/* * S390x MMU related functions * * Copyright (c) 2011 Alexander Graf * Copyright (c) 2015 Thomas Huth, IBM Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "qemu/osdep.h" #include "qemu/error-report.h" #include "exec/address-spaces.h" #include "cpu.h" #include "sysemu/kvm.h" #include "trace.h" #include "hw/s390x/storage-keys.h" /* #define DEBUG_S390 */ /* #define DEBUG_S390_PTE */ /* #define DEBUG_S390_STDOUT */ #ifdef DEBUG_S390 #ifdef DEBUG_S390_STDOUT #define DPRINTF(fmt, ...) \ do { fprintf(stderr, fmt, ## __VA_ARGS__); \ if (qemu_log_separate()) qemu_log(fmt, ##__VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { qemu_log(fmt, ## __VA_ARGS__); } while (0) #endif #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif #ifdef DEBUG_S390_PTE #define PTE_DPRINTF DPRINTF #else #define PTE_DPRINTF(fmt, ...) \ do { } while (0) #endif /* Fetch/store bits in the translation exception code: */ #define FS_READ 0x800 #define FS_WRITE 0x400 static void trigger_access_exception(CPUS390XState *env, uint32_t type, uint32_t ilen, uint64_t tec) { S390CPU *cpu = s390_env_get_cpu(env); if (kvm_enabled()) { kvm_s390_access_exception(cpu, type, tec); } else { CPUState *cs = CPU(cpu); stq_phys(cs->as, env->psa + offsetof(LowCore, trans_exc_code), tec); trigger_pgm_exception(env, type, ilen); } } static void trigger_prot_fault(CPUS390XState *env, target_ulong vaddr, uint64_t asc, int rw, bool exc) { uint64_t tec; tec = vaddr | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ) | 4 | asc >> 46; DPRINTF("%s: trans_exc_code=%016" PRIx64 "\n", __func__, tec); if (!exc) { return; } trigger_access_exception(env, PGM_PROTECTION, ILEN_LATER_INC, tec); } static void trigger_page_fault(CPUS390XState *env, target_ulong vaddr, uint32_t type, uint64_t asc, int rw, bool exc) { int ilen = ILEN_LATER; uint64_t tec; tec = vaddr | (rw == MMU_DATA_STORE ? FS_WRITE : FS_READ) | asc >> 46; DPRINTF("%s: trans_exc_code=%016" PRIx64 "\n", __func__, tec); if (!exc) { return; } /* Code accesses have an undefined ilc. */ if (rw == MMU_INST_FETCH) { ilen = 2; } trigger_access_exception(env, type, ilen, tec); } /** * Translate real address to absolute (= physical) * address by taking care of the prefix mapping. */ static target_ulong mmu_real2abs(CPUS390XState *env, target_ulong raddr) { if (raddr < 0x2000) { return raddr + env->psa; /* Map the lowcore. */ } else if (raddr >= env->psa && raddr < env->psa + 0x2000) { return raddr - env->psa; /* Map the 0 page. */ } return raddr; } /* Decode page table entry (normal 4KB page) */ static int mmu_translate_pte(CPUS390XState *env, target_ulong vaddr, uint64_t asc, uint64_t pt_entry, target_ulong *raddr, int *flags, int rw, bool exc) { if (pt_entry & _PAGE_INVALID) { DPRINTF("%s: PTE=0x%" PRIx64 " invalid\n", __func__, pt_entry); trigger_page_fault(env, vaddr, PGM_PAGE_TRANS, asc, rw, exc); return -1; } if (pt_entry & _PAGE_RES0) { trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw, exc); return -1; } if (pt_entry & _PAGE_RO) { *flags &= ~PAGE_WRITE; } *raddr = pt_entry & _ASCE_ORIGIN; PTE_DPRINTF("%s: PTE=0x%" PRIx64 "\n", __func__, pt_entry); return 0; } #define VADDR_PX 0xff000 /* Page index bits */ /* Decode segment table entry */ static int mmu_translate_segment(CPUS390XState *env, target_ulong vaddr, uint64_t asc, uint64_t st_entry, target_ulong *raddr, int *flags, int rw, bool exc) { CPUState *cs = CPU(s390_env_get_cpu(env)); uint64_t origin, offs, pt_entry; if (st_entry & _SEGMENT_ENTRY_RO) { *flags &= ~PAGE_WRITE; } if ((st_entry & _SEGMENT_ENTRY_FC) && (env->cregs[0] & CR0_EDAT)) { /* Decode EDAT1 segment frame absolute address (1MB page) */ *raddr = (st_entry & 0xfffffffffff00000ULL) | (vaddr & 0xfffff); PTE_DPRINTF("%s: SEG=0x%" PRIx64 "\n", __func__, st_entry); return 0; } /* Look up 4KB page entry */ origin = st_entry & _SEGMENT_ENTRY_ORIGIN; offs = (vaddr & VADDR_PX) >> 9; pt_entry = ldq_phys(cs->as, origin + offs); PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n", __func__, origin, offs, pt_entry); return mmu_translate_pte(env, vaddr, asc, pt_entry, raddr, flags, rw, exc); } /* Decode region table entries */ static int mmu_translate_region(CPUS390XState *env, target_ulong vaddr, uint64_t asc, uint64_t entry, int level, target_ulong *raddr, int *flags, int rw, bool exc) { CPUState *cs = CPU(s390_env_get_cpu(env)); uint64_t origin, offs, new_entry; const int pchks[4] = { PGM_SEGMENT_TRANS, PGM_REG_THIRD_TRANS, PGM_REG_SEC_TRANS, PGM_REG_FIRST_TRANS }; PTE_DPRINTF("%s: 0x%" PRIx64 "\n", __func__, entry); origin = entry & _REGION_ENTRY_ORIGIN; offs = (vaddr >> (17 + 11 * level / 4)) & 0x3ff8; new_entry = ldq_phys(cs->as, origin + offs); PTE_DPRINTF("%s: 0x%" PRIx64 " + 0x%" PRIx64 " => 0x%016" PRIx64 "\n", __func__, origin, offs, new_entry); if ((new_entry & _REGION_ENTRY_INV) != 0) { DPRINTF("%s: invalid region\n", __func__); trigger_page_fault(env, vaddr, pchks[level / 4], asc, rw, exc); return -1; } if ((new_entry & _REGION_ENTRY_TYPE_MASK) != level) { trigger_page_fault(env, vaddr, PGM_TRANS_SPEC, asc, rw, exc); return -1; } if (level == _ASCE_TYPE_SEGMENT) { return mmu_translate_segment(env, vaddr, asc, new_entry, raddr, flags, rw, exc); } /* Check region table offset and length */ offs = (vaddr >> (28 + 11 * (level - 4) / 4)) & 3; if (offs < ((new_entry & _REGION_ENTRY_TF) >> 6) || offs > (new_entry & _REGION_ENTRY_LENGTH)) { DPRINTF("%s: invalid offset or len (%lx)\n", __func__, new_entry); trigger_page_fault(env, vaddr, pchks[level / 4 - 1], asc, rw, exc); return -1; } if ((env->cregs[0] & CR0_EDAT) && (new_entry & _REGION_ENTRY_RO)) { *flags &= ~PAGE_WRITE; } /* yet another region */ return mmu_translate_region(env, vaddr, asc, new_entry, level - 4, raddr, flags, rw, exc); } static int mmu_translate_asce(CPUS390XState *env, target_ulong vaddr, uint64_t asc, uint64_t asce, target_ulong *raddr, int *flags, int rw, bool exc) { int level; int r; if (asce & _ASCE_REAL_SPACE) { /* direct mapping */ *raddr = vaddr; return 0; } level = asce & _ASCE_TYPE_MASK; switch (level) { case _ASCE_TYPE_REGION1: if ((vaddr >> 62) > (asce & _ASCE_TABLE_LENGTH)) { trigger_page_fault(env, vaddr, PGM_REG_FIRST_TRANS, asc, rw, exc); return -1; } break; case _ASCE_TYPE_REGION2: if (vaddr & 0xffe0000000000000ULL) { DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64 " 0xffe0000000000000ULL\n", __func__, vaddr); trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc); return -1; } if ((vaddr >> 51 & 3) > (asce & _ASCE_TABLE_LENGTH)) { trigger_page_fault(env, vaddr, PGM_REG_SEC_TRANS, asc, rw, exc); return -1; } break; case _ASCE_TYPE_REGION3: if (vaddr & 0xfffffc0000000000ULL) { DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64 " 0xfffffc0000000000ULL\n", __func__, vaddr); trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc); return -1; } if ((vaddr >> 40 & 3) > (asce & _ASCE_TABLE_LENGTH)) { trigger_page_fault(env, vaddr, PGM_REG_THIRD_TRANS, asc, rw, exc); return -1; } break; case _ASCE_TYPE_SEGMENT: if (vaddr & 0xffffffff80000000ULL) { DPRINTF("%s: vaddr doesn't fit 0x%16" PRIx64 " 0xffffffff80000000ULL\n", __func__, vaddr); trigger_page_fault(env, vaddr, PGM_ASCE_TYPE, asc, rw, exc); return -1; } if ((vaddr >> 29 & 3) > (asce & _ASCE_TABLE_LENGTH)) { trigger_page_fault(env, vaddr, PGM_SEGMENT_TRANS, asc, rw, exc); return -1; } break; } r = mmu_translate_region(env, vaddr, asc, asce, level, raddr, flags, rw, exc); if (rw == MMU_DATA_STORE && !(*flags & PAGE_WRITE)) { trigger_prot_fault(env, vaddr, asc, rw, exc); return -1; } return r; } /** * Translate a virtual (logical) address into a physical (absolute) address. * @param vaddr the virtual address * @param rw 0 = read, 1 = write, 2 = code fetch * @param asc address space control (one of the PSW_ASC_* modes) * @param raddr the translated address is stored to this pointer * @param flags the PAGE_READ/WRITE/EXEC flags are stored to this pointer * @param exc true = inject a program check if a fault occurred * @return 0 if the translation was successful, -1 if a fault occurred */ int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc, target_ulong *raddr, int *flags, bool exc) { static S390SKeysState *ss; static S390SKeysClass *skeyclass; int r = -1; uint8_t key; if (unlikely(!ss)) { ss = s390_get_skeys_device(); skeyclass = S390_SKEYS_GET_CLASS(ss); } *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC; vaddr &= TARGET_PAGE_MASK; if (!(env->psw.mask & PSW_MASK_DAT)) { *raddr = vaddr; r = 0; goto out; } switch (asc) { case PSW_ASC_PRIMARY: PTE_DPRINTF("%s: asc=primary\n", __func__); r = mmu_translate_asce(env, vaddr, asc, env->cregs[1], raddr, flags, rw, exc); break; case PSW_ASC_HOME: PTE_DPRINTF("%s: asc=home\n", __func__); r = mmu_translate_asce(env, vaddr, asc, env->cregs[13], raddr, flags, rw, exc); break; case PSW_ASC_SECONDARY: PTE_DPRINTF("%s: asc=secondary\n", __func__); /* * Instruction: Primary * Data: Secondary */ if (rw == MMU_INST_FETCH) { r = mmu_translate_asce(env, vaddr, PSW_ASC_PRIMARY, env->cregs[1], raddr, flags, rw, exc); *flags &= ~(PAGE_READ | PAGE_WRITE); } else { r = mmu_translate_asce(env, vaddr, PSW_ASC_SECONDARY, env->cregs[7], raddr, flags, rw, exc); *flags &= ~(PAGE_EXEC); } break; case PSW_ASC_ACCREG: default: hw_error("guest switched to unknown asc mode\n"); break; } out: /* Convert real address -> absolute address */ *raddr = mmu_real2abs(env, *raddr); if (r == 0 && *raddr < ram_size) { if (skeyclass->get_skeys(ss, *raddr / TARGET_PAGE_SIZE, 1, &key)) { trace_get_skeys_nonzero(r); return 0; } if (*flags & PAGE_READ) { key |= SK_R; } if (*flags & PAGE_WRITE) { key |= SK_C; } if (skeyclass->set_skeys(ss, *raddr / TARGET_PAGE_SIZE, 1, &key)) { trace_set_skeys_nonzero(r); return 0; } } return r; } /** * lowprot_enabled: Check whether low-address protection is enabled */ static bool lowprot_enabled(const CPUS390XState *env) { if (!(env->cregs[0] & CR0_LOWPROT)) { return false; } if (!(env->psw.mask & PSW_MASK_DAT)) { return true; } /* Check the private-space control bit */ switch (env->psw.mask & PSW_MASK_ASC) { case PSW_ASC_PRIMARY: return !(env->cregs[1] & _ASCE_PRIVATE_SPACE); case PSW_ASC_SECONDARY: return !(env->cregs[7] & _ASCE_PRIVATE_SPACE); case PSW_ASC_HOME: return !(env->cregs[13] & _ASCE_PRIVATE_SPACE); default: /* We don't support access register mode */ error_report("unsupported addressing mode"); exit(1); } } /** * translate_pages: Translate a set of consecutive logical page addresses * to absolute addresses */ static int translate_pages(S390CPU *cpu, vaddr addr, int nr_pages, target_ulong *pages, bool is_write) { bool lowprot = is_write && lowprot_enabled(&cpu->env); uint64_t asc = cpu->env.psw.mask & PSW_MASK_ASC; CPUS390XState *env = &cpu->env; int ret, i, pflags; for (i = 0; i < nr_pages; i++) { /* Low-address protection? */ if (lowprot && (addr < 512 || (addr >= 4096 && addr < 4096 + 512))) { trigger_access_exception(env, PGM_PROTECTION, ILEN_LATER_INC, 0); return -EACCES; } ret = mmu_translate(env, addr, is_write, asc, &pages[i], &pflags, true); if (ret) { return ret; } if (!address_space_access_valid(&address_space_memory, pages[i], TARGET_PAGE_SIZE, is_write)) { program_interrupt(env, PGM_ADDRESSING, 0); return -EFAULT; } addr += TARGET_PAGE_SIZE; } return 0; } /** * s390_cpu_virt_mem_rw: * @laddr: the logical start address * @ar: the access register number * @hostbuf: buffer in host memory. NULL = do only checks w/o copying * @len: length that should be transferred * @is_write: true = write, false = read * Returns: 0 on success, non-zero if an exception occurred * * Copy from/to guest memory using logical addresses. Note that we inject a * program interrupt in case there is an error while accessing the memory. */ int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf, int len, bool is_write) { int currlen, nr_pages, i; target_ulong *pages; int ret; if (kvm_enabled()) { ret = kvm_s390_mem_op(cpu, laddr, ar, hostbuf, len, is_write); if (ret >= 0) { return ret; } } nr_pages = (((laddr & ~TARGET_PAGE_MASK) + len - 1) >> TARGET_PAGE_BITS) + 1; pages = g_malloc(nr_pages * sizeof(*pages)); ret = translate_pages(cpu, laddr, nr_pages, pages, is_write); if (ret == 0 && hostbuf != NULL) { /* Copy data by stepping through the area page by page */ for (i = 0; i < nr_pages; i++) { currlen = MIN(len, TARGET_PAGE_SIZE - (laddr % TARGET_PAGE_SIZE)); cpu_physical_memory_rw(pages[i] | (laddr & ~TARGET_PAGE_MASK), hostbuf, currlen, is_write); laddr += currlen; hostbuf += currlen; len -= currlen; } } g_free(pages); return ret; }