/* * Software MMU support * * Generate helpers used by TCG for qemu_ld/st ops and code load * functions. * * Included from target op helpers and exec.c. * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/timer.h" #include "exec/address-spaces.h" #include "exec/memory.h" #define DATA_SIZE (1 << SHIFT) #if DATA_SIZE == 8 #define SUFFIX q #define LSUFFIX q #define SDATA_TYPE int64_t #define DATA_TYPE uint64_t #elif DATA_SIZE == 4 #define SUFFIX l #define LSUFFIX l #define SDATA_TYPE int32_t #define DATA_TYPE uint32_t #elif DATA_SIZE == 2 #define SUFFIX w #define LSUFFIX uw #define SDATA_TYPE int16_t #define DATA_TYPE uint16_t #elif DATA_SIZE == 1 #define SUFFIX b #define LSUFFIX ub #define SDATA_TYPE int8_t #define DATA_TYPE uint8_t #else #error unsupported data size #endif /* For the benefit of TCG generated code, we want to avoid the complication of ABI-specific return type promotion and always return a value extended to the register size of the host. This is tcg_target_long, except in the case of a 32-bit host and 64-bit data, and for that we always have uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */ #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8 # define WORD_TYPE DATA_TYPE # define USUFFIX SUFFIX #else # define WORD_TYPE tcg_target_ulong # define USUFFIX glue(u, SUFFIX) # define SSUFFIX glue(s, SUFFIX) #endif #ifdef SOFTMMU_CODE_ACCESS #define READ_ACCESS_TYPE MMU_INST_FETCH #define ADDR_READ addr_code #else #define READ_ACCESS_TYPE MMU_DATA_LOAD #define ADDR_READ addr_read #endif #if DATA_SIZE == 8 # define BSWAP(X) bswap64(X) #elif DATA_SIZE == 4 # define BSWAP(X) bswap32(X) #elif DATA_SIZE == 2 # define BSWAP(X) bswap16(X) #else # define BSWAP(X) (X) #endif #ifdef TARGET_WORDS_BIGENDIAN # define TGT_BE(X) (X) # define TGT_LE(X) BSWAP(X) #else # define TGT_BE(X) BSWAP(X) # define TGT_LE(X) (X) #endif #if DATA_SIZE == 1 # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX) # define helper_be_ld_name helper_le_ld_name # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX) # define helper_be_lds_name helper_le_lds_name # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX) # define helper_be_st_name helper_le_st_name #else # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX) # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX) # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX) # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX) # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX) # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX) #endif #ifdef TARGET_WORDS_BIGENDIAN # define helper_te_ld_name helper_be_ld_name # define helper_te_st_name helper_be_st_name #else # define helper_te_ld_name helper_le_ld_name # define helper_te_st_name helper_le_st_name #endif #ifndef SOFTMMU_CODE_ACCESS static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env, CPUIOTLBEntry *iotlbentry, target_ulong addr, uintptr_t retaddr) { uint64_t val; CPUState *cpu = ENV_GET_CPU(env); hwaddr physaddr = iotlbentry->addr; MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs); physaddr = (physaddr & TARGET_PAGE_MASK) + addr; cpu->mem_io_pc = retaddr; if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { cpu_io_recompile(cpu, retaddr); } cpu->mem_io_vaddr = addr; memory_region_dispatch_read(mr, physaddr, &val, 1 << SHIFT, iotlbentry->attrs); return val; } #endif WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr) { unsigned mmu_idx = get_mmuidx(oi); int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; int a_bits = get_alignment_bits(get_memop(oi)); uintptr_t haddr; DATA_TYPE res; /* Adjust the given return address. */ retaddr -= GETPC_ADJ; if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) { cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); } /* If the TLB entry is for a different page, reload and try again. */ if ((addr & TARGET_PAGE_MASK) != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { if (!VICTIM_TLB_HIT(ADDR_READ, addr)) { tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); } tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; } /* Handle an IO access. */ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { CPUIOTLBEntry *iotlbentry; if ((addr & (DATA_SIZE - 1)) != 0) { goto do_unaligned_access; } iotlbentry = &env->iotlb[mmu_idx][index]; /* ??? Note that the io helpers always read data in the target byte ordering. We should push the LE/BE request down into io. */ res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr); res = TGT_LE(res); return res; } /* Handle slow unaligned access (it spans two pages or IO). */ if (DATA_SIZE > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 >= TARGET_PAGE_SIZE)) { target_ulong addr1, addr2; DATA_TYPE res1, res2; unsigned shift; do_unaligned_access: addr1 = addr & ~(DATA_SIZE - 1); addr2 = addr1 + DATA_SIZE; /* Note the adjustment at the beginning of the function. Undo that for the recursion. */ res1 = helper_le_ld_name(env, addr1, oi, retaddr + GETPC_ADJ); res2 = helper_le_ld_name(env, addr2, oi, retaddr + GETPC_ADJ); shift = (addr & (DATA_SIZE - 1)) * 8; /* Little-endian combine. */ res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift)); return res; } haddr = addr + env->tlb_table[mmu_idx][index].addend; #if DATA_SIZE == 1 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr); #else res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr); #endif return res; } #if DATA_SIZE > 1 WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr) { unsigned mmu_idx = get_mmuidx(oi); int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; int a_bits = get_alignment_bits(get_memop(oi)); uintptr_t haddr; DATA_TYPE res; /* Adjust the given return address. */ retaddr -= GETPC_ADJ; if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) { cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); } /* If the TLB entry is for a different page, reload and try again. */ if ((addr & TARGET_PAGE_MASK) != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { if (!VICTIM_TLB_HIT(ADDR_READ, addr)) { tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); } tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; } /* Handle an IO access. */ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { CPUIOTLBEntry *iotlbentry; if ((addr & (DATA_SIZE - 1)) != 0) { goto do_unaligned_access; } iotlbentry = &env->iotlb[mmu_idx][index]; /* ??? Note that the io helpers always read data in the target byte ordering. We should push the LE/BE request down into io. */ res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr); res = TGT_BE(res); return res; } /* Handle slow unaligned access (it spans two pages or IO). */ if (DATA_SIZE > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 >= TARGET_PAGE_SIZE)) { target_ulong addr1, addr2; DATA_TYPE res1, res2; unsigned shift; do_unaligned_access: addr1 = addr & ~(DATA_SIZE - 1); addr2 = addr1 + DATA_SIZE; /* Note the adjustment at the beginning of the function. Undo that for the recursion. */ res1 = helper_be_ld_name(env, addr1, oi, retaddr + GETPC_ADJ); res2 = helper_be_ld_name(env, addr2, oi, retaddr + GETPC_ADJ); shift = (addr & (DATA_SIZE - 1)) * 8; /* Big-endian combine. */ res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift)); return res; } haddr = addr + env->tlb_table[mmu_idx][index].addend; res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr); return res; } #endif /* DATA_SIZE > 1 */ #ifndef SOFTMMU_CODE_ACCESS /* Provide signed versions of the load routines as well. We can of course avoid this for 64-bit data, or for 32-bit data on 32-bit host. */ #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr) { return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr); } # if DATA_SIZE > 1 WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr) { return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr); } # endif #endif static inline void glue(io_write, SUFFIX)(CPUArchState *env, CPUIOTLBEntry *iotlbentry, DATA_TYPE val, target_ulong addr, uintptr_t retaddr) { CPUState *cpu = ENV_GET_CPU(env); hwaddr physaddr = iotlbentry->addr; MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs); physaddr = (physaddr & TARGET_PAGE_MASK) + addr; if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { cpu_io_recompile(cpu, retaddr); } cpu->mem_io_vaddr = addr; cpu->mem_io_pc = retaddr; memory_region_dispatch_write(mr, physaddr, val, 1 << SHIFT, iotlbentry->attrs); } void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, TCGMemOpIdx oi, uintptr_t retaddr) { unsigned mmu_idx = get_mmuidx(oi); int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; int a_bits = get_alignment_bits(get_memop(oi)); uintptr_t haddr; /* Adjust the given return address. */ retaddr -= GETPC_ADJ; if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) { cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } /* If the TLB entry is for a different page, reload and try again. */ if ((addr & TARGET_PAGE_MASK) != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { if (!VICTIM_TLB_HIT(addr_write, addr)) { tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } tlb_addr = env->tlb_table[mmu_idx][index].addr_write; } /* Handle an IO access. */ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { CPUIOTLBEntry *iotlbentry; if ((addr & (DATA_SIZE - 1)) != 0) { goto do_unaligned_access; } iotlbentry = &env->iotlb[mmu_idx][index]; /* ??? Note that the io helpers always read data in the target byte ordering. We should push the LE/BE request down into io. */ val = TGT_LE(val); glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr); return; } /* Handle slow unaligned access (it spans two pages or IO). */ if (DATA_SIZE > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 >= TARGET_PAGE_SIZE)) { int i, index2; target_ulong page2, tlb_addr2; do_unaligned_access: /* Ensure the second page is in the TLB. Note that the first page is already guaranteed to be filled, and that the second page cannot evict the first. */ page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK; index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write; if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK)) && !VICTIM_TLB_HIT(addr_write, page2)) { tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE, mmu_idx, retaddr); } /* XXX: not efficient, but simple. */ /* This loop must go in the forward direction to avoid issues with self-modifying code in Windows 64-bit. */ for (i = 0; i < DATA_SIZE; ++i) { /* Little-endian extract. */ uint8_t val8 = val >> (i * 8); /* Note the adjustment at the beginning of the function. Undo that for the recursion. */ glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, oi, retaddr + GETPC_ADJ); } return; } haddr = addr + env->tlb_table[mmu_idx][index].addend; #if DATA_SIZE == 1 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val); #else glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val); #endif } #if DATA_SIZE > 1 void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, TCGMemOpIdx oi, uintptr_t retaddr) { unsigned mmu_idx = get_mmuidx(oi); int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; int a_bits = get_alignment_bits(get_memop(oi)); uintptr_t haddr; /* Adjust the given return address. */ retaddr -= GETPC_ADJ; if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) { cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } /* If the TLB entry is for a different page, reload and try again. */ if ((addr & TARGET_PAGE_MASK) != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { if (!VICTIM_TLB_HIT(addr_write, addr)) { tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } tlb_addr = env->tlb_table[mmu_idx][index].addr_write; } /* Handle an IO access. */ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { CPUIOTLBEntry *iotlbentry; if ((addr & (DATA_SIZE - 1)) != 0) { goto do_unaligned_access; } iotlbentry = &env->iotlb[mmu_idx][index]; /* ??? Note that the io helpers always read data in the target byte ordering. We should push the LE/BE request down into io. */ val = TGT_BE(val); glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr); return; } /* Handle slow unaligned access (it spans two pages or IO). */ if (DATA_SIZE > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 >= TARGET_PAGE_SIZE)) { int i, index2; target_ulong page2, tlb_addr2; do_unaligned_access: /* Ensure the second page is in the TLB. Note that the first page is already guaranteed to be filled, and that the second page cannot evict the first. */ page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK; index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write; if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK)) && !VICTIM_TLB_HIT(addr_write, page2)) { tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE, mmu_idx, retaddr); } /* XXX: not efficient, but simple */ /* This loop must go in the forward direction to avoid issues with self-modifying code. */ for (i = 0; i < DATA_SIZE; ++i) { /* Big-endian extract. */ uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8)); /* Note the adjustment at the beginning of the function. Undo that for the recursion. */ glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, oi, retaddr + GETPC_ADJ); } return; } haddr = addr + env->tlb_table[mmu_idx][index].addend; glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val); } #endif /* DATA_SIZE > 1 */ #if DATA_SIZE == 1 /* Probe for whether the specified guest write access is permitted. * If it is not permitted then an exception will be taken in the same * way as if this were a real write access (and we will not return). * Otherwise the function will return, and there will be a valid * entry in the TLB for this access. */ void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx, uintptr_t retaddr) { int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; if ((addr & TARGET_PAGE_MASK) != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { /* TLB entry is for a different page */ if (!VICTIM_TLB_HIT(addr_write, addr)) { tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } } } #endif #endif /* !defined(SOFTMMU_CODE_ACCESS) */ #undef READ_ACCESS_TYPE #undef SHIFT #undef DATA_TYPE #undef SUFFIX #undef LSUFFIX #undef DATA_SIZE #undef ADDR_READ #undef WORD_TYPE #undef SDATA_TYPE #undef USUFFIX #undef SSUFFIX #undef BSWAP #undef TGT_BE #undef TGT_LE #undef CPU_BE #undef CPU_LE #undef helper_le_ld_name #undef helper_be_ld_name #undef helper_le_lds_name #undef helper_be_lds_name #undef helper_le_st_name #undef helper_be_st_name #undef helper_te_ld_name #undef helper_te_st_name