/* * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU. * * Copyright (c) 2003-2007 Jocelyn Mayer * Copyright (c) 2013 David Gibson, IBM Corporation * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "cpu.h" #include "exec/helper-proto.h" #include "sysemu/kvm.h" #include "kvm_ppc.h" #include "mmu-hash64.h" //#define DEBUG_MMU //#define DEBUG_SLB #ifdef DEBUG_MMU # define LOG_MMU(...) qemu_log(__VA_ARGS__) # define LOG_MMU_STATE(cpu) log_cpu_state((cpu), 0) #else # define LOG_MMU(...) do { } while (0) # define LOG_MMU_STATE(cpu) do { } while (0) #endif #ifdef DEBUG_SLB # define LOG_SLB(...) qemu_log(__VA_ARGS__) #else # define LOG_SLB(...) do { } while (0) #endif /* * Used to indicate whether we have allocated htab in the * host kernel */ bool kvmppc_kern_htab; /* * SLB handling */ static ppc_slb_t *slb_lookup(CPUPPCState *env, target_ulong eaddr) { uint64_t esid_256M, esid_1T; int n; LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr); esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V; esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V; for (n = 0; n < env->slb_nr; n++) { ppc_slb_t *slb = &env->slb[n]; LOG_SLB("%s: slot %d %016" PRIx64 " %016" PRIx64 "\n", __func__, n, slb->esid, slb->vsid); /* We check for 1T matches on all MMUs here - if the MMU * doesn't have 1T segment support, we will have prevented 1T * entries from being inserted in the slbmte code. */ if (((slb->esid == esid_256M) && ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M)) || ((slb->esid == esid_1T) && ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) { return slb; } } return NULL; } void dump_slb(FILE *f, fprintf_function cpu_fprintf, CPUPPCState *env) { int i; uint64_t slbe, slbv; cpu_synchronize_state(CPU(ppc_env_get_cpu(env))); cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n"); for (i = 0; i < env->slb_nr; i++) { slbe = env->slb[i].esid; slbv = env->slb[i].vsid; if (slbe == 0 && slbv == 0) { continue; } cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n", i, slbe, slbv); } } void helper_slbia(CPUPPCState *env) { PowerPCCPU *cpu = ppc_env_get_cpu(env); int n, do_invalidate; do_invalidate = 0; /* XXX: Warning: slbia never invalidates the first segment */ for (n = 1; n < env->slb_nr; n++) { ppc_slb_t *slb = &env->slb[n]; if (slb->esid & SLB_ESID_V) { slb->esid &= ~SLB_ESID_V; /* XXX: given the fact that segment size is 256 MB or 1TB, * and we still don't have a tlb_flush_mask(env, n, mask) * in QEMU, we just invalidate all TLBs */ do_invalidate = 1; } } if (do_invalidate) { tlb_flush(CPU(cpu), 1); } } void helper_slbie(CPUPPCState *env, target_ulong addr) { PowerPCCPU *cpu = ppc_env_get_cpu(env); ppc_slb_t *slb; slb = slb_lookup(env, addr); if (!slb) { return; } if (slb->esid & SLB_ESID_V) { slb->esid &= ~SLB_ESID_V; /* XXX: given the fact that segment size is 256 MB or 1TB, * and we still don't have a tlb_flush_mask(env, n, mask) * in QEMU, we just invalidate all TLBs */ tlb_flush(CPU(cpu), 1); } } int ppc_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs) { int slot = rb & 0xfff; ppc_slb_t *slb = &env->slb[slot]; if (rb & (0x1000 - env->slb_nr)) { return -1; /* Reserved bits set or slot too high */ } if (rs & (SLB_VSID_B & ~SLB_VSID_B_1T)) { return -1; /* Bad segment size */ } if ((rs & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) { return -1; /* 1T segment on MMU that doesn't support it */ } /* Mask out the slot number as we store the entry */ slb->esid = rb & (SLB_ESID_ESID | SLB_ESID_V); slb->vsid = rs; LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, rb, rs, slb->esid, slb->vsid); return 0; } static int ppc_load_slb_esid(CPUPPCState *env, target_ulong rb, target_ulong *rt) { int slot = rb & 0xfff; ppc_slb_t *slb = &env->slb[slot]; if (slot >= env->slb_nr) { return -1; } *rt = slb->esid; return 0; } static int ppc_load_slb_vsid(CPUPPCState *env, target_ulong rb, target_ulong *rt) { int slot = rb & 0xfff; ppc_slb_t *slb = &env->slb[slot]; if (slot >= env->slb_nr) { return -1; } *rt = slb->vsid; return 0; } void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs) { if (ppc_store_slb(env, rb, rs) < 0) { helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL); } } target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb) { target_ulong rt = 0; if (ppc_load_slb_esid(env, rb, &rt) < 0) { helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL); } return rt; } target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb) { target_ulong rt = 0; if (ppc_load_slb_vsid(env, rb, &rt) < 0) { helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL); } return rt; } /* * 64-bit hash table MMU handling */ static int ppc_hash64_pte_prot(CPUPPCState *env, ppc_slb_t *slb, ppc_hash_pte64_t pte) { unsigned pp, key; /* Some pp bit combinations have undefined behaviour, so default * to no access in those cases */ int prot = 0; key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP) : (slb->vsid & SLB_VSID_KS)); pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61); if (key == 0) { switch (pp) { case 0x0: case 0x1: case 0x2: prot = PAGE_READ | PAGE_WRITE; break; case 0x3: case 0x6: prot = PAGE_READ; break; } } else { switch (pp) { case 0x0: case 0x6: prot = 0; break; case 0x1: case 0x3: prot = PAGE_READ; break; case 0x2: prot = PAGE_READ | PAGE_WRITE; break; } } /* No execute if either noexec or guarded bits set */ if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) || (slb->vsid & SLB_VSID_N)) { prot |= PAGE_EXEC; } return prot; } static int ppc_hash64_amr_prot(CPUPPCState *env, ppc_hash_pte64_t pte) { int key, amrbits; int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; /* Only recent MMUs implement Virtual Page Class Key Protection */ if (!(env->mmu_model & POWERPC_MMU_AMR)) { return prot; } key = HPTE64_R_KEY(pte.pte1); amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3; /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */ /* env->spr[SPR_AMR]); */ /* * A store is permitted if the AMR bit is 0. Remove write * protection if it is set. */ if (amrbits & 0x2) { prot &= ~PAGE_WRITE; } /* * A load is permitted if the AMR bit is 0. Remove read * protection if it is set. */ if (amrbits & 0x1) { prot &= ~PAGE_READ; } return prot; } uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index) { uint64_t token = 0; hwaddr pte_offset; pte_offset = pte_index * HASH_PTE_SIZE_64; if (kvmppc_kern_htab) { /* * HTAB is controlled by KVM. Fetch the PTEG into a new buffer. */ token = kvmppc_hash64_read_pteg(cpu, pte_index); if (token) { return token; } /* * pteg read failed, even though we have allocated htab via * kvmppc_reset_htab. */ return 0; } /* * HTAB is controlled by QEMU. Just point to the internally * accessible PTEG. */ if (cpu->env.external_htab) { token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset; } else if (cpu->env.htab_base) { token = cpu->env.htab_base + pte_offset; } return token; } void ppc_hash64_stop_access(uint64_t token) { if (kvmppc_kern_htab) { return kvmppc_hash64_free_pteg(token); } } static hwaddr ppc_hash64_pteg_search(CPUPPCState *env, hwaddr hash, bool secondary, target_ulong ptem, ppc_hash_pte64_t *pte) { int i; uint64_t token; target_ulong pte0, pte1; target_ulong pte_index; pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP; token = ppc_hash64_start_access(ppc_env_get_cpu(env), pte_index); if (!token) { return -1; } for (i = 0; i < HPTES_PER_GROUP; i++) { pte0 = ppc_hash64_load_hpte0(env, token, i); pte1 = ppc_hash64_load_hpte1(env, token, i); if ((pte0 & HPTE64_V_VALID) && (secondary == !!(pte0 & HPTE64_V_SECONDARY)) && HPTE64_V_COMPARE(pte0, ptem)) { pte->pte0 = pte0; pte->pte1 = pte1; ppc_hash64_stop_access(token); return (pte_index + i) * HASH_PTE_SIZE_64; } } ppc_hash64_stop_access(token); /* * We didn't find a valid entry. */ return -1; } static hwaddr ppc_hash64_htab_lookup(CPUPPCState *env, ppc_slb_t *slb, target_ulong eaddr, ppc_hash_pte64_t *pte) { hwaddr pte_offset; hwaddr hash; uint64_t vsid, epnshift, epnmask, epn, ptem; /* Page size according to the SLB, which we use to generate the * EPN for hash table lookup.. When we implement more recent MMU * extensions this might be different from the actual page size * encoded in the PTE */ epnshift = (slb->vsid & SLB_VSID_L) ? TARGET_PAGE_BITS_16M : TARGET_PAGE_BITS; epnmask = ~((1ULL << epnshift) - 1); if (slb->vsid & SLB_VSID_B) { /* 1TB segment */ vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T; epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask; hash = vsid ^ (vsid << 25) ^ (epn >> epnshift); } else { /* 256M segment */ vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT; epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask; hash = vsid ^ (epn >> epnshift); } ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN); /* Page address translation */ LOG_MMU("htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx " hash " TARGET_FMT_plx "\n", env->htab_base, env->htab_mask, hash); /* Primary PTEG lookup */ LOG_MMU("0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx " hash=" TARGET_FMT_plx "\n", env->htab_base, env->htab_mask, vsid, ptem, hash); pte_offset = ppc_hash64_pteg_search(env, hash, 0, ptem, pte); if (pte_offset == -1) { /* Secondary PTEG lookup */ LOG_MMU("1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx " hash=" TARGET_FMT_plx "\n", env->htab_base, env->htab_mask, vsid, ptem, ~hash); pte_offset = ppc_hash64_pteg_search(env, ~hash, 1, ptem, pte); } return pte_offset; } static hwaddr ppc_hash64_pte_raddr(ppc_slb_t *slb, ppc_hash_pte64_t pte, target_ulong eaddr) { hwaddr rpn = pte.pte1 & HPTE64_R_RPN; /* FIXME: Add support for SLLP extended page sizes */ int target_page_bits = (slb->vsid & SLB_VSID_L) ? TARGET_PAGE_BITS_16M : TARGET_PAGE_BITS; hwaddr mask = (1ULL << target_page_bits) - 1; return (rpn & ~mask) | (eaddr & mask); } int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, target_ulong eaddr, int rwx, int mmu_idx) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; ppc_slb_t *slb; hwaddr pte_offset; ppc_hash_pte64_t pte; int pp_prot, amr_prot, prot; uint64_t new_pte1; const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC}; hwaddr raddr; assert((rwx == 0) || (rwx == 1) || (rwx == 2)); /* 1. Handle real mode accesses */ if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) { /* Translation is off */ /* In real mode the top 4 effective address bits are ignored */ raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL; tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK, PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx, TARGET_PAGE_SIZE); return 0; } /* 2. Translation is on, so look up the SLB */ slb = slb_lookup(env, eaddr); if (!slb) { if (rwx == 2) { cs->exception_index = POWERPC_EXCP_ISEG; env->error_code = 0; } else { cs->exception_index = POWERPC_EXCP_DSEG; env->error_code = 0; env->spr[SPR_DAR] = eaddr; } return 1; } /* 3. Check for segment level no-execute violation */ if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) { cs->exception_index = POWERPC_EXCP_ISI; env->error_code = 0x10000000; return 1; } /* 4. Locate the PTE in the hash table */ pte_offset = ppc_hash64_htab_lookup(env, slb, eaddr, &pte); if (pte_offset == -1) { if (rwx == 2) { cs->exception_index = POWERPC_EXCP_ISI; env->error_code = 0x40000000; } else { cs->exception_index = POWERPC_EXCP_DSI; env->error_code = 0; env->spr[SPR_DAR] = eaddr; if (rwx == 1) { env->spr[SPR_DSISR] = 0x42000000; } else { env->spr[SPR_DSISR] = 0x40000000; } } return 1; } LOG_MMU("found PTE at offset %08" HWADDR_PRIx "\n", pte_offset); /* 5. Check access permissions */ pp_prot = ppc_hash64_pte_prot(env, slb, pte); amr_prot = ppc_hash64_amr_prot(env, pte); prot = pp_prot & amr_prot; if ((need_prot[rwx] & ~prot) != 0) { /* Access right violation */ LOG_MMU("PTE access rejected\n"); if (rwx == 2) { cs->exception_index = POWERPC_EXCP_ISI; env->error_code = 0x08000000; } else { target_ulong dsisr = 0; cs->exception_index = POWERPC_EXCP_DSI; env->error_code = 0; env->spr[SPR_DAR] = eaddr; if (need_prot[rwx] & ~pp_prot) { dsisr |= 0x08000000; } if (rwx == 1) { dsisr |= 0x02000000; } if (need_prot[rwx] & ~amr_prot) { dsisr |= 0x00200000; } env->spr[SPR_DSISR] = dsisr; } return 1; } LOG_MMU("PTE access granted !\n"); /* 6. Update PTE referenced and changed bits if necessary */ new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */ if (rwx == 1) { new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */ } else { /* Treat the page as read-only for now, so that a later write * will pass through this function again to set the C bit */ prot &= ~PAGE_WRITE; } if (new_pte1 != pte.pte1) { ppc_hash64_store_hpte(env, pte_offset / HASH_PTE_SIZE_64, pte.pte0, new_pte1); } /* 7. Determine the real address from the PTE */ raddr = ppc_hash64_pte_raddr(slb, pte, eaddr); tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK, prot, mmu_idx, TARGET_PAGE_SIZE); return 0; } hwaddr ppc_hash64_get_phys_page_debug(CPUPPCState *env, target_ulong addr) { ppc_slb_t *slb; hwaddr pte_offset; ppc_hash_pte64_t pte; if (msr_dr == 0) { /* In real mode the top 4 effective address bits are ignored */ return addr & 0x0FFFFFFFFFFFFFFFULL; } slb = slb_lookup(env, addr); if (!slb) { return -1; } pte_offset = ppc_hash64_htab_lookup(env, slb, addr, &pte); if (pte_offset == -1) { return -1; } return ppc_hash64_pte_raddr(slb, pte, addr) & TARGET_PAGE_MASK; } void ppc_hash64_store_hpte(CPUPPCState *env, target_ulong pte_index, target_ulong pte0, target_ulong pte1) { CPUState *cs = CPU(ppc_env_get_cpu(env)); if (kvmppc_kern_htab) { return kvmppc_hash64_write_pte(env, pte_index, pte0, pte1); } pte_index *= HASH_PTE_SIZE_64; if (env->external_htab) { stq_p(env->external_htab + pte_index, pte0); stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64/2, pte1); } else { stq_phys(cs->as, env->htab_base + pte_index, pte0); stq_phys(cs->as, env->htab_base + pte_index + HASH_PTE_SIZE_64/2, pte1); } }