/* * SH4 emulation * * Copyright (c) 2005 Samuel Tardieu * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include #include #include "cpu.h" #include "dyngen-exec.h" #include "helper.h" static void cpu_restore_state_from_retaddr(uintptr_t retaddr) { TranslationBlock *tb; if (retaddr) { tb = tb_find_pc(retaddr); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, retaddr); } } } #ifndef CONFIG_USER_ONLY #include "softmmu_exec.h" #define MMUSUFFIX _mmu #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" void tlb_fill(CPUSH4State *env1, target_ulong addr, int is_write, int mmu_idx, uintptr_t retaddr) { CPUSH4State *saved_env; int ret; saved_env = env; env = env1; ret = cpu_sh4_handle_mmu_fault(env, addr, is_write, mmu_idx); if (ret) { /* now we have a real cpu fault */ cpu_restore_state_from_retaddr(retaddr); cpu_loop_exit(env); } env = saved_env; } #endif void helper_ldtlb(void) { #ifdef CONFIG_USER_ONLY /* XXXXX */ cpu_abort(env, "Unhandled ldtlb"); #else cpu_load_tlb(env); #endif } static inline void raise_exception(int index, uintptr_t retaddr) { env->exception_index = index; cpu_restore_state_from_retaddr(retaddr); cpu_loop_exit(env); } void helper_raise_illegal_instruction(void) { raise_exception(0x180, GETPC()); } void helper_raise_slot_illegal_instruction(void) { raise_exception(0x1a0, GETPC()); } void helper_raise_fpu_disable(void) { raise_exception(0x800, GETPC()); } void helper_raise_slot_fpu_disable(void) { raise_exception(0x820, GETPC()); } void helper_debug(void) { env->exception_index = EXCP_DEBUG; cpu_loop_exit(env); } void helper_sleep(uint32_t next_pc) { env->halted = 1; env->in_sleep = 1; env->exception_index = EXCP_HLT; env->pc = next_pc; cpu_loop_exit(env); } void helper_trapa(uint32_t tra) { env->tra = tra << 2; raise_exception(0x160, GETPC()); } void helper_movcal(uint32_t address, uint32_t value) { if (cpu_sh4_is_cached (env, address)) { memory_content *r = malloc (sizeof(memory_content)); r->address = address; r->value = value; r->next = NULL; *(env->movcal_backup_tail) = r; env->movcal_backup_tail = &(r->next); } } void helper_discard_movcal_backup(void) { memory_content *current = env->movcal_backup; while(current) { memory_content *next = current->next; free (current); env->movcal_backup = current = next; if (current == NULL) env->movcal_backup_tail = &(env->movcal_backup); } } void helper_ocbi(uint32_t address) { memory_content **current = &(env->movcal_backup); while (*current) { uint32_t a = (*current)->address; if ((a & ~0x1F) == (address & ~0x1F)) { memory_content *next = (*current)->next; stl(a, (*current)->value); if (next == NULL) { env->movcal_backup_tail = current; } free (*current); *current = next; break; } } } uint32_t helper_addc(uint32_t arg0, uint32_t arg1) { uint32_t tmp0, tmp1; tmp1 = arg0 + arg1; tmp0 = arg1; arg1 = tmp1 + (env->sr & 1); if (tmp0 > tmp1) env->sr |= SR_T; else env->sr &= ~SR_T; if (tmp1 > arg1) env->sr |= SR_T; return arg1; } uint32_t helper_addv(uint32_t arg0, uint32_t arg1) { uint32_t dest, src, ans; if ((int32_t) arg1 >= 0) dest = 0; else dest = 1; if ((int32_t) arg0 >= 0) src = 0; else src = 1; src += dest; arg1 += arg0; if ((int32_t) arg1 >= 0) ans = 0; else ans = 1; ans += dest; if (src == 0 || src == 2) { if (ans == 1) env->sr |= SR_T; else env->sr &= ~SR_T; } else env->sr &= ~SR_T; return arg1; } #define T (env->sr & SR_T) #define Q (env->sr & SR_Q ? 1 : 0) #define M (env->sr & SR_M ? 1 : 0) #define SETT env->sr |= SR_T #define CLRT env->sr &= ~SR_T #define SETQ env->sr |= SR_Q #define CLRQ env->sr &= ~SR_Q #define SETM env->sr |= SR_M #define CLRM env->sr &= ~SR_M uint32_t helper_div1(uint32_t arg0, uint32_t arg1) { uint32_t tmp0, tmp2; uint8_t old_q, tmp1 = 0xff; //printf("div1 arg0=0x%08x arg1=0x%08x M=%d Q=%d T=%d\n", arg0, arg1, M, Q, T); old_q = Q; if ((0x80000000 & arg1) != 0) SETQ; else CLRQ; tmp2 = arg0; arg1 <<= 1; arg1 |= T; switch (old_q) { case 0: switch (M) { case 0: tmp0 = arg1; arg1 -= tmp2; tmp1 = arg1 > tmp0; switch (Q) { case 0: if (tmp1) SETQ; else CLRQ; break; case 1: if (tmp1 == 0) SETQ; else CLRQ; break; } break; case 1: tmp0 = arg1; arg1 += tmp2; tmp1 = arg1 < tmp0; switch (Q) { case 0: if (tmp1 == 0) SETQ; else CLRQ; break; case 1: if (tmp1) SETQ; else CLRQ; break; } break; } break; case 1: switch (M) { case 0: tmp0 = arg1; arg1 += tmp2; tmp1 = arg1 < tmp0; switch (Q) { case 0: if (tmp1) SETQ; else CLRQ; break; case 1: if (tmp1 == 0) SETQ; else CLRQ; break; } break; case 1: tmp0 = arg1; arg1 -= tmp2; tmp1 = arg1 > tmp0; switch (Q) { case 0: if (tmp1 == 0) SETQ; else CLRQ; break; case 1: if (tmp1) SETQ; else CLRQ; break; } break; } break; } if (Q == M) SETT; else CLRT; //printf("Output: arg1=0x%08x M=%d Q=%d T=%d\n", arg1, M, Q, T); return arg1; } void helper_macl(uint32_t arg0, uint32_t arg1) { int64_t res; res = ((uint64_t) env->mach << 32) | env->macl; res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1; env->mach = (res >> 32) & 0xffffffff; env->macl = res & 0xffffffff; if (env->sr & SR_S) { if (res < 0) env->mach |= 0xffff0000; else env->mach &= 0x00007fff; } } void helper_macw(uint32_t arg0, uint32_t arg1) { int64_t res; res = ((uint64_t) env->mach << 32) | env->macl; res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1; env->mach = (res >> 32) & 0xffffffff; env->macl = res & 0xffffffff; if (env->sr & SR_S) { if (res < -0x80000000) { env->mach = 1; env->macl = 0x80000000; } else if (res > 0x000000007fffffff) { env->mach = 1; env->macl = 0x7fffffff; } } } uint32_t helper_subc(uint32_t arg0, uint32_t arg1) { uint32_t tmp0, tmp1; tmp1 = arg1 - arg0; tmp0 = arg1; arg1 = tmp1 - (env->sr & SR_T); if (tmp0 < tmp1) env->sr |= SR_T; else env->sr &= ~SR_T; if (tmp1 < arg1) env->sr |= SR_T; return arg1; } uint32_t helper_subv(uint32_t arg0, uint32_t arg1) { int32_t dest, src, ans; if ((int32_t) arg1 >= 0) dest = 0; else dest = 1; if ((int32_t) arg0 >= 0) src = 0; else src = 1; src += dest; arg1 -= arg0; if ((int32_t) arg1 >= 0) ans = 0; else ans = 1; ans += dest; if (src == 1) { if (ans == 1) env->sr |= SR_T; else env->sr &= ~SR_T; } else env->sr &= ~SR_T; return arg1; } static inline void set_t(void) { env->sr |= SR_T; } static inline void clr_t(void) { env->sr &= ~SR_T; } void helper_ld_fpscr(uint32_t val) { env->fpscr = val & FPSCR_MASK; if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) { set_float_rounding_mode(float_round_to_zero, &env->fp_status); } else { set_float_rounding_mode(float_round_nearest_even, &env->fp_status); } set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status); } static void update_fpscr(uintptr_t retaddr) { int xcpt, cause, enable; xcpt = get_float_exception_flags(&env->fp_status); /* Clear the flag entries */ env->fpscr &= ~FPSCR_FLAG_MASK; if (unlikely(xcpt)) { if (xcpt & float_flag_invalid) { env->fpscr |= FPSCR_FLAG_V; } if (xcpt & float_flag_divbyzero) { env->fpscr |= FPSCR_FLAG_Z; } if (xcpt & float_flag_overflow) { env->fpscr |= FPSCR_FLAG_O; } if (xcpt & float_flag_underflow) { env->fpscr |= FPSCR_FLAG_U; } if (xcpt & float_flag_inexact) { env->fpscr |= FPSCR_FLAG_I; } /* Accumulate in cause entries */ env->fpscr |= (env->fpscr & FPSCR_FLAG_MASK) << (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT); /* Generate an exception if enabled */ cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT; enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT; if (cause & enable) { cpu_restore_state_from_retaddr(retaddr); env->exception_index = 0x120; cpu_loop_exit(env); } } } float32 helper_fabs_FT(float32 t0) { return float32_abs(t0); } float64 helper_fabs_DT(float64 t0) { return float64_abs(t0); } float32 helper_fadd_FT(float32 t0, float32 t1) { set_float_exception_flags(0, &env->fp_status); t0 = float32_add(t0, t1, &env->fp_status); update_fpscr(GETPC()); return t0; } float64 helper_fadd_DT(float64 t0, float64 t1) { set_float_exception_flags(0, &env->fp_status); t0 = float64_add(t0, t1, &env->fp_status); update_fpscr(GETPC()); return t0; } void helper_fcmp_eq_FT(float32 t0, float32 t1) { int relation; set_float_exception_flags(0, &env->fp_status); relation = float32_compare(t0, t1, &env->fp_status); if (unlikely(relation == float_relation_unordered)) { update_fpscr(GETPC()); } else if (relation == float_relation_equal) { set_t(); } else { clr_t(); } } void helper_fcmp_eq_DT(float64 t0, float64 t1) { int relation; set_float_exception_flags(0, &env->fp_status); relation = float64_compare(t0, t1, &env->fp_status); if (unlikely(relation == float_relation_unordered)) { update_fpscr(GETPC()); } else if (relation == float_relation_equal) { set_t(); } else { clr_t(); } } void helper_fcmp_gt_FT(float32 t0, float32 t1) { int relation; set_float_exception_flags(0, &env->fp_status); relation = float32_compare(t0, t1, &env->fp_status); if (unlikely(relation == float_relation_unordered)) { update_fpscr(GETPC()); } else if (relation == float_relation_greater) { set_t(); } else { clr_t(); } } void helper_fcmp_gt_DT(float64 t0, float64 t1) { int relation; set_float_exception_flags(0, &env->fp_status); relation = float64_compare(t0, t1, &env->fp_status); if (unlikely(relation == float_relation_unordered)) { update_fpscr(GETPC()); } else if (relation == float_relation_greater) { set_t(); } else { clr_t(); } } float64 helper_fcnvsd_FT_DT(float32 t0) { float64 ret; set_float_exception_flags(0, &env->fp_status); ret = float32_to_float64(t0, &env->fp_status); update_fpscr(GETPC()); return ret; } float32 helper_fcnvds_DT_FT(float64 t0) { float32 ret; set_float_exception_flags(0, &env->fp_status); ret = float64_to_float32(t0, &env->fp_status); update_fpscr(GETPC()); return ret; } float32 helper_fdiv_FT(float32 t0, float32 t1) { set_float_exception_flags(0, &env->fp_status); t0 = float32_div(t0, t1, &env->fp_status); update_fpscr(GETPC()); return t0; } float64 helper_fdiv_DT(float64 t0, float64 t1) { set_float_exception_flags(0, &env->fp_status); t0 = float64_div(t0, t1, &env->fp_status); update_fpscr(GETPC()); return t0; } float32 helper_float_FT(uint32_t t0) { float32 ret; set_float_exception_flags(0, &env->fp_status); ret = int32_to_float32(t0, &env->fp_status); update_fpscr(GETPC()); return ret; } float64 helper_float_DT(uint32_t t0) { float64 ret; set_float_exception_flags(0, &env->fp_status); ret = int32_to_float64(t0, &env->fp_status); update_fpscr(GETPC()); return ret; } float32 helper_fmac_FT(float32 t0, float32 t1, float32 t2) { set_float_exception_flags(0, &env->fp_status); t0 = float32_mul(t0, t1, &env->fp_status); t0 = float32_add(t0, t2, &env->fp_status); update_fpscr(GETPC()); return t0; } float32 helper_fmul_FT(float32 t0, float32 t1) { set_float_exception_flags(0, &env->fp_status); t0 = float32_mul(t0, t1, &env->fp_status); update_fpscr(GETPC()); return t0; } float64 helper_fmul_DT(float64 t0, float64 t1) { set_float_exception_flags(0, &env->fp_status); t0 = float64_mul(t0, t1, &env->fp_status); update_fpscr(GETPC()); return t0; } float32 helper_fneg_T(float32 t0) { return float32_chs(t0); } float32 helper_fsqrt_FT(float32 t0) { set_float_exception_flags(0, &env->fp_status); t0 = float32_sqrt(t0, &env->fp_status); update_fpscr(GETPC()); return t0; } float64 helper_fsqrt_DT(float64 t0) { set_float_exception_flags(0, &env->fp_status); t0 = float64_sqrt(t0, &env->fp_status); update_fpscr(GETPC()); return t0; } float32 helper_fsub_FT(float32 t0, float32 t1) { set_float_exception_flags(0, &env->fp_status); t0 = float32_sub(t0, t1, &env->fp_status); update_fpscr(GETPC()); return t0; } float64 helper_fsub_DT(float64 t0, float64 t1) { set_float_exception_flags(0, &env->fp_status); t0 = float64_sub(t0, t1, &env->fp_status); update_fpscr(GETPC()); return t0; } uint32_t helper_ftrc_FT(float32 t0) { uint32_t ret; set_float_exception_flags(0, &env->fp_status); ret = float32_to_int32_round_to_zero(t0, &env->fp_status); update_fpscr(GETPC()); return ret; } uint32_t helper_ftrc_DT(float64 t0) { uint32_t ret; set_float_exception_flags(0, &env->fp_status); ret = float64_to_int32_round_to_zero(t0, &env->fp_status); update_fpscr(GETPC()); return ret; } void helper_fipr(uint32_t m, uint32_t n) { int bank, i; float32 r, p; bank = (env->sr & FPSCR_FR) ? 16 : 0; r = float32_zero; set_float_exception_flags(0, &env->fp_status); for (i = 0 ; i < 4 ; i++) { p = float32_mul(env->fregs[bank + m + i], env->fregs[bank + n + i], &env->fp_status); r = float32_add(r, p, &env->fp_status); } update_fpscr(GETPC()); env->fregs[bank + n + 3] = r; } void helper_ftrv(uint32_t n) { int bank_matrix, bank_vector; int i, j; float32 r[4]; float32 p; bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16; bank_vector = (env->sr & FPSCR_FR) ? 16 : 0; set_float_exception_flags(0, &env->fp_status); for (i = 0 ; i < 4 ; i++) { r[i] = float32_zero; for (j = 0 ; j < 4 ; j++) { p = float32_mul(env->fregs[bank_matrix + 4 * j + i], env->fregs[bank_vector + j], &env->fp_status); r[i] = float32_add(r[i], p, &env->fp_status); } } update_fpscr(GETPC()); for (i = 0 ; i < 4 ; i++) { env->fregs[bank_vector + i] = r[i]; } }