/* * PowerPC emulation helpers for qemu. * * Copyright (c) 2003-2005 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include "exec.h" #define MEMSUFFIX _raw #include "op_helper_mem.h" #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _user #include "op_helper_mem.h" #define MEMSUFFIX _kernel #include "op_helper_mem.h" #endif //#define DEBUG_OP //#define DEBUG_EXCEPTIONS //#define FLUSH_ALL_TLBS #define Ts0 (long)((target_long)T0) #define Ts1 (long)((target_long)T1) #define Ts2 (long)((target_long)T2) /*****************************************************************************/ /* Exceptions processing helpers */ void cpu_loop_exit(void) { longjmp(env->jmp_env, 1); } void do_raise_exception_err (uint32_t exception, int error_code) { #if 0 printf("Raise exception %3x code : %d\n", exception, error_code); #endif switch (exception) { case EXCP_PROGRAM: if (error_code == EXCP_FP && msr_fe0 == 0 && msr_fe1 == 0) return; break; default: break; } env->exception_index = exception; env->error_code = error_code; cpu_loop_exit(); } void do_raise_exception (uint32_t exception) { do_raise_exception_err(exception, 0); } /*****************************************************************************/ /* Fixed point operations helpers */ void do_addo (void) { T2 = T0; T0 += T1; if (likely(!((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } } void do_addco (void) { T2 = T0; T0 += T1; if (likely(T0 >= T2)) { xer_ca = 0; } else { xer_ca = 1; } if (likely(!((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } } void do_adde (void) { T2 = T0; T0 += T1 + xer_ca; if (likely(!(T0 < T2 || (xer_ca == 1 && T0 == T2)))) { xer_ca = 0; } else { xer_ca = 1; } } void do_addeo (void) { T2 = T0; T0 += T1 + xer_ca; if (likely(!(T0 < T2 || (xer_ca == 1 && T0 == T2)))) { xer_ca = 0; } else { xer_ca = 1; } if (likely(!((T2 ^ T1 ^ (-1)) & (T2 ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } } void do_addmeo (void) { T1 = T0; T0 += xer_ca + (-1); if (likely(!(T1 & (T1 ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } if (likely(T1 != 0)) xer_ca = 1; } void do_addzeo (void) { T1 = T0; T0 += xer_ca; if (likely(!((T1 ^ (-1)) & (T1 ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } if (likely(T0 >= T1)) { xer_ca = 0; } else { xer_ca = 1; } } void do_divwo (void) { if (likely(!((Ts0 == INT32_MIN && Ts1 == -1) || Ts1 == 0))) { xer_ov = 0; T0 = (Ts0 / Ts1); } else { xer_so = 1; xer_ov = 1; T0 = (-1) * ((uint32_t)T0 >> 31); } } void do_divwuo (void) { if (likely((uint32_t)T1 != 0)) { xer_ov = 0; T0 = (uint32_t)T0 / (uint32_t)T1; } else { xer_so = 1; xer_ov = 1; T0 = 0; } } void do_mullwo (void) { int64_t res = (int64_t)Ts0 * (int64_t)Ts1; if (likely((int32_t)res == res)) { xer_ov = 0; } else { xer_ov = 1; xer_so = 1; } T0 = (int32_t)res; } void do_nego (void) { if (likely(T0 != INT32_MIN)) { xer_ov = 0; T0 = -Ts0; } else { xer_ov = 1; xer_so = 1; } } void do_subfo (void) { T2 = T0; T0 = T1 - T0; if (likely(!(((~T2) ^ T1 ^ (-1)) & ((~T2) ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } RETURN(); } void do_subfco (void) { T2 = T0; T0 = T1 - T0; if (likely(T0 > T1)) { xer_ca = 0; } else { xer_ca = 1; } if (likely(!(((~T2) ^ T1 ^ (-1)) & ((~T2) ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } } void do_subfe (void) { T0 = T1 + ~T0 + xer_ca; if (likely(T0 >= T1 && (xer_ca == 0 || T0 != T1))) { xer_ca = 0; } else { xer_ca = 1; } } void do_subfeo (void) { T2 = T0; T0 = T1 + ~T0 + xer_ca; if (likely(!((~T2 ^ T1 ^ (-1)) & (~T2 ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } if (likely(T0 >= T1 && (xer_ca == 0 || T0 != T1))) { xer_ca = 0; } else { xer_ca = 1; } } void do_subfmeo (void) { T1 = T0; T0 = ~T0 + xer_ca - 1; if (likely(!(~T1 & (~T1 ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } if (likely(T1 != -1)) xer_ca = 1; } void do_subfzeo (void) { T1 = T0; T0 = ~T0 + xer_ca; if (likely(!((~T1 ^ (-1)) & ((~T1) ^ T0) & (1 << 31)))) { xer_ov = 0; } else { xer_ov = 1; xer_so = 1; } if (likely(T0 >= ~T1)) { xer_ca = 0; } else { xer_ca = 1; } } /* shift right arithmetic helper */ void do_sraw (void) { int32_t ret; if (likely(!(T1 & 0x20UL))) { if (likely(T1 != 0)) { ret = (int32_t)T0 >> (T1 & 0x1fUL); if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) { xer_ca = 0; } else { xer_ca = 1; } } else { ret = T0; xer_ca = 0; } } else { ret = (-1) * ((uint32_t)T0 >> 31); if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) { xer_ca = 0; } else { xer_ca = 1; } } T0 = ret; } /*****************************************************************************/ /* Floating point operations helpers */ void do_fctiw (void) { union { double d; uint64_t i; } p; /* XXX: higher bits are not supposed to be significant. * to make tests easier, return the same as a real PowerPC 750 (aka G3) */ p.i = float64_to_int32(FT0, &env->fp_status); p.i |= 0xFFF80000ULL << 32; FT0 = p.d; } void do_fctiwz (void) { union { double d; uint64_t i; } p; /* XXX: higher bits are not supposed to be significant. * to make tests easier, return the same as a real PowerPC 750 (aka G3) */ p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status); p.i |= 0xFFF80000ULL << 32; FT0 = p.d; } void do_fnmadd (void) { FT0 = float64_mul(FT0, FT1, &env->fp_status); FT0 = float64_add(FT0, FT2, &env->fp_status); if (likely(!isnan(FT0))) FT0 = float64_chs(FT0); } void do_fnmsub (void) { FT0 = float64_mul(FT0, FT1, &env->fp_status); FT0 = float64_sub(FT0, FT2, &env->fp_status); if (likely(!isnan(FT0))) FT0 = float64_chs(FT0); } void do_fsqrt (void) { FT0 = float64_sqrt(FT0, &env->fp_status); } void do_fres (void) { union { double d; uint64_t i; } p; if (likely(isnormal(FT0))) { FT0 = (float)(1.0 / FT0); } else { p.d = FT0; if (p.i == 0x8000000000000000ULL) { p.i = 0xFFF0000000000000ULL; } else if (p.i == 0x0000000000000000ULL) { p.i = 0x7FF0000000000000ULL; } else if (isnan(FT0)) { p.i = 0x7FF8000000000000ULL; } else if (FT0 < 0.0) { p.i = 0x8000000000000000ULL; } else { p.i = 0x0000000000000000ULL; } FT0 = p.d; } } void do_frsqrte (void) { union { double d; uint64_t i; } p; if (likely(isnormal(FT0) && FT0 > 0.0)) { FT0 = float64_sqrt(FT0, &env->fp_status); FT0 = float32_div(1.0, FT0, &env->fp_status); } else { p.d = FT0; if (p.i == 0x8000000000000000ULL) { p.i = 0xFFF0000000000000ULL; } else if (p.i == 0x0000000000000000ULL) { p.i = 0x7FF0000000000000ULL; } else if (isnan(FT0)) { if (!(p.i & 0x0008000000000000ULL)) p.i |= 0x000FFFFFFFFFFFFFULL; } else if (FT0 < 0) { p.i = 0x7FF8000000000000ULL; } else { p.i = 0x0000000000000000ULL; } FT0 = p.d; } } void do_fsel (void) { if (FT0 >= 0) FT0 = FT1; else FT0 = FT2; } void do_fcmpu (void) { if (likely(!isnan(FT0) && !isnan(FT1))) { if (float64_lt(FT0, FT1, &env->fp_status)) { T0 = 0x08UL; } else if (!float64_le(FT0, FT1, &env->fp_status)) { T0 = 0x04UL; } else { T0 = 0x02UL; } } else { T0 = 0x01UL; env->fpscr[4] |= 0x1; env->fpscr[6] |= 0x1; } env->fpscr[3] = T0; } void do_fcmpo (void) { env->fpscr[4] &= ~0x1; if (likely(!isnan(FT0) && !isnan(FT1))) { if (float64_lt(FT0, FT1, &env->fp_status)) { T0 = 0x08UL; } else if (!float64_le(FT0, FT1, &env->fp_status)) { T0 = 0x04UL; } else { T0 = 0x02UL; } } else { T0 = 0x01UL; env->fpscr[4] |= 0x1; /* I don't know how to test "quiet" nan... */ if (0 /* || ! quiet_nan(...) */) { env->fpscr[6] |= 0x1; if (!(env->fpscr[1] & 0x8)) env->fpscr[4] |= 0x8; } else { env->fpscr[4] |= 0x8; } } env->fpscr[3] = T0; } void do_rfi (void) { env->nip = env->spr[SPR_SRR0] & ~0x00000003; T0 = env->spr[SPR_SRR1] & ~0xFFFF0000UL; do_store_msr(env, T0); #if defined (DEBUG_OP) dump_rfi(); #endif env->interrupt_request |= CPU_INTERRUPT_EXITTB; } void do_tw (uint32_t cmp, int flags) { if (!likely(!((Ts0 < (int32_t)cmp && (flags & 0x10)) || (Ts0 > (int32_t)cmp && (flags & 0x08)) || (Ts0 == (int32_t)cmp && (flags & 0x04)) || (T0 < cmp && (flags & 0x02)) || (T0 > cmp && (flags & 0x01))))) do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP); } /* Instruction cache invalidation helper */ void do_icbi (void) { uint32_t tmp; /* Invalidate one cache line : * PowerPC specification says this is to be treated like a load * (not a fetch) by the MMU. To be sure it will be so, * do the load "by hand". */ #if defined(TARGET_PPC64) if (!msr_sf) T0 &= 0xFFFFFFFFULL; #endif tmp = ldl_kernel(T0); T0 &= ~(ICACHE_LINE_SIZE - 1); tb_invalidate_page_range(T0, T0 + ICACHE_LINE_SIZE); } /*****************************************************************************/ /* MMU related helpers */ /* TLB invalidation helpers */ void do_tlbia (void) { tlb_flush(env, 1); } void do_tlbie (void) { #if !defined(FLUSH_ALL_TLBS) tlb_flush_page(env, T0); #else do_tlbia(); #endif } /*****************************************************************************/ /* Softmmu support */ #if !defined (CONFIG_USER_ONLY) #define MMUSUFFIX _mmu #define GETPC() (__builtin_return_address(0)) #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" /* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ /* XXX: fix it to restore all registers */ void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr) { TranslationBlock *tb; CPUState *saved_env; target_phys_addr_t pc; int ret; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, is_user, 1); if (!likely(ret == 0)) { if (likely(retaddr)) { /* now we have a real cpu fault */ pc = (target_phys_addr_t)retaddr; tb = tb_find_pc(pc); if (likely(tb)) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, NULL); } } do_raise_exception_err(env->exception_index, env->error_code); } env = saved_env; } #endif /* !CONFIG_USER_ONLY */