/* * QEMU support -- ARM Power Control specific functions. * * Copyright (c) 2016 Jean-Christophe Dubois * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include #include #include "internals.h" #include "arm-powerctl.h" #ifndef DEBUG_ARM_POWERCTL #define DEBUG_ARM_POWERCTL 0 #endif #define DPRINTF(fmt, args...) \ do { \ if (DEBUG_ARM_POWERCTL) { \ fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \ } \ } while (0) CPUState *arm_get_cpu_by_id(uint64_t id) { CPUState *cpu; DPRINTF("cpu %" PRId64 "\n", id); CPU_FOREACH(cpu) { ARMCPU *armcpu = ARM_CPU(cpu); if (armcpu->mp_affinity == id) { return cpu; } } qemu_log_mask(LOG_GUEST_ERROR, "[ARM]%s: Requesting unknown CPU %" PRId64 "\n", __func__, id); return NULL; } int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id, uint32_t target_el, bool target_aa64) { CPUState *target_cpu_state; ARMCPU *target_cpu; DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64 "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry, context_id); /* requested EL level need to be in the 1 to 3 range */ assert((target_el > 0) && (target_el < 4)); if (target_aa64 && (entry & 3)) { /* * if we are booting in AArch64 mode then "entry" needs to be 4 bytes * aligned. */ return QEMU_ARM_POWERCTL_INVALID_PARAM; } /* Retrieve the cpu we are powering up */ target_cpu_state = arm_get_cpu_by_id(cpuid); if (!target_cpu_state) { /* The cpu was not found */ return QEMU_ARM_POWERCTL_INVALID_PARAM; } target_cpu = ARM_CPU(target_cpu_state); if (!target_cpu->powered_off) { qemu_log_mask(LOG_GUEST_ERROR, "[ARM]%s: CPU %" PRId64 " is already on\n", __func__, cpuid); return QEMU_ARM_POWERCTL_ALREADY_ON; } /* * The newly brought CPU is requested to enter the exception level * "target_el" and be in the requested mode (AArch64 or AArch32). */ if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) || ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) { /* * The CPU does not support requested level */ return QEMU_ARM_POWERCTL_INVALID_PARAM; } if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) { /* * For now we don't support booting an AArch64 CPU in AArch32 mode * TODO: We should add this support later */ qemu_log_mask(LOG_UNIMP, "[ARM]%s: Starting AArch64 CPU %" PRId64 " in AArch32 mode is not supported yet\n", __func__, cpuid); return QEMU_ARM_POWERCTL_INVALID_PARAM; } /* Initialize the cpu we are turning on */ cpu_reset(target_cpu_state); target_cpu->powered_off = false; target_cpu_state->halted = 0; if (target_aa64) { if ((target_el < 3) && arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) { /* * As target mode is AArch64, we need to set lower * exception level (the requested level 2) to AArch64 */ target_cpu->env.cp15.scr_el3 |= SCR_RW; } if ((target_el < 2) && arm_feature(&target_cpu->env, ARM_FEATURE_EL2)) { /* * As target mode is AArch64, we need to set lower * exception level (the requested level 1) to AArch64 */ target_cpu->env.cp15.hcr_el2 |= HCR_RW; } target_cpu->env.pstate = aarch64_pstate_mode(target_el, true); } else { /* We are requested to boot in AArch32 mode */ static uint32_t mode_for_el[] = { 0, ARM_CPU_MODE_SVC, ARM_CPU_MODE_HYP, ARM_CPU_MODE_SVC }; cpsr_write(&target_cpu->env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw); } if (target_el == 3) { /* Processor is in secure mode */ target_cpu->env.cp15.scr_el3 &= ~SCR_NS; } else { /* Processor is not in secure mode */ target_cpu->env.cp15.scr_el3 |= SCR_NS; } /* We check if the started CPU is now at the correct level */ assert(target_el == arm_current_el(&target_cpu->env)); if (target_aa64) { target_cpu->env.xregs[0] = context_id; target_cpu->env.thumb = false; } else { target_cpu->env.regs[0] = context_id; target_cpu->env.thumb = entry & 1; entry &= 0xfffffffe; } /* Start the new CPU at the requested address */ cpu_set_pc(target_cpu_state, entry); /* We are good to go */ return QEMU_ARM_POWERCTL_RET_SUCCESS; } int arm_set_cpu_off(uint64_t cpuid) { CPUState *target_cpu_state; ARMCPU *target_cpu; DPRINTF("cpu %" PRId64 "\n", cpuid); /* change to the cpu we are powering up */ target_cpu_state = arm_get_cpu_by_id(cpuid); if (!target_cpu_state) { return QEMU_ARM_POWERCTL_INVALID_PARAM; } target_cpu = ARM_CPU(target_cpu_state); if (target_cpu->powered_off) { qemu_log_mask(LOG_GUEST_ERROR, "[ARM]%s: CPU %" PRId64 " is already off\n", __func__, cpuid); return QEMU_ARM_POWERCTL_IS_OFF; } target_cpu->powered_off = true; target_cpu_state->halted = 1; target_cpu_state->exception_index = EXCP_HLT; cpu_loop_exit(target_cpu_state); /* notreached */ return QEMU_ARM_POWERCTL_RET_SUCCESS; } int arm_reset_cpu(uint64_t cpuid) { CPUState *target_cpu_state; ARMCPU *target_cpu; DPRINTF("cpu %" PRId64 "\n", cpuid); /* change to the cpu we are resetting */ target_cpu_state = arm_get_cpu_by_id(cpuid); if (!target_cpu_state) { return QEMU_ARM_POWERCTL_INVALID_PARAM; } target_cpu = ARM_CPU(target_cpu_state); if (target_cpu->powered_off) { qemu_log_mask(LOG_GUEST_ERROR, "[ARM]%s: CPU %" PRId64 " is off\n", __func__, cpuid); return QEMU_ARM_POWERCTL_IS_OFF; } /* Reset the cpu */ cpu_reset(target_cpu_state); return QEMU_ARM_POWERCTL_RET_SUCCESS; }