/* * QEMU support -- ARM Power Control specific functions. * * Copyright (c) 2016 Jean-Christophe Dubois * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "cpu.h" #include "cpu-qom.h" #include "internals.h" #include "arm-powerctl.h" #include "qemu/log.h" #include "qemu/main-loop.h" #ifndef DEBUG_ARM_POWERCTL #define DEBUG_ARM_POWERCTL 0 #endif #define DPRINTF(fmt, args...) \ do { \ if (DEBUG_ARM_POWERCTL) { \ fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \ } \ } while (0) CPUState *arm_get_cpu_by_id(uint64_t id) { CPUState *cpu; DPRINTF("cpu %" PRId64 "\n", id); CPU_FOREACH(cpu) { ARMCPU *armcpu = ARM_CPU(cpu); if (armcpu->mp_affinity == id) { return cpu; } } qemu_log_mask(LOG_GUEST_ERROR, "[ARM]%s: Requesting unknown CPU %" PRId64 "\n", __func__, id); return NULL; } struct CpuOnInfo { uint64_t entry; uint64_t context_id; uint32_t target_el; bool target_aa64; }; static void arm_set_cpu_on_async_work(CPUState *target_cpu_state, run_on_cpu_data data) { ARMCPU *target_cpu = ARM_CPU(target_cpu_state); struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr; /* Initialize the cpu we are turning on */ cpu_reset(target_cpu_state); target_cpu_state->halted = 0; if (info->target_aa64) { if ((info->target_el < 3) && arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) { /* * As target mode is AArch64, we need to set lower * exception level (the requested level 2) to AArch64 */ target_cpu->env.cp15.scr_el3 |= SCR_RW; } if ((info->target_el < 2) && arm_feature(&target_cpu->env, ARM_FEATURE_EL2)) { /* * As target mode is AArch64, we need to set lower * exception level (the requested level 1) to AArch64 */ target_cpu->env.cp15.hcr_el2 |= HCR_RW; } target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true); } else { /* We are requested to boot in AArch32 mode */ static const uint32_t mode_for_el[] = { 0, ARM_CPU_MODE_SVC, ARM_CPU_MODE_HYP, ARM_CPU_MODE_SVC }; cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M, CPSRWriteRaw); } if (info->target_el == 3) { /* Processor is in secure mode */ target_cpu->env.cp15.scr_el3 &= ~SCR_NS; } else { /* Processor is not in secure mode */ target_cpu->env.cp15.scr_el3 |= SCR_NS; /* Set NSACR.{CP11,CP10} so NS can access the FPU */ target_cpu->env.cp15.nsacr |= 3 << 10; /* * If QEMU is providing the equivalent of EL3 firmware, then we need * to make sure a CPU targeting EL2 comes out of reset with a * functional HVC insn. */ if (arm_feature(&target_cpu->env, ARM_FEATURE_EL3) && info->target_el == 2) { target_cpu->env.cp15.scr_el3 |= SCR_HCE; } } /* We check if the started CPU is now at the correct level */ assert(info->target_el == arm_current_el(&target_cpu->env)); if (info->target_aa64) { target_cpu->env.xregs[0] = info->context_id; } else { target_cpu->env.regs[0] = info->context_id; } /* CP15 update requires rebuilding hflags */ arm_rebuild_hflags(&target_cpu->env); /* Start the new CPU at the requested address */ cpu_set_pc(target_cpu_state, info->entry); g_free(info); /* Finally set the power status */ assert(qemu_mutex_iothread_locked()); target_cpu->power_state = PSCI_ON; } int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id, uint32_t target_el, bool target_aa64) { CPUState *target_cpu_state; ARMCPU *target_cpu; struct CpuOnInfo *info; assert(qemu_mutex_iothread_locked()); DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64 "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry, context_id); /* requested EL level need to be in the 1 to 3 range */ assert((target_el > 0) && (target_el < 4)); if (target_aa64 && (entry & 3)) { /* * if we are booting in AArch64 mode then "entry" needs to be 4 bytes * aligned. */ return QEMU_ARM_POWERCTL_INVALID_PARAM; } /* Retrieve the cpu we are powering up */ target_cpu_state = arm_get_cpu_by_id(cpuid); if (!target_cpu_state) { /* The cpu was not found */ return QEMU_ARM_POWERCTL_INVALID_PARAM; } target_cpu = ARM_CPU(target_cpu_state); if (target_cpu->power_state == PSCI_ON) { qemu_log_mask(LOG_GUEST_ERROR, "[ARM]%s: CPU %" PRId64 " is already on\n", __func__, cpuid); return QEMU_ARM_POWERCTL_ALREADY_ON; } /* * The newly brought CPU is requested to enter the exception level * "target_el" and be in the requested mode (AArch64 or AArch32). */ if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) || ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) { /* * The CPU does not support requested level */ return QEMU_ARM_POWERCTL_INVALID_PARAM; } if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) { /* * For now we don't support booting an AArch64 CPU in AArch32 mode * TODO: We should add this support later */ qemu_log_mask(LOG_UNIMP, "[ARM]%s: Starting AArch64 CPU %" PRId64 " in AArch32 mode is not supported yet\n", __func__, cpuid); return QEMU_ARM_POWERCTL_INVALID_PARAM; } /* * If another CPU has powered the target on we are in the state * ON_PENDING and additional attempts to power on the CPU should * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI * spec) */ if (target_cpu->power_state == PSCI_ON_PENDING) { qemu_log_mask(LOG_GUEST_ERROR, "[ARM]%s: CPU %" PRId64 " is already powering on\n", __func__, cpuid); return QEMU_ARM_POWERCTL_ON_PENDING; } /* To avoid racing with a CPU we are just kicking off we do the * final bit of preparation for the work in the target CPUs * context. */ info = g_new(struct CpuOnInfo, 1); info->entry = entry; info->context_id = context_id; info->target_el = target_el; info->target_aa64 = target_aa64; async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work, RUN_ON_CPU_HOST_PTR(info)); /* We are good to go */ return QEMU_ARM_POWERCTL_RET_SUCCESS; } static void arm_set_cpu_on_and_reset_async_work(CPUState *target_cpu_state, run_on_cpu_data data) { ARMCPU *target_cpu = ARM_CPU(target_cpu_state); /* Initialize the cpu we are turning on */ cpu_reset(target_cpu_state); target_cpu_state->halted = 0; /* Finally set the power status */ assert(qemu_mutex_iothread_locked()); target_cpu->power_state = PSCI_ON; } int arm_set_cpu_on_and_reset(uint64_t cpuid) { CPUState *target_cpu_state; ARMCPU *target_cpu; assert(qemu_mutex_iothread_locked()); /* Retrieve the cpu we are powering up */ target_cpu_state = arm_get_cpu_by_id(cpuid); if (!target_cpu_state) { /* The cpu was not found */ return QEMU_ARM_POWERCTL_INVALID_PARAM; } target_cpu = ARM_CPU(target_cpu_state); if (target_cpu->power_state == PSCI_ON) { qemu_log_mask(LOG_GUEST_ERROR, "[ARM]%s: CPU %" PRId64 " is already on\n", __func__, cpuid); return QEMU_ARM_POWERCTL_ALREADY_ON; } /* * If another CPU has powered the target on we are in the state * ON_PENDING and additional attempts to power on the CPU should * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI * spec) */ if (target_cpu->power_state == PSCI_ON_PENDING) { qemu_log_mask(LOG_GUEST_ERROR, "[ARM]%s: CPU %" PRId64 " is already powering on\n", __func__, cpuid); return QEMU_ARM_POWERCTL_ON_PENDING; } async_run_on_cpu(target_cpu_state, arm_set_cpu_on_and_reset_async_work, RUN_ON_CPU_NULL); /* We are good to go */ return QEMU_ARM_POWERCTL_RET_SUCCESS; } static void arm_set_cpu_off_async_work(CPUState *target_cpu_state, run_on_cpu_data data) { ARMCPU *target_cpu = ARM_CPU(target_cpu_state); assert(qemu_mutex_iothread_locked()); target_cpu->power_state = PSCI_OFF; target_cpu_state->halted = 1; target_cpu_state->exception_index = EXCP_HLT; } int arm_set_cpu_off(uint64_t cpuid) { CPUState *target_cpu_state; ARMCPU *target_cpu; assert(qemu_mutex_iothread_locked()); DPRINTF("cpu %" PRId64 "\n", cpuid); /* change to the cpu we are powering up */ target_cpu_state = arm_get_cpu_by_id(cpuid); if (!target_cpu_state) { return QEMU_ARM_POWERCTL_INVALID_PARAM; } target_cpu = ARM_CPU(target_cpu_state); if (target_cpu->power_state == PSCI_OFF) { qemu_log_mask(LOG_GUEST_ERROR, "[ARM]%s: CPU %" PRId64 " is already off\n", __func__, cpuid); return QEMU_ARM_POWERCTL_IS_OFF; } /* Queue work to run under the target vCPUs context */ async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work, RUN_ON_CPU_NULL); return QEMU_ARM_POWERCTL_RET_SUCCESS; } static void arm_reset_cpu_async_work(CPUState *target_cpu_state, run_on_cpu_data data) { /* Reset the cpu */ cpu_reset(target_cpu_state); } int arm_reset_cpu(uint64_t cpuid) { CPUState *target_cpu_state; ARMCPU *target_cpu; assert(qemu_mutex_iothread_locked()); DPRINTF("cpu %" PRId64 "\n", cpuid); /* change to the cpu we are resetting */ target_cpu_state = arm_get_cpu_by_id(cpuid); if (!target_cpu_state) { return QEMU_ARM_POWERCTL_INVALID_PARAM; } target_cpu = ARM_CPU(target_cpu_state); if (target_cpu->power_state == PSCI_OFF) { qemu_log_mask(LOG_GUEST_ERROR, "[ARM]%s: CPU %" PRId64 " is off\n", __func__, cpuid); return QEMU_ARM_POWERCTL_IS_OFF; } /* Queue work to run under the target vCPUs context */ async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work, RUN_ON_CPU_NULL); return QEMU_ARM_POWERCTL_RET_SUCCESS; }