/* * PowerPC emulation micro-operations for qemu. * * Copyright (c) 2003-2005 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ //#define DEBUG_OP #include "config.h" #include "exec.h" #define regs (env) #define Ts0 (int32_t)T0 #define Ts1 (int32_t)T1 #define Ts2 (int32_t)T2 #define FT0 (env->ft0) #define FT1 (env->ft1) #define FT2 (env->ft2) #define PPC_OP(name) void glue(op_, name)(void) #define REG 0 #include "op_template.h" #define REG 1 #include "op_template.h" #define REG 2 #include "op_template.h" #define REG 3 #include "op_template.h" #define REG 4 #include "op_template.h" #define REG 5 #include "op_template.h" #define REG 6 #include "op_template.h" #define REG 7 #include "op_template.h" #define REG 8 #include "op_template.h" #define REG 9 #include "op_template.h" #define REG 10 #include "op_template.h" #define REG 11 #include "op_template.h" #define REG 12 #include "op_template.h" #define REG 13 #include "op_template.h" #define REG 14 #include "op_template.h" #define REG 15 #include "op_template.h" #define REG 16 #include "op_template.h" #define REG 17 #include "op_template.h" #define REG 18 #include "op_template.h" #define REG 19 #include "op_template.h" #define REG 20 #include "op_template.h" #define REG 21 #include "op_template.h" #define REG 22 #include "op_template.h" #define REG 23 #include "op_template.h" #define REG 24 #include "op_template.h" #define REG 25 #include "op_template.h" #define REG 26 #include "op_template.h" #define REG 27 #include "op_template.h" #define REG 28 #include "op_template.h" #define REG 29 #include "op_template.h" #define REG 30 #include "op_template.h" #define REG 31 #include "op_template.h" /* PowerPC state maintenance operations */ /* set_Rc0 */ PPC_OP(set_Rc0) { uint32_t tmp; if (Ts0 < 0) { tmp = 0x08; } else if (Ts0 > 0) { tmp = 0x04; } else { tmp = 0x02; } tmp |= xer_ov; env->crf[0] = tmp; RETURN(); } /* reset_Rc0 */ PPC_OP(reset_Rc0) { env->crf[0] = 0x02 | xer_ov; RETURN(); } /* set_Rc0_1 */ PPC_OP(set_Rc0_1) { env->crf[0] = 0x04 | xer_ov; RETURN(); } /* Set Rc1 (for floating point arithmetic) */ PPC_OP(set_Rc1) { env->crf[1] = regs->fpscr[7]; RETURN(); } /* Constants load */ PPC_OP(set_T0) { T0 = PARAM(1); RETURN(); } PPC_OP(set_T1) { T1 = PARAM(1); RETURN(); } PPC_OP(set_T2) { T2 = PARAM(1); RETURN(); } /* Generate exceptions */ PPC_OP(raise_exception_err) { do_raise_exception_err(PARAM(1), PARAM(2)); } PPC_OP(raise_exception) { do_raise_exception(PARAM(1)); } PPC_OP(update_nip) { env->nip = PARAM(1); } /* Segment registers load and store with immediate index */ PPC_OP(load_srin) { T0 = regs->sr[T1 >> 28]; RETURN(); } PPC_OP(store_srin) { do_store_sr(env, ((uint32_t)T1 >> 28), T0); RETURN(); } PPC_OP(load_sdr1) { T0 = regs->sdr1; RETURN(); } PPC_OP(store_sdr1) { do_store_sdr1(env, T0); RETURN(); } PPC_OP(exit_tb) { EXIT_TB(); } /* Load/store special registers */ PPC_OP(load_cr) { T0 = do_load_cr(env); RETURN(); } PPC_OP(store_cr) { do_store_cr(env, T0, PARAM(1)); RETURN(); } PPC_OP(load_xer_cr) { T0 = (xer_so << 3) | (xer_ov << 2) | (xer_ca << 1); RETURN(); } PPC_OP(clear_xer_cr) { xer_so = 0; xer_ov = 0; xer_ca = 0; RETURN(); } PPC_OP(load_xer_bc) { T1 = xer_bc; RETURN(); } PPC_OP(load_xer) { T0 = do_load_xer(env); RETURN(); } PPC_OP(store_xer) { do_store_xer(env, T0); RETURN(); } PPC_OP(load_msr) { T0 = do_load_msr(env); RETURN(); } PPC_OP(store_msr) { do_store_msr(env, T0); RETURN(); } /* SPR */ PPC_OP(load_spr) { T0 = regs->spr[PARAM(1)]; RETURN(); } PPC_OP(store_spr) { regs->spr[PARAM(1)] = T0; RETURN(); } PPC_OP(load_lr) { T0 = regs->lr; RETURN(); } PPC_OP(store_lr) { regs->lr = T0; RETURN(); } PPC_OP(load_ctr) { T0 = regs->ctr; RETURN(); } PPC_OP(store_ctr) { regs->ctr = T0; RETURN(); } PPC_OP(load_tbl) { T0 = cpu_ppc_load_tbl(regs); RETURN(); } PPC_OP(load_tbu) { T0 = cpu_ppc_load_tbu(regs); RETURN(); } PPC_OP(store_tbl) { cpu_ppc_store_tbl(regs, T0); RETURN(); } PPC_OP(store_tbu) { cpu_ppc_store_tbu(regs, T0); RETURN(); } PPC_OP(load_decr) { T0 = cpu_ppc_load_decr(regs); } PPC_OP(store_decr) { cpu_ppc_store_decr(regs, T0); RETURN(); } PPC_OP(load_ibat) { T0 = regs->IBAT[PARAM(1)][PARAM(2)]; } void op_store_ibatu (void) { do_store_ibatu(env, PARAM1, T0); RETURN(); } void op_store_ibatl (void) { #if 1 env->IBAT[1][PARAM1] = T0; #else do_store_ibatl(env, PARAM1, T0); #endif RETURN(); } PPC_OP(load_dbat) { T0 = regs->DBAT[PARAM(1)][PARAM(2)]; } void op_store_dbatu (void) { do_store_dbatu(env, PARAM1, T0); RETURN(); } void op_store_dbatl (void) { #if 1 env->DBAT[1][PARAM1] = T0; #else do_store_dbatl(env, PARAM1, T0); #endif RETURN(); } /* FPSCR */ PPC_OP(load_fpscr) { FT0 = do_load_fpscr(env); RETURN(); } PPC_OP(store_fpscr) { do_store_fpscr(env, FT0, PARAM1); RETURN(); } PPC_OP(reset_scrfx) { regs->fpscr[7] &= ~0x8; RETURN(); } /* crf operations */ PPC_OP(getbit_T0) { T0 = (T0 >> PARAM(1)) & 1; RETURN(); } PPC_OP(getbit_T1) { T1 = (T1 >> PARAM(1)) & 1; RETURN(); } PPC_OP(setcrfbit) { T1 = (T1 & PARAM(1)) | (T0 << PARAM(2)); RETURN(); } /* Branch */ #define EIP regs->nip PPC_OP(setlr) { regs->lr = PARAM1; } PPC_OP(goto_tb0) { GOTO_TB(op_goto_tb0, PARAM1, 0); } PPC_OP(goto_tb1) { GOTO_TB(op_goto_tb1, PARAM1, 1); } PPC_OP(b_T1) { regs->nip = T1 & ~3; } PPC_OP(jz_T0) { if (!T0) GOTO_LABEL_PARAM(1); RETURN(); } PPC_OP(btest_T1) { if (T0) { regs->nip = T1 & ~3; } else { regs->nip = PARAM1; } RETURN(); } PPC_OP(movl_T1_ctr) { T1 = regs->ctr; } PPC_OP(movl_T1_lr) { T1 = regs->lr; } /* tests with result in T0 */ PPC_OP(test_ctr) { T0 = regs->ctr; } PPC_OP(test_ctr_true) { T0 = (regs->ctr != 0 && (T0 & PARAM(1)) != 0); } PPC_OP(test_ctr_false) { T0 = (regs->ctr != 0 && (T0 & PARAM(1)) == 0); } PPC_OP(test_ctrz) { T0 = (regs->ctr == 0); } PPC_OP(test_ctrz_true) { T0 = (regs->ctr == 0 && (T0 & PARAM(1)) != 0); } PPC_OP(test_ctrz_false) { T0 = (regs->ctr == 0 && (T0 & PARAM(1)) == 0); } PPC_OP(test_true) { T0 = (T0 & PARAM(1)); } PPC_OP(test_false) { T0 = ((T0 & PARAM(1)) == 0); } /* CTR maintenance */ PPC_OP(dec_ctr) { regs->ctr--; RETURN(); } /*** Integer arithmetic ***/ /* add */ PPC_OP(add) { T0 += T1; RETURN(); } void do_addo (void); void op_addo (void) { do_addo(); RETURN(); } /* add carrying */ PPC_OP(addc) { T2 = T0; T0 += T1; if (T0 < T2) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } void do_addco (void); void op_addco (void) { do_addco(); RETURN(); } /* add extended */ void do_adde (void); void op_adde (void) { do_adde(); } void do_addeo (void); PPC_OP(addeo) { do_addeo(); RETURN(); } /* add immediate */ PPC_OP(addi) { T0 += PARAM(1); RETURN(); } /* add immediate carrying */ PPC_OP(addic) { T1 = T0; T0 += PARAM(1); if (T0 < T1) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } /* add to minus one extended */ PPC_OP(addme) { T1 = T0; T0 += xer_ca + (-1); if (T1 != 0) xer_ca = 1; RETURN(); } void do_addmeo (void); void op_addmeo (void) { do_addmeo(); RETURN(); } /* add to zero extended */ PPC_OP(addze) { T1 = T0; T0 += xer_ca; if (T0 < T1) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } void do_addzeo (void); void op_addzeo (void) { do_addzeo(); RETURN(); } /* divide word */ PPC_OP(divw) { if ((Ts0 == INT32_MIN && Ts1 == -1) || Ts1 == 0) { T0 = (int32_t)((-1) * (T0 >> 31)); } else { T0 = (Ts0 / Ts1); } RETURN(); } void do_divwo (void); void op_divwo (void) { do_divwo(); RETURN(); } /* divide word unsigned */ PPC_OP(divwu) { if (T1 == 0) { T0 = 0; } else { T0 /= T1; } RETURN(); } void do_divwuo (void); void op_divwuo (void) { do_divwuo(); RETURN(); } /* multiply high word */ PPC_OP(mulhw) { T0 = ((int64_t)Ts0 * (int64_t)Ts1) >> 32; RETURN(); } /* multiply high word unsigned */ PPC_OP(mulhwu) { T0 = ((uint64_t)T0 * (uint64_t)T1) >> 32; RETURN(); } /* multiply low immediate */ PPC_OP(mulli) { T0 = (Ts0 * SPARAM(1)); RETURN(); } /* multiply low word */ PPC_OP(mullw) { T0 *= T1; RETURN(); } void do_mullwo (void); void op_mullwo (void) { do_mullwo(); RETURN(); } /* negate */ PPC_OP(neg) { if (T0 != 0x80000000) { T0 = -Ts0; } RETURN(); } void do_nego (void); void op_nego (void) { do_nego(); RETURN(); } /* substract from */ PPC_OP(subf) { T0 = T1 - T0; RETURN(); } void do_subfo (void); void op_subfo (void) { do_subfo(); RETURN(); } /* substract from carrying */ PPC_OP(subfc) { T0 = T1 - T0; if (T0 <= T1) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } void do_subfco (void); void op_subfco (void) { do_subfco(); RETURN(); } /* substract from extended */ void do_subfe (void); void op_subfe (void) { do_subfe(); RETURN(); } void do_subfeo (void); PPC_OP(subfeo) { do_subfeo(); RETURN(); } /* substract from immediate carrying */ PPC_OP(subfic) { T0 = PARAM(1) + ~T0 + 1; if (T0 <= PARAM(1)) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } /* substract from minus one extended */ PPC_OP(subfme) { T0 = ~T0 + xer_ca - 1; if (T0 != -1) xer_ca = 1; RETURN(); } void do_subfmeo (void); void op_subfmeo (void) { do_subfmeo(); RETURN(); } /* substract from zero extended */ PPC_OP(subfze) { T1 = ~T0; T0 = T1 + xer_ca; if (T0 < T1) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } void do_subfzeo (void); void op_subfzeo (void) { do_subfzeo(); RETURN(); } /*** Integer comparison ***/ /* compare */ PPC_OP(cmp) { if (Ts0 < Ts1) { T0 = 0x08; } else if (Ts0 > Ts1) { T0 = 0x04; } else { T0 = 0x02; } RETURN(); } /* compare immediate */ PPC_OP(cmpi) { if (Ts0 < SPARAM(1)) { T0 = 0x08; } else if (Ts0 > SPARAM(1)) { T0 = 0x04; } else { T0 = 0x02; } RETURN(); } /* compare logical */ PPC_OP(cmpl) { if (T0 < T1) { T0 = 0x08; } else if (T0 > T1) { T0 = 0x04; } else { T0 = 0x02; } RETURN(); } /* compare logical immediate */ PPC_OP(cmpli) { if (T0 < PARAM(1)) { T0 = 0x08; } else if (T0 > PARAM(1)) { T0 = 0x04; } else { T0 = 0x02; } RETURN(); } /*** Integer logical ***/ /* and */ PPC_OP(and) { T0 &= T1; RETURN(); } /* andc */ PPC_OP(andc) { T0 &= ~T1; RETURN(); } /* andi. */ PPC_OP(andi_) { T0 &= PARAM(1); RETURN(); } /* count leading zero */ PPC_OP(cntlzw) { T1 = T0; for (T0 = 32; T1 > 0; T0--) T1 = T1 >> 1; RETURN(); } /* eqv */ PPC_OP(eqv) { T0 = ~(T0 ^ T1); RETURN(); } /* extend sign byte */ PPC_OP(extsb) { T0 = (int32_t)((int8_t)(Ts0)); RETURN(); } /* extend sign half word */ PPC_OP(extsh) { T0 = (int32_t)((int16_t)(Ts0)); RETURN(); } /* nand */ PPC_OP(nand) { T0 = ~(T0 & T1); RETURN(); } /* nor */ PPC_OP(nor) { T0 = ~(T0 | T1); RETURN(); } /* or */ PPC_OP(or) { T0 |= T1; RETURN(); } /* orc */ PPC_OP(orc) { T0 |= ~T1; RETURN(); } /* ori */ PPC_OP(ori) { T0 |= PARAM(1); RETURN(); } /* xor */ PPC_OP(xor) { T0 ^= T1; RETURN(); } /* xori */ PPC_OP(xori) { T0 ^= PARAM(1); RETURN(); } /*** Integer rotate ***/ /* rotate left word immediate then mask insert */ PPC_OP(rlwimi) { T0 = (rotl(T0, PARAM(1)) & PARAM(2)) | (T1 & PARAM(3)); RETURN(); } /* rotate left immediate then and with mask insert */ PPC_OP(rotlwi) { T0 = rotl(T0, PARAM(1)); RETURN(); } PPC_OP(slwi) { T0 = T0 << PARAM(1); RETURN(); } PPC_OP(srwi) { T0 = T0 >> PARAM(1); RETURN(); } /* rotate left word then and with mask insert */ PPC_OP(rlwinm) { T0 = rotl(T0, PARAM(1)) & PARAM(2); RETURN(); } PPC_OP(rotl) { T0 = rotl(T0, T1); RETURN(); } PPC_OP(rlwnm) { T0 = rotl(T0, T1) & PARAM(1); RETURN(); } /*** Integer shift ***/ /* shift left word */ PPC_OP(slw) { if (T1 & 0x20) { T0 = 0; } else { T0 = T0 << T1; } RETURN(); } /* shift right algebraic word */ void op_sraw (void) { do_sraw(); RETURN(); } /* shift right algebraic word immediate */ PPC_OP(srawi) { T1 = T0; T0 = (Ts0 >> PARAM(1)); if (Ts1 < 0 && (Ts1 & PARAM(2)) != 0) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } /* shift right word */ PPC_OP(srw) { if (T1 & 0x20) { T0 = 0; } else { T0 = T0 >> T1; } RETURN(); } /*** Floating-Point arithmetic ***/ /* fadd - fadd. */ PPC_OP(fadd) { FT0 += FT1; RETURN(); } /* fsub - fsub. */ PPC_OP(fsub) { FT0 -= FT1; RETURN(); } /* fmul - fmul. */ PPC_OP(fmul) { FT0 *= FT1; RETURN(); } /* fdiv - fdiv. */ PPC_OP(fdiv) { FT0 = float64_div(FT0, FT1, &env->fp_status); RETURN(); } /* fsqrt - fsqrt. */ PPC_OP(fsqrt) { do_fsqrt(); RETURN(); } /* fres - fres. */ PPC_OP(fres) { do_fres(); RETURN(); } /* frsqrte - frsqrte. */ PPC_OP(frsqrte) { do_frsqrte(); RETURN(); } /* fsel - fsel. */ PPC_OP(fsel) { do_fsel(); RETURN(); } /*** Floating-Point multiply-and-add ***/ /* fmadd - fmadd. */ PPC_OP(fmadd) { FT0 = (FT0 * FT1) + FT2; RETURN(); } /* fmsub - fmsub. */ PPC_OP(fmsub) { FT0 = (FT0 * FT1) - FT2; RETURN(); } /* fnmadd - fnmadd. - fnmadds - fnmadds. */ PPC_OP(fnmadd) { do_fnmadd(); RETURN(); } /* fnmsub - fnmsub. */ PPC_OP(fnmsub) { do_fnmsub(); RETURN(); } /*** Floating-Point round & convert ***/ /* frsp - frsp. */ PPC_OP(frsp) { FT0 = (float)FT0; RETURN(); } /* fctiw - fctiw. */ PPC_OP(fctiw) { do_fctiw(); RETURN(); } /* fctiwz - fctiwz. */ PPC_OP(fctiwz) { do_fctiwz(); RETURN(); } /*** Floating-Point compare ***/ /* fcmpu */ PPC_OP(fcmpu) { do_fcmpu(); RETURN(); } /* fcmpo */ PPC_OP(fcmpo) { do_fcmpo(); RETURN(); } /*** Floating-point move ***/ /* fabs */ PPC_OP(fabs) { FT0 = float64_abs(FT0); RETURN(); } /* fnabs */ PPC_OP(fnabs) { FT0 = float64_abs(FT0); FT0 = float64_chs(FT0); RETURN(); } /* fneg */ PPC_OP(fneg) { FT0 = float64_chs(FT0); RETURN(); } /* Load and store */ #define MEMSUFFIX _raw #include "op_mem.h" #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _user #include "op_mem.h" #define MEMSUFFIX _kernel #include "op_mem.h" #endif /* Special op to check and maybe clear reservation */ PPC_OP(check_reservation) { if ((uint32_t)env->reserve == (uint32_t)(T0 & ~0x00000003)) env->reserve = -1; RETURN(); } /* Return from interrupt */ void do_rfi (void); void op_rfi (void) { do_rfi(); RETURN(); } /* Trap word */ void do_tw (uint32_t cmp, int flags); void op_tw (void) { do_tw(T1, PARAM(1)); RETURN(); } void op_twi (void) { do_tw(PARAM(1), PARAM(2)); RETURN(); } /* Instruction cache block invalidate */ PPC_OP(icbi) { do_icbi(); RETURN(); } /* tlbia */ PPC_OP(tlbia) { do_tlbia(); RETURN(); } /* tlbie */ PPC_OP(tlbie) { do_tlbie(); RETURN(); } void op_store_pir (void) { env->spr[SPR_PIR] = T0 & 0x0000000FUL; RETURN(); }