/* * Alpha emulation cpu micro-operations helpers for qemu. * * Copyright (c) 2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "cpu.h" #include "dyngen-exec.h" #include "host-utils.h" #include "softfloat.h" #include "helper.h" #include "sysemu.h" #include "qemu-timer.h" /*****************************************************************************/ /* Exceptions processing helpers */ uint64_t helper_load_pcc (void) { #ifndef CONFIG_USER_ONLY /* In system mode we have access to a decent high-resolution clock. In order to make OS-level time accounting work with the RPCC, present it with a well-timed clock fixed at 250MHz. */ return (((uint64_t)env->pcc_ofs << 32) | (uint32_t)(qemu_get_clock_ns(vm_clock) >> 2)); #else /* In user-mode, vm_clock doesn't exist. Just pass through the host cpu clock ticks. Also, don't bother taking PCC_OFS into account. */ return (uint32_t)cpu_get_real_ticks(); #endif } uint64_t helper_addqv (uint64_t op1, uint64_t op2) { uint64_t tmp = op1; op1 += op2; if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) { arith_excp(env, GETPC(), EXC_M_IOV, 0); } return op1; } uint64_t helper_addlv (uint64_t op1, uint64_t op2) { uint64_t tmp = op1; op1 = (uint32_t)(op1 + op2); if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) { arith_excp(env, GETPC(), EXC_M_IOV, 0); } return op1; } uint64_t helper_subqv (uint64_t op1, uint64_t op2) { uint64_t res; res = op1 - op2; if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) { arith_excp(env, GETPC(), EXC_M_IOV, 0); } return res; } uint64_t helper_sublv (uint64_t op1, uint64_t op2) { uint32_t res; res = op1 - op2; if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) { arith_excp(env, GETPC(), EXC_M_IOV, 0); } return res; } uint64_t helper_mullv (uint64_t op1, uint64_t op2) { int64_t res = (int64_t)op1 * (int64_t)op2; if (unlikely((int32_t)res != res)) { arith_excp(env, GETPC(), EXC_M_IOV, 0); } return (int64_t)((int32_t)res); } uint64_t helper_mulqv (uint64_t op1, uint64_t op2) { uint64_t tl, th; muls64(&tl, &th, op1, op2); /* If th != 0 && th != -1, then we had an overflow */ if (unlikely((th + 1) > 1)) { arith_excp(env, GETPC(), EXC_M_IOV, 0); } return tl; } /* PALcode support special instructions */ #if !defined (CONFIG_USER_ONLY) void helper_hw_ret (uint64_t a) { env->pc = a & ~3; env->intr_flag = 0; env->lock_addr = -1; if ((a & 1) == 0) { env->pal_mode = 0; swap_shadow_regs(env); } } void helper_tbia(void) { tlb_flush(env, 1); } void helper_tbis(uint64_t p) { tlb_flush_page(env, p); } void helper_halt(uint64_t restart) { if (restart) { qemu_system_reset_request(); } else { qemu_system_shutdown_request(); } } uint64_t helper_get_time(void) { return qemu_get_clock_ns(rtc_clock); } void helper_set_alarm(uint64_t expire) { if (expire) { env->alarm_expire = expire; qemu_mod_timer(env->alarm_timer, expire); } else { qemu_del_timer(env->alarm_timer); } } #endif /*****************************************************************************/ /* Softmmu support */ #if !defined (CONFIG_USER_ONLY) uint64_t helper_ldl_phys(uint64_t p) { return (int32_t)ldl_phys(p); } uint64_t helper_ldq_phys(uint64_t p) { return ldq_phys(p); } uint64_t helper_ldl_l_phys(uint64_t p) { env->lock_addr = p; return env->lock_value = (int32_t)ldl_phys(p); } uint64_t helper_ldq_l_phys(uint64_t p) { env->lock_addr = p; return env->lock_value = ldl_phys(p); } void helper_stl_phys(uint64_t p, uint64_t v) { stl_phys(p, v); } void helper_stq_phys(uint64_t p, uint64_t v) { stq_phys(p, v); } uint64_t helper_stl_c_phys(uint64_t p, uint64_t v) { uint64_t ret = 0; if (p == env->lock_addr) { int32_t old = ldl_phys(p); if (old == (int32_t)env->lock_value) { stl_phys(p, v); ret = 1; } } env->lock_addr = -1; return ret; } uint64_t helper_stq_c_phys(uint64_t p, uint64_t v) { uint64_t ret = 0; if (p == env->lock_addr) { uint64_t old = ldq_phys(p); if (old == env->lock_value) { stq_phys(p, v); ret = 1; } } env->lock_addr = -1; return ret; } static void QEMU_NORETURN do_unaligned_access(target_ulong addr, int is_write, int is_user, void *retaddr) { uint64_t pc; uint32_t insn; do_restore_state(env, retaddr); pc = env->pc; insn = ldl_code(pc); env->trap_arg0 = addr; env->trap_arg1 = insn >> 26; /* opcode */ env->trap_arg2 = (insn >> 21) & 31; /* dest regno */ env->exception_index = EXCP_UNALIGN; env->error_code = 0; cpu_loop_exit(env); } void QEMU_NORETURN cpu_unassigned_access(CPUAlphaState *env1, target_phys_addr_t addr, int is_write, int is_exec, int unused, int size) { env = env1; env->trap_arg0 = addr; env->trap_arg1 = is_write; dynamic_excp(env1, GETPC(), EXCP_MCHK, 0); } #include "softmmu_exec.h" #define MMUSUFFIX _mmu #define ALIGNED_ONLY #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" /* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ /* XXX: fix it to restore all registers */ void tlb_fill(CPUAlphaState *env1, target_ulong addr, int is_write, int mmu_idx, void *retaddr) { CPUAlphaState *saved_env; int ret; saved_env = env; env = env1; ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx); if (unlikely(ret != 0)) { do_restore_state(env, retaddr); /* Exception index and error code are already set */ cpu_loop_exit(env); } env = saved_env; } #endif