/* * Alpha emulation cpu definitions for qemu. * * Copyright (c) 2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #if !defined (__CPU_ALPHA_H__) #define __CPU_ALPHA_H__ #include "config.h" #define TARGET_LONG_BITS 64 #define CPUState struct CPUAlphaState #include "cpu-defs.h" #include #include "softfloat.h" #define TARGET_HAS_ICE 1 #define ELF_MACHINE EM_ALPHA #define ICACHE_LINE_SIZE 32 #define DCACHE_LINE_SIZE 32 #define TARGET_PAGE_BITS 13 /* ??? EV4 has 34 phys addr bits, EV5 has 40, EV6 has 44. */ #define TARGET_PHYS_ADDR_SPACE_BITS 44 #define TARGET_VIRT_ADDR_SPACE_BITS (30 + TARGET_PAGE_BITS) /* Alpha major type */ enum { ALPHA_EV3 = 1, ALPHA_EV4 = 2, ALPHA_SIM = 3, ALPHA_LCA = 4, ALPHA_EV5 = 5, /* 21164 */ ALPHA_EV45 = 6, /* 21064A */ ALPHA_EV56 = 7, /* 21164A */ }; /* EV4 minor type */ enum { ALPHA_EV4_2 = 0, ALPHA_EV4_3 = 1, }; /* LCA minor type */ enum { ALPHA_LCA_1 = 1, /* 21066 */ ALPHA_LCA_2 = 2, /* 20166 */ ALPHA_LCA_3 = 3, /* 21068 */ ALPHA_LCA_4 = 4, /* 21068 */ ALPHA_LCA_5 = 5, /* 21066A */ ALPHA_LCA_6 = 6, /* 21068A */ }; /* EV5 minor type */ enum { ALPHA_EV5_1 = 1, /* Rev BA, CA */ ALPHA_EV5_2 = 2, /* Rev DA, EA */ ALPHA_EV5_3 = 3, /* Pass 3 */ ALPHA_EV5_4 = 4, /* Pass 3.2 */ ALPHA_EV5_5 = 5, /* Pass 4 */ }; /* EV45 minor type */ enum { ALPHA_EV45_1 = 1, /* Pass 1 */ ALPHA_EV45_2 = 2, /* Pass 1.1 */ ALPHA_EV45_3 = 3, /* Pass 2 */ }; /* EV56 minor type */ enum { ALPHA_EV56_1 = 1, /* Pass 1 */ ALPHA_EV56_2 = 2, /* Pass 2 */ }; enum { IMPLVER_2106x = 0, /* EV4, EV45 & LCA45 */ IMPLVER_21164 = 1, /* EV5, EV56 & PCA45 */ IMPLVER_21264 = 2, /* EV6, EV67 & EV68x */ IMPLVER_21364 = 3, /* EV7 & EV79 */ }; enum { AMASK_BWX = 0x00000001, AMASK_FIX = 0x00000002, AMASK_CIX = 0x00000004, AMASK_MVI = 0x00000100, AMASK_TRAP = 0x00000200, AMASK_PREFETCH = 0x00001000, }; enum { VAX_ROUND_NORMAL = 0, VAX_ROUND_CHOPPED, }; enum { IEEE_ROUND_NORMAL = 0, IEEE_ROUND_DYNAMIC, IEEE_ROUND_PLUS, IEEE_ROUND_MINUS, IEEE_ROUND_CHOPPED, }; /* IEEE floating-point operations encoding */ /* Trap mode */ enum { FP_TRAP_I = 0x0, FP_TRAP_U = 0x1, FP_TRAP_S = 0x4, FP_TRAP_SU = 0x5, FP_TRAP_SUI = 0x7, }; /* Rounding mode */ enum { FP_ROUND_CHOPPED = 0x0, FP_ROUND_MINUS = 0x1, FP_ROUND_NORMAL = 0x2, FP_ROUND_DYNAMIC = 0x3, }; /* FPCR bits */ #define FPCR_SUM (1ULL << 63) #define FPCR_INED (1ULL << 62) #define FPCR_UNFD (1ULL << 61) #define FPCR_UNDZ (1ULL << 60) #define FPCR_DYN_SHIFT 58 #define FPCR_DYN_CHOPPED (0ULL << FPCR_DYN_SHIFT) #define FPCR_DYN_MINUS (1ULL << FPCR_DYN_SHIFT) #define FPCR_DYN_NORMAL (2ULL << FPCR_DYN_SHIFT) #define FPCR_DYN_PLUS (3ULL << FPCR_DYN_SHIFT) #define FPCR_DYN_MASK (3ULL << FPCR_DYN_SHIFT) #define FPCR_IOV (1ULL << 57) #define FPCR_INE (1ULL << 56) #define FPCR_UNF (1ULL << 55) #define FPCR_OVF (1ULL << 54) #define FPCR_DZE (1ULL << 53) #define FPCR_INV (1ULL << 52) #define FPCR_OVFD (1ULL << 51) #define FPCR_DZED (1ULL << 50) #define FPCR_INVD (1ULL << 49) #define FPCR_DNZ (1ULL << 48) #define FPCR_DNOD (1ULL << 47) #define FPCR_STATUS_MASK (FPCR_IOV | FPCR_INE | FPCR_UNF \ | FPCR_OVF | FPCR_DZE | FPCR_INV) /* The silly software trap enables implemented by the kernel emulation. These are more or less architecturally required, since the real hardware has read-as-zero bits in the FPCR when the features aren't implemented. For the purposes of QEMU, we pretend the FPCR can hold everything. */ #define SWCR_TRAP_ENABLE_INV (1ULL << 1) #define SWCR_TRAP_ENABLE_DZE (1ULL << 2) #define SWCR_TRAP_ENABLE_OVF (1ULL << 3) #define SWCR_TRAP_ENABLE_UNF (1ULL << 4) #define SWCR_TRAP_ENABLE_INE (1ULL << 5) #define SWCR_TRAP_ENABLE_DNO (1ULL << 6) #define SWCR_TRAP_ENABLE_MASK ((1ULL << 7) - (1ULL << 1)) #define SWCR_MAP_DMZ (1ULL << 12) #define SWCR_MAP_UMZ (1ULL << 13) #define SWCR_MAP_MASK (SWCR_MAP_DMZ | SWCR_MAP_UMZ) #define SWCR_STATUS_INV (1ULL << 17) #define SWCR_STATUS_DZE (1ULL << 18) #define SWCR_STATUS_OVF (1ULL << 19) #define SWCR_STATUS_UNF (1ULL << 20) #define SWCR_STATUS_INE (1ULL << 21) #define SWCR_STATUS_DNO (1ULL << 22) #define SWCR_STATUS_MASK ((1ULL << 23) - (1ULL << 17)) #define SWCR_MASK (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK) /* MMU modes definitions */ /* Alpha has 5 MMU modes: PALcode, kernel, executive, supervisor, and user. The Unix PALcode only exposes the kernel and user modes; presumably executive and supervisor are used by VMS. PALcode itself uses physical mode for code and kernel mode for data; there are PALmode instructions that can access data via physical mode or via an os-installed "alternate mode", which is one of the 4 above. QEMU does not currently properly distinguish between code/data when looking up addresses. To avoid having to address this issue, our emulated PALcode will cheat and use the KSEG mapping for its code+data rather than physical addresses. Moreover, we're only emulating Unix PALcode, and not attempting VMS. All of which allows us to drop all but kernel and user modes. Elide the unused MMU modes to save space. */ #define NB_MMU_MODES 2 #define MMU_MODE0_SUFFIX _kernel #define MMU_MODE1_SUFFIX _user #define MMU_KERNEL_IDX 0 #define MMU_USER_IDX 1 typedef struct CPUAlphaState CPUAlphaState; struct CPUAlphaState { uint64_t ir[31]; float64 fir[31]; uint64_t pc; uint64_t unique; uint64_t lock_addr; uint64_t lock_st_addr; uint64_t lock_value; float_status fp_status; /* The following fields make up the FPCR, but in FP_STATUS format. */ uint8_t fpcr_exc_status; uint8_t fpcr_exc_mask; uint8_t fpcr_dyn_round; uint8_t fpcr_flush_to_zero; uint8_t fpcr_dnz; uint8_t fpcr_dnod; uint8_t fpcr_undz; /* The Internal Processor Registers. Some of these we assume always exist for use in user-mode. */ uint8_t ps; uint8_t intr_flag; uint8_t pal_mode; /* These pass data from the exception logic in the translator and helpers to the OS entry point. This is used for both system emulation and user-mode. */ uint64_t trap_arg0; uint64_t trap_arg1; uint64_t trap_arg2; #if TARGET_LONG_BITS > HOST_LONG_BITS /* temporary fixed-point registers * used to emulate 64 bits target on 32 bits hosts */ target_ulong t0, t1; #endif /* Those resources are used only in Qemu core */ CPU_COMMON int error_code; uint32_t features; uint32_t amask; int implver; }; #define cpu_init cpu_alpha_init #define cpu_exec cpu_alpha_exec #define cpu_gen_code cpu_alpha_gen_code #define cpu_signal_handler cpu_alpha_signal_handler static inline int cpu_mmu_index (CPUState *env) { return (env->ps >> 3) & 1; } #include "cpu-all.h" enum { FEATURE_ASN = 0x00000001, FEATURE_SPS = 0x00000002, FEATURE_VIRBND = 0x00000004, FEATURE_TBCHK = 0x00000008, }; enum { EXCP_RESET = 0x0000, EXCP_MCHK = 0x0020, EXCP_ARITH = 0x0060, EXCP_HW_INTERRUPT = 0x00E0, EXCP_DFAULT = 0x01E0, EXCP_DTB_MISS_PAL = 0x09E0, EXCP_ITB_MISS = 0x03E0, EXCP_ITB_ACV = 0x07E0, EXCP_DTB_MISS_NATIVE = 0x08E0, EXCP_UNALIGN = 0x11E0, EXCP_OPCDEC = 0x13E0, EXCP_FEN = 0x17E0, EXCP_CALL_PAL = 0x2000, EXCP_CALL_PALP = 0x3000, EXCP_CALL_PALE = 0x4000, /* Pseudo exception for console */ EXCP_CONSOLE_DISPATCH = 0x4001, EXCP_CONSOLE_FIXUP = 0x4002, EXCP_STL_C = 0x4003, EXCP_STQ_C = 0x4004, }; /* Arithmetic exception */ #define EXC_M_IOV (1<<16) /* Integer Overflow */ #define EXC_M_INE (1<<15) /* Inexact result */ #define EXC_M_UNF (1<<14) /* Underflow */ #define EXC_M_FOV (1<<13) /* Overflow */ #define EXC_M_DZE (1<<12) /* Division by zero */ #define EXC_M_INV (1<<11) /* Invalid operation */ #define EXC_M_SWC (1<<10) /* Software completion */ enum { IR_V0 = 0, IR_T0 = 1, IR_T1 = 2, IR_T2 = 3, IR_T3 = 4, IR_T4 = 5, IR_T5 = 6, IR_T6 = 7, IR_T7 = 8, IR_S0 = 9, IR_S1 = 10, IR_S2 = 11, IR_S3 = 12, IR_S4 = 13, IR_S5 = 14, IR_S6 = 15, IR_FP = IR_S6, IR_A0 = 16, IR_A1 = 17, IR_A2 = 18, IR_A3 = 19, IR_A4 = 20, IR_A5 = 21, IR_T8 = 22, IR_T9 = 23, IR_T10 = 24, IR_T11 = 25, IR_RA = 26, IR_T12 = 27, IR_PV = IR_T12, IR_AT = 28, IR_GP = 29, IR_SP = 30, IR_ZERO = 31, }; CPUAlphaState * cpu_alpha_init (const char *cpu_model); int cpu_alpha_exec(CPUAlphaState *s); /* you can call this signal handler from your SIGBUS and SIGSEGV signal handlers to inform the virtual CPU of exceptions. non zero is returned if the signal was handled by the virtual CPU. */ int cpu_alpha_signal_handler(int host_signum, void *pinfo, void *puc); int cpu_alpha_handle_mmu_fault (CPUState *env, uint64_t address, int rw, int mmu_idx, int is_softmmu); #define cpu_handle_mmu_fault cpu_alpha_handle_mmu_fault void do_interrupt (CPUState *env); uint64_t cpu_alpha_load_fpcr (CPUState *env); void cpu_alpha_store_fpcr (CPUState *env, uint64_t val); static inline void cpu_get_tb_cpu_state(CPUState *env, target_ulong *pc, target_ulong *cs_base, int *flags) { *pc = env->pc; *cs_base = 0; *flags = env->ps; } #if defined(CONFIG_USER_ONLY) static inline void cpu_clone_regs(CPUState *env, target_ulong newsp) { if (newsp) { env->ir[IR_SP] = newsp; } env->ir[IR_V0] = 0; env->ir[IR_A3] = 0; } static inline void cpu_set_tls(CPUState *env, target_ulong newtls) { env->unique = newtls; } #endif #endif /* !defined (__CPU_ALPHA_H__) */