/* * FPU op helpers * * Copyright (c) 2003-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "cpu.h" #include "helper.h" #define DT0 (env->dt0) #define DT1 (env->dt1) #define QT0 (env->qt0) #define QT1 (env->qt1) #define F_HELPER(name, p) void helper_f##name##p(CPUState *env) #define F_BINOP(name) \ float32 helper_f ## name ## s (CPUState * env, float32 src1,\ float32 src2) \ { \ return float32_ ## name (src1, src2, &env->fp_status); \ } \ F_HELPER(name, d) \ { \ DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \ } \ F_HELPER(name, q) \ { \ QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \ } F_BINOP(add); F_BINOP(sub); F_BINOP(mul); F_BINOP(div); #undef F_BINOP void helper_fsmuld(CPUState *env, float32 src1, float32 src2) { DT0 = float64_mul(float32_to_float64(src1, &env->fp_status), float32_to_float64(src2, &env->fp_status), &env->fp_status); } void helper_fdmulq(CPUState *env) { QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status), float64_to_float128(DT1, &env->fp_status), &env->fp_status); } float32 helper_fnegs(float32 src) { return float32_chs(src); } #ifdef TARGET_SPARC64 F_HELPER(neg, d) { DT0 = float64_chs(DT1); } F_HELPER(neg, q) { QT0 = float128_chs(QT1); } #endif /* Integer to float conversion. */ float32 helper_fitos(CPUState *env, int32_t src) { return int32_to_float32(src, &env->fp_status); } void helper_fitod(CPUState *env, int32_t src) { DT0 = int32_to_float64(src, &env->fp_status); } void helper_fitoq(CPUState *env, int32_t src) { QT0 = int32_to_float128(src, &env->fp_status); } #ifdef TARGET_SPARC64 float32 helper_fxtos(CPUState *env) { return int64_to_float32(*((int64_t *)&DT1), &env->fp_status); } F_HELPER(xto, d) { DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status); } F_HELPER(xto, q) { QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status); } #endif #undef F_HELPER /* floating point conversion */ float32 helper_fdtos(CPUState *env) { return float64_to_float32(DT1, &env->fp_status); } void helper_fstod(CPUState *env, float32 src) { DT0 = float32_to_float64(src, &env->fp_status); } float32 helper_fqtos(CPUState *env) { return float128_to_float32(QT1, &env->fp_status); } void helper_fstoq(CPUState *env, float32 src) { QT0 = float32_to_float128(src, &env->fp_status); } void helper_fqtod(CPUState *env) { DT0 = float128_to_float64(QT1, &env->fp_status); } void helper_fdtoq(CPUState *env) { QT0 = float64_to_float128(DT1, &env->fp_status); } /* Float to integer conversion. */ int32_t helper_fstoi(CPUState *env, float32 src) { return float32_to_int32_round_to_zero(src, &env->fp_status); } int32_t helper_fdtoi(CPUState *env) { return float64_to_int32_round_to_zero(DT1, &env->fp_status); } int32_t helper_fqtoi(CPUState *env) { return float128_to_int32_round_to_zero(QT1, &env->fp_status); } #ifdef TARGET_SPARC64 void helper_fstox(CPUState *env, float32 src) { *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status); } void helper_fdtox(CPUState *env) { *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status); } void helper_fqtox(CPUState *env) { *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status); } #endif float32 helper_fabss(float32 src) { return float32_abs(src); } #ifdef TARGET_SPARC64 void helper_fabsd(CPUState *env) { DT0 = float64_abs(DT1); } void helper_fabsq(CPUState *env) { QT0 = float128_abs(QT1); } #endif float32 helper_fsqrts(CPUState *env, float32 src) { return float32_sqrt(src, &env->fp_status); } void helper_fsqrtd(CPUState *env) { DT0 = float64_sqrt(DT1, &env->fp_status); } void helper_fsqrtq(CPUState *env) { QT0 = float128_sqrt(QT1, &env->fp_status); } #define GEN_FCMP(name, size, reg1, reg2, FS, E) \ void glue(helper_, name) (CPUState *env) \ { \ env->fsr &= FSR_FTT_NMASK; \ if (E && (glue(size, _is_any_nan)(reg1) || \ glue(size, _is_any_nan)(reg2)) && \ (env->fsr & FSR_NVM)) { \ env->fsr |= FSR_NVC; \ env->fsr |= FSR_FTT_IEEE_EXCP; \ helper_raise_exception(env, TT_FP_EXCP); \ } \ switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \ case float_relation_unordered: \ if ((env->fsr & FSR_NVM)) { \ env->fsr |= FSR_NVC; \ env->fsr |= FSR_FTT_IEEE_EXCP; \ helper_raise_exception(env, TT_FP_EXCP); \ } else { \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \ env->fsr |= FSR_NVA; \ } \ break; \ case float_relation_less: \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ env->fsr |= FSR_FCC0 << FS; \ break; \ case float_relation_greater: \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ env->fsr |= FSR_FCC1 << FS; \ break; \ default: \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ break; \ } \ } #define GEN_FCMPS(name, size, FS, E) \ void glue(helper_, name)(CPUState *env, float32 src1, float32 src2) \ { \ env->fsr &= FSR_FTT_NMASK; \ if (E && (glue(size, _is_any_nan)(src1) || \ glue(size, _is_any_nan)(src2)) && \ (env->fsr & FSR_NVM)) { \ env->fsr |= FSR_NVC; \ env->fsr |= FSR_FTT_IEEE_EXCP; \ helper_raise_exception(env, TT_FP_EXCP); \ } \ switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \ case float_relation_unordered: \ if ((env->fsr & FSR_NVM)) { \ env->fsr |= FSR_NVC; \ env->fsr |= FSR_FTT_IEEE_EXCP; \ helper_raise_exception(env, TT_FP_EXCP); \ } else { \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \ env->fsr |= FSR_NVA; \ } \ break; \ case float_relation_less: \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ env->fsr |= FSR_FCC0 << FS; \ break; \ case float_relation_greater: \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ env->fsr |= FSR_FCC1 << FS; \ break; \ default: \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ break; \ } \ } GEN_FCMPS(fcmps, float32, 0, 0); GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0); GEN_FCMPS(fcmpes, float32, 0, 1); GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1); GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0); GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1); #ifdef TARGET_SPARC64 GEN_FCMPS(fcmps_fcc1, float32, 22, 0); GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0); GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0); GEN_FCMPS(fcmps_fcc2, float32, 24, 0); GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0); GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0); GEN_FCMPS(fcmps_fcc3, float32, 26, 0); GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0); GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0); GEN_FCMPS(fcmpes_fcc1, float32, 22, 1); GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1); GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1); GEN_FCMPS(fcmpes_fcc2, float32, 24, 1); GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1); GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1); GEN_FCMPS(fcmpes_fcc3, float32, 26, 1); GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1); GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1); #endif #undef GEN_FCMPS void helper_check_ieee_exceptions(CPUState *env) { target_ulong status; status = get_float_exception_flags(&env->fp_status); if (status) { /* Copy IEEE 754 flags into FSR */ if (status & float_flag_invalid) { env->fsr |= FSR_NVC; } if (status & float_flag_overflow) { env->fsr |= FSR_OFC; } if (status & float_flag_underflow) { env->fsr |= FSR_UFC; } if (status & float_flag_divbyzero) { env->fsr |= FSR_DZC; } if (status & float_flag_inexact) { env->fsr |= FSR_NXC; } if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) { /* Unmasked exception, generate a trap */ env->fsr |= FSR_FTT_IEEE_EXCP; helper_raise_exception(env, TT_FP_EXCP); } else { /* Accumulate exceptions */ env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5; } } } void helper_clear_float_exceptions(CPUState *env) { set_float_exception_flags(0, &env->fp_status); } static inline void set_fsr(CPUState *env) { int rnd_mode; switch (env->fsr & FSR_RD_MASK) { case FSR_RD_NEAREST: rnd_mode = float_round_nearest_even; break; default: case FSR_RD_ZERO: rnd_mode = float_round_to_zero; break; case FSR_RD_POS: rnd_mode = float_round_up; break; case FSR_RD_NEG: rnd_mode = float_round_down; break; } set_float_rounding_mode(rnd_mode, &env->fp_status); } void helper_ldfsr(CPUState *env, uint32_t new_fsr) { env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK); set_fsr(env); } #ifdef TARGET_SPARC64 void helper_ldxfsr(CPUState *env, uint64_t new_fsr) { env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK); set_fsr(env); } #endif