imm=%vm_sp opc=%vcvt_fix_op VCVT_fix_dp ---- 1110 1.11 1.1. .... 1011 .1.0 .... \ vd=%vd_dp imm=%vm_sp opc=%vcvt_fix_op # VCVT float to integer (VCVT and VCVTR): Vd always single; Vd depends on size VCVT_sp_int ---- 1110 1.11 110 s:1 .... 1010 rz:1 1.0 .... \ vd=%vd_sp vm=%vm_sp VCVT_dp_int ---- 1110 1.11 110 s:1 .... 1011 rz:1 1.0 .... \ vd=%vd_sp vm=%vm_dp