/* External helpers */ void glue(do_lsw, MEMSUFFIX) (int dst); void glue(do_stsw, MEMSUFFIX) (int src); static inline uint16_t glue(ld16r, MEMSUFFIX) (target_ulong EA) { uint16_t tmp = glue(lduw, MEMSUFFIX)(EA); return ((tmp & 0xFF00) >> 8) | ((tmp & 0x00FF) << 8); } static inline int32_t glue(ld16rs, MEMSUFFIX) (target_ulong EA) { int16_t tmp = glue(lduw, MEMSUFFIX)(EA); return ((tmp & 0xFF00) >> 8) | ((tmp & 0x00FF) << 8); } static inline uint32_t glue(ld32r, MEMSUFFIX) (target_ulong EA) { uint32_t tmp = glue(ldl, MEMSUFFIX)(EA); return ((tmp & 0xFF000000) >> 24) | ((tmp & 0x00FF0000) >> 8) | ((tmp & 0x0000FF00) << 8) | ((tmp & 0x000000FF) << 24); } static inline void glue(st16r, MEMSUFFIX) (target_ulong EA, uint16_t data) { uint16_t tmp = ((data & 0xFF00) >> 8) | ((data & 0x00FF) << 8); glue(stw, MEMSUFFIX)(EA, tmp); } static inline void glue(st32r, MEMSUFFIX) (target_ulong EA, uint32_t data) { uint32_t tmp = ((data & 0xFF000000) >> 24) | ((data & 0x00FF0000) >> 8) | ((data & 0x0000FF00) << 8) | ((data & 0x000000FF) << 24); glue(stl, MEMSUFFIX)(EA, tmp); } /*** Integer load ***/ #define PPC_LD_OP(name, op) \ PPC_OP(glue(glue(l, name), MEMSUFFIX)) \ { \ T1 = glue(op, MEMSUFFIX)(T0); \ RETURN(); \ } #define PPC_ST_OP(name, op) \ PPC_OP(glue(glue(st, name), MEMSUFFIX)) \ { \ glue(op, MEMSUFFIX)(T0, T1); \ RETURN(); \ } PPC_LD_OP(bz, ldub); PPC_LD_OP(ha, ldsw); PPC_LD_OP(hz, lduw); PPC_LD_OP(wz, ldl); PPC_LD_OP(ha_le, ld16rs); PPC_LD_OP(hz_le, ld16r); PPC_LD_OP(wz_le, ld32r); /*** Integer store ***/ PPC_ST_OP(b, stb); PPC_ST_OP(h, stw); PPC_ST_OP(w, stl); PPC_ST_OP(h_le, st16r); PPC_ST_OP(w_le, st32r); /*** Integer load and store with byte reverse ***/ PPC_LD_OP(hbr, ld16r); PPC_LD_OP(wbr, ld32r); PPC_ST_OP(hbr, st16r); PPC_ST_OP(wbr, st32r); PPC_LD_OP(hbr_le, lduw); PPC_LD_OP(wbr_le, ldl); PPC_ST_OP(hbr_le, stw); PPC_ST_OP(wbr_le, stl); /*** Integer load and store multiple ***/ PPC_OP(glue(lmw, MEMSUFFIX)) { int dst = PARAM(1); for (; dst < 32; dst++, T0 += 4) { ugpr(dst) = glue(ldl, MEMSUFFIX)(T0); } RETURN(); } PPC_OP(glue(stmw, MEMSUFFIX)) { int src = PARAM(1); for (; src < 32; src++, T0 += 4) { glue(stl, MEMSUFFIX)(T0, ugpr(src)); } RETURN(); } PPC_OP(glue(lmw_le, MEMSUFFIX)) { int dst = PARAM(1); for (; dst < 32; dst++, T0 += 4) { ugpr(dst) = glue(ld32r, MEMSUFFIX)(T0); } RETURN(); } PPC_OP(glue(stmw_le, MEMSUFFIX)) { int src = PARAM(1); for (; src < 32; src++, T0 += 4) { glue(st32r, MEMSUFFIX)(T0, ugpr(src)); } RETURN(); } /*** Integer load and store strings ***/ PPC_OP(glue(lswi, MEMSUFFIX)) { glue(do_lsw, MEMSUFFIX)(PARAM(1)); RETURN(); } void glue(do_lsw_le, MEMSUFFIX) (int dst); PPC_OP(glue(lswi_le, MEMSUFFIX)) { glue(do_lsw_le, MEMSUFFIX)(PARAM(1)); RETURN(); } /* PPC32 specification says we must generate an exception if * rA is in the range of registers to be loaded. * In an other hand, IBM says this is valid, but rA won't be loaded. * For now, I'll follow the spec... */ PPC_OP(glue(lswx, MEMSUFFIX)) { if (T1 > 0) { if ((PARAM(1) < PARAM(2) && (PARAM(1) + T1) > PARAM(2)) || (PARAM(1) < PARAM(3) && (PARAM(1) + T1) > PARAM(3))) { do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_LSWX); } else { glue(do_lsw, MEMSUFFIX)(PARAM(1)); } } RETURN(); } PPC_OP(glue(lswx_le, MEMSUFFIX)) { if (T1 > 0) { if ((PARAM(1) < PARAM(2) && (PARAM(1) + T1) > PARAM(2)) || (PARAM(1) < PARAM(3) && (PARAM(1) + T1) > PARAM(3))) { do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_LSWX); } else { glue(do_lsw_le, MEMSUFFIX)(PARAM(1)); } } RETURN(); } PPC_OP(glue(stsw, MEMSUFFIX)) { glue(do_stsw, MEMSUFFIX)(PARAM(1)); RETURN(); } void glue(do_stsw_le, MEMSUFFIX) (int src); PPC_OP(glue(stsw_le, MEMSUFFIX)) { glue(do_stsw_le, MEMSUFFIX)(PARAM(1)); RETURN(); } /*** Floating-point store ***/ #define PPC_STF_OP(name, op) \ PPC_OP(glue(glue(st, name), MEMSUFFIX)) \ { \ glue(op, MEMSUFFIX)(T0, FT1); \ RETURN(); \ } PPC_STF_OP(fd, stfq); PPC_STF_OP(fs, stfl); static inline void glue(stfqr, MEMSUFFIX) (target_ulong EA, double d) { union { double d; uint64_t u; } u; u.d = d; u.u = ((u.u & 0xFF00000000000000ULL) >> 56) | ((u.u & 0x00FF000000000000ULL) >> 40) | ((u.u & 0x0000FF0000000000ULL) >> 24) | ((u.u & 0x000000FF00000000ULL) >> 8) | ((u.u & 0x00000000FF000000ULL) << 8) | ((u.u & 0x0000000000FF0000ULL) << 24) | ((u.u & 0x000000000000FF00ULL) << 40) | ((u.u & 0x00000000000000FFULL) << 56); glue(stfq, MEMSUFFIX)(EA, u.d); } static inline void glue(stflr, MEMSUFFIX) (target_ulong EA, float f) { union { float f; uint32_t u; } u; u.f = f; u.u = ((u.u & 0xFF000000UL) >> 24) | ((u.u & 0x00FF0000ULL) >> 8) | ((u.u & 0x0000FF00UL) << 8) | ((u.u & 0x000000FFULL) << 24); glue(stfl, MEMSUFFIX)(EA, u.f); } PPC_STF_OP(fd_le, stfqr); PPC_STF_OP(fs_le, stflr); /*** Floating-point load ***/ #define PPC_LDF_OP(name, op) \ PPC_OP(glue(glue(l, name), MEMSUFFIX)) \ { \ FT1 = glue(op, MEMSUFFIX)(T0); \ RETURN(); \ } PPC_LDF_OP(fd, ldfq); PPC_LDF_OP(fs, ldfl); static inline double glue(ldfqr, MEMSUFFIX) (target_ulong EA) { union { double d; uint64_t u; } u; u.d = glue(ldfq, MEMSUFFIX)(EA); u.u = ((u.u & 0xFF00000000000000ULL) >> 56) | ((u.u & 0x00FF000000000000ULL) >> 40) | ((u.u & 0x0000FF0000000000ULL) >> 24) | ((u.u & 0x000000FF00000000ULL) >> 8) | ((u.u & 0x00000000FF000000ULL) << 8) | ((u.u & 0x0000000000FF0000ULL) << 24) | ((u.u & 0x000000000000FF00ULL) << 40) | ((u.u & 0x00000000000000FFULL) << 56); return u.d; } static inline float glue(ldflr, MEMSUFFIX) (target_ulong EA) { union { float f; uint32_t u; } u; u.f = glue(ldfl, MEMSUFFIX)(EA); u.u = ((u.u & 0xFF000000UL) >> 24) | ((u.u & 0x00FF0000ULL) >> 8) | ((u.u & 0x0000FF00UL) << 8) | ((u.u & 0x000000FFULL) << 24); return u.f; } PPC_LDF_OP(fd_le, ldfqr); PPC_LDF_OP(fs_le, ldflr); /* Load and set reservation */ PPC_OP(glue(lwarx, MEMSUFFIX)) { if (T0 & 0x03) { do_raise_exception(EXCP_ALIGN); } else { T1 = glue(ldl, MEMSUFFIX)(T0); regs->reserve = T0; } RETURN(); } PPC_OP(glue(lwarx_le, MEMSUFFIX)) { if (T0 & 0x03) { do_raise_exception(EXCP_ALIGN); } else { T1 = glue(ld32r, MEMSUFFIX)(T0); regs->reserve = T0; } RETURN(); } /* Store with reservation */ PPC_OP(glue(stwcx, MEMSUFFIX)) { if (T0 & 0x03) { do_raise_exception(EXCP_ALIGN); } else { if (regs->reserve != T0) { env->crf[0] = xer_ov; } else { glue(stl, MEMSUFFIX)(T0, T1); env->crf[0] = xer_ov | 0x02; } } regs->reserve = 0; RETURN(); } PPC_OP(glue(stwcx_le, MEMSUFFIX)) { if (T0 & 0x03) { do_raise_exception(EXCP_ALIGN); } else { if (regs->reserve != T0) { env->crf[0] = xer_ov; } else { glue(st32r, MEMSUFFIX)(T0, T1); env->crf[0] = xer_ov | 0x02; } } regs->reserve = 0; RETURN(); } PPC_OP(glue(dcbz, MEMSUFFIX)) { glue(stl, MEMSUFFIX)(T0 + 0x00, 0); glue(stl, MEMSUFFIX)(T0 + 0x04, 0); glue(stl, MEMSUFFIX)(T0 + 0x08, 0); glue(stl, MEMSUFFIX)(T0 + 0x0C, 0); glue(stl, MEMSUFFIX)(T0 + 0x10, 0); glue(stl, MEMSUFFIX)(T0 + 0x14, 0); glue(stl, MEMSUFFIX)(T0 + 0x18, 0); glue(stl, MEMSUFFIX)(T0 + 0x1C, 0); RETURN(); } /* External access */ PPC_OP(glue(eciwx, MEMSUFFIX)) { T1 = glue(ldl, MEMSUFFIX)(T0); RETURN(); } PPC_OP(glue(ecowx, MEMSUFFIX)) { glue(stl, MEMSUFFIX)(T0, T1); RETURN(); } PPC_OP(glue(eciwx_le, MEMSUFFIX)) { T1 = glue(ld32r, MEMSUFFIX)(T0); RETURN(); } PPC_OP(glue(ecowx_le, MEMSUFFIX)) { glue(st32r, MEMSUFFIX)(T0, T1); RETURN(); } #undef MEMSUFFIX