/* * UniCore-F64 simulation helpers for QEMU. * * Copyright (C) 2010-2012 Guan Xuetao * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation, or any later version. * See the COPYING file in the top-level directory. */ #include "cpu.h" #include "helper.h" /* * The convention used for UniCore-F64 instructions: * Single precition routines have a "s" suffix * Double precision routines have a "d" suffix. */ /* Convert host exception flags to f64 form. */ static inline int ucf64_exceptbits_from_host(int host_bits) { int target_bits = 0; if (host_bits & float_flag_invalid) { target_bits |= UCF64_FPSCR_FLAG_INVALID; } if (host_bits & float_flag_divbyzero) { target_bits |= UCF64_FPSCR_FLAG_DIVZERO; } if (host_bits & float_flag_overflow) { target_bits |= UCF64_FPSCR_FLAG_OVERFLOW; } if (host_bits & float_flag_underflow) { target_bits |= UCF64_FPSCR_FLAG_UNDERFLOW; } if (host_bits & float_flag_inexact) { target_bits |= UCF64_FPSCR_FLAG_INEXACT; } return target_bits; } uint32_t HELPER(ucf64_get_fpscr)(CPUUniCore32State *env) { int i; uint32_t fpscr; fpscr = (env->ucf64.xregs[UC32_UCF64_FPSCR] & UCF64_FPSCR_MASK); i = get_float_exception_flags(&env->ucf64.fp_status); fpscr |= ucf64_exceptbits_from_host(i); return fpscr; } /* Convert ucf64 exception flags to target form. */ static inline int ucf64_exceptbits_to_host(int target_bits) { int host_bits = 0; if (target_bits & UCF64_FPSCR_FLAG_INVALID) { host_bits |= float_flag_invalid; } if (target_bits & UCF64_FPSCR_FLAG_DIVZERO) { host_bits |= float_flag_divbyzero; } if (target_bits & UCF64_FPSCR_FLAG_OVERFLOW) { host_bits |= float_flag_overflow; } if (target_bits & UCF64_FPSCR_FLAG_UNDERFLOW) { host_bits |= float_flag_underflow; } if (target_bits & UCF64_FPSCR_FLAG_INEXACT) { host_bits |= float_flag_inexact; } return host_bits; } void HELPER(ucf64_set_fpscr)(CPUUniCore32State *env, uint32_t val) { int i; uint32_t changed; changed = env->ucf64.xregs[UC32_UCF64_FPSCR]; env->ucf64.xregs[UC32_UCF64_FPSCR] = (val & UCF64_FPSCR_MASK); changed ^= val; if (changed & (UCF64_FPSCR_RND_MASK)) { i = UCF64_FPSCR_RND(val); switch (i) { case 0: i = float_round_nearest_even; break; case 1: i = float_round_to_zero; break; case 2: i = float_round_up; break; case 3: i = float_round_down; break; default: /* 100 and 101 not implement */ cpu_abort(env, "Unsupported UniCore-F64 round mode"); } set_float_rounding_mode(i, &env->ucf64.fp_status); } i = ucf64_exceptbits_to_host(UCF64_FPSCR_TRAPEN(val)); set_float_exception_flags(i, &env->ucf64.fp_status); } float32 HELPER(ucf64_adds)(float32 a, float32 b, CPUUniCore32State *env) { return float32_add(a, b, &env->ucf64.fp_status); } float64 HELPER(ucf64_addd)(float64 a, float64 b, CPUUniCore32State *env) { return float64_add(a, b, &env->ucf64.fp_status); } float32 HELPER(ucf64_subs)(float32 a, float32 b, CPUUniCore32State *env) { return float32_sub(a, b, &env->ucf64.fp_status); } float64 HELPER(ucf64_subd)(float64 a, float64 b, CPUUniCore32State *env) { return float64_sub(a, b, &env->ucf64.fp_status); } float32 HELPER(ucf64_muls)(float32 a, float32 b, CPUUniCore32State *env) { return float32_mul(a, b, &env->ucf64.fp_status); } float64 HELPER(ucf64_muld)(float64 a, float64 b, CPUUniCore32State *env) { return float64_mul(a, b, &env->ucf64.fp_status); } float32 HELPER(ucf64_divs)(float32 a, float32 b, CPUUniCore32State *env) { return float32_div(a, b, &env->ucf64.fp_status); } float64 HELPER(ucf64_divd)(float64 a, float64 b, CPUUniCore32State *env) { return float64_div(a, b, &env->ucf64.fp_status); } float32 HELPER(ucf64_negs)(float32 a) { return float32_chs(a); } float64 HELPER(ucf64_negd)(float64 a) { return float64_chs(a); } float32 HELPER(ucf64_abss)(float32 a) { return float32_abs(a); } float64 HELPER(ucf64_absd)(float64 a) { return float64_abs(a); } void HELPER(ucf64_cmps)(float32 a, float32 b, uint32_t c, CPUUniCore32State *env) { int flag; flag = float32_compare_quiet(a, b, &env->ucf64.fp_status); env->CF = 0; switch (c & 0x7) { case 0: /* F */ break; case 1: /* UN */ if (flag == 2) { env->CF = 1; } break; case 2: /* EQ */ if (flag == 0) { env->CF = 1; } break; case 3: /* UEQ */ if ((flag == 0) || (flag == 2)) { env->CF = 1; } break; case 4: /* OLT */ if (flag == -1) { env->CF = 1; } break; case 5: /* ULT */ if ((flag == -1) || (flag == 2)) { env->CF = 1; } break; case 6: /* OLE */ if ((flag == -1) || (flag == 0)) { env->CF = 1; } break; case 7: /* ULE */ if (flag != 1) { env->CF = 1; } break; } env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29) | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff); } void HELPER(ucf64_cmpd)(float64 a, float64 b, uint32_t c, CPUUniCore32State *env) { int flag; flag = float64_compare_quiet(a, b, &env->ucf64.fp_status); env->CF = 0; switch (c & 0x7) { case 0: /* F */ break; case 1: /* UN */ if (flag == 2) { env->CF = 1; } break; case 2: /* EQ */ if (flag == 0) { env->CF = 1; } break; case 3: /* UEQ */ if ((flag == 0) || (flag == 2)) { env->CF = 1; } break; case 4: /* OLT */ if (flag == -1) { env->CF = 1; } break; case 5: /* ULT */ if ((flag == -1) || (flag == 2)) { env->CF = 1; } break; case 6: /* OLE */ if ((flag == -1) || (flag == 0)) { env->CF = 1; } break; case 7: /* ULE */ if (flag != 1) { env->CF = 1; } break; } env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29) | (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff); } /* Helper routines to perform bitwise copies between float and int. */ static inline float32 ucf64_itos(uint32_t i) { union { uint32_t i; float32 s; } v; v.i = i; return v.s; } static inline uint32_t ucf64_stoi(float32 s) { union { uint32_t i; float32 s; } v; v.s = s; return v.i; } static inline float64 ucf64_itod(uint64_t i) { union { uint64_t i; float64 d; } v; v.i = i; return v.d; } static inline uint64_t ucf64_dtoi(float64 d) { union { uint64_t i; float64 d; } v; v.d = d; return v.i; } /* Integer to float conversion. */ float32 HELPER(ucf64_si2sf)(float32 x, CPUUniCore32State *env) { return int32_to_float32(ucf64_stoi(x), &env->ucf64.fp_status); } float64 HELPER(ucf64_si2df)(float32 x, CPUUniCore32State *env) { return int32_to_float64(ucf64_stoi(x), &env->ucf64.fp_status); } /* Float to integer conversion. */ float32 HELPER(ucf64_sf2si)(float32 x, CPUUniCore32State *env) { return ucf64_itos(float32_to_int32(x, &env->ucf64.fp_status)); } float32 HELPER(ucf64_df2si)(float64 x, CPUUniCore32State *env) { return ucf64_itos(float64_to_int32(x, &env->ucf64.fp_status)); } /* floating point conversion */ float64 HELPER(ucf64_sf2df)(float32 x, CPUUniCore32State *env) { return float32_to_float64(x, &env->ucf64.fp_status); } float32 HELPER(ucf64_df2sf)(float64 x, CPUUniCore32State *env) { return float64_to_float32(x, &env->ucf64.fp_status); }