/* * QEMU KVM support -- ARM specific functions. * * Copyright (c) 2012 Linaro Limited * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #ifndef QEMU_KVM_ARM_H #define QEMU_KVM_ARM_H #include "sysemu/kvm.h" #include "exec/memory.h" /** * kvm_arm_vcpu_init: * @cs: CPUState * * Initialize (or reinitialize) the VCPU by invoking the * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature * bitmask specified in the CPUState. * * Returns: 0 if success else < 0 error code */ int kvm_arm_vcpu_init(CPUState *cs); /** * kvm_arm_register_device: * @mr: memory region for this device * @devid: the KVM device ID * @group: device control API group for setting addresses * @attr: device control API address type * @dev_fd: device control device file descriptor (or -1 if not supported) * * Remember the memory region @mr, and when it is mapped by the * machine model, tell the kernel that base address using the * KVM_ARM_SET_DEVICE_ADDRESS ioctl or the newer device control API. @devid * should be the ID of the device as defined by KVM_ARM_SET_DEVICE_ADDRESS or * the arm-vgic device in the device control API. * The machine model may map * and unmap the device multiple times; the kernel will only be told the final * address at the point where machine init is complete. */ void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, uint64_t attr, int dev_fd); /** * kvm_arm_init_cpreg_list: * @cs: CPUState * * Initialize the CPUState's cpreg list according to the kernel's * definition of what CPU registers it knows about (and throw away * the previous TCG-created cpreg list). * * Returns: 0 if success, else < 0 error code */ int kvm_arm_init_cpreg_list(ARMCPU *cpu); /** * kvm_arm_reg_syncs_via_cpreg_list * regidx: KVM register index * * Return true if this KVM register should be synchronized via the * cpreg list of arbitrary system registers, false if it is synchronized * by hand using code in kvm_arch_get/put_registers(). */ bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx); /** * kvm_arm_cpreg_level * regidx: KVM register index * * Return the level of this coprocessor/system register. Return value is * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE. */ int kvm_arm_cpreg_level(uint64_t regidx); /** * write_list_to_kvmstate: * @cpu: ARMCPU * @level: the state level to sync * * For each register listed in the ARMCPU cpreg_indexes list, write * its value from the cpreg_values list into the kernel (via ioctl). * This updates KVM's working data structures from TCG data or * from incoming migration state. * * Returns: true if all register values were updated correctly, * false if some register was unknown to the kernel or could not * be written (eg constant register with the wrong value). * Note that we do not stop early on failure -- we will attempt * writing all registers in the list. */ bool write_list_to_kvmstate(ARMCPU *cpu, int level); /** * write_kvmstate_to_list: * @cpu: ARMCPU * * For each register listed in the ARMCPU cpreg_indexes list, write * its value from the kernel into the cpreg_values list. This is used to * copy info from KVM's working data structures into TCG or * for outbound migration. * * Returns: true if all register values were read correctly, * false if some register was unknown or could not be read. * Note that we do not stop early on failure -- we will attempt * reading all registers in the list. */ bool write_kvmstate_to_list(ARMCPU *cpu); /** * kvm_arm_reset_vcpu: * @cpu: ARMCPU * * Called at reset time to kernel registers to their initial values. */ void kvm_arm_reset_vcpu(ARMCPU *cpu); #ifdef CONFIG_KVM /** * kvm_arm_create_scratch_host_vcpu: * @cpus_to_try: array of QEMU_KVM_ARM_TARGET_* values (terminated with * QEMU_KVM_ARM_TARGET_NONE) to try as fallback if the kernel does not * know the PREFERRED_TARGET ioctl. Passing NULL is the same as passing * an empty array. * @fdarray: filled in with kvmfd, vmfd, cpufd file descriptors in that order * @init: filled in with the necessary values for creating a host * vcpu. If NULL is provided, will not init the vCPU (though the cpufd * will still be set up). * * Create a scratch vcpu in its own VM of the type preferred by the host * kernel (as would be used for '-cpu host'), for purposes of probing it * for capabilities. * * Returns: true on success (and fdarray and init are filled in), * false on failure (and fdarray and init are not valid). */ bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, int *fdarray, struct kvm_vcpu_init *init); /** * kvm_arm_destroy_scratch_host_vcpu: * @fdarray: array of fds as set up by kvm_arm_create_scratch_host_vcpu * * Tear down the scratch vcpu created by kvm_arm_create_scratch_host_vcpu. */ void kvm_arm_destroy_scratch_host_vcpu(int *fdarray); #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU #define ARM_HOST_CPU_CLASS(klass) \ OBJECT_CLASS_CHECK(ARMHostCPUClass, (klass), TYPE_ARM_HOST_CPU) #define ARM_HOST_CPU_GET_CLASS(obj) \ OBJECT_GET_CLASS(ARMHostCPUClass, (obj), TYPE_ARM_HOST_CPU) typedef struct ARMHostCPUClass { /*< private >*/ ARMCPUClass parent_class; /*< public >*/ uint64_t features; uint32_t target; const char *dtb_compatible; } ARMHostCPUClass; /** * kvm_arm_get_host_cpu_features: * @ahcc: ARMHostCPUClass to fill in * * Probe the capabilities of the host kernel's preferred CPU and fill * in the ARMHostCPUClass struct accordingly. */ bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc); /** * kvm_arm_sync_mpstate_to_kvm * @cpu: ARMCPU * * If supported set the KVM MP_STATE based on QEMU's model. */ int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu); /** * kvm_arm_sync_mpstate_to_qemu * @cpu: ARMCPU * * If supported get the MP_STATE from KVM and store in QEMU's model. */ int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu); int kvm_arm_vgic_probe(void); #else static inline int kvm_arm_vgic_probe(void) { return 0; } #endif static inline const char *gic_class_name(void) { return kvm_irqchip_in_kernel() ? "kvm-arm-gic" : "arm_gic"; } /** * gicv3_class_name * * Return name of GICv3 class to use depending on whether KVM acceleration is * in use. May throw an error if the chosen implementation is not available. * * Returns: class name to use */ const char *gicv3_class_name(void); /** * kvm_arm_handle_debug: * @cs: CPUState * @debug_exit: debug part of the KVM exit structure * * Returns: TRUE if the debug exception was handled. */ bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit); /** * kvm_arm_hw_debug_active: * @cs: CPU State * * Return: TRUE if any hardware breakpoints in use. */ bool kvm_arm_hw_debug_active(CPUState *cs); /** * kvm_arm_copy_hw_debug_data: * * @ptr: kvm_guest_debug_arch structure * * Copy the architecture specific debug registers into the * kvm_guest_debug ioctl structure. */ struct kvm_guest_debug_arch; void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr); #endif