/* * Software MMU support * * Generate inline load/store functions for one MMU mode and data * size. * * Generate a store function as well as signed and unsigned loads. For * 32 and 64 bit cases, also generate floating point functions with * the same size. * * Not used directly but included from softmmu_exec.h and exec-all.h. * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #if DATA_SIZE == 8 #define SUFFIX q #define USUFFIX q #define DATA_TYPE uint64_t #elif DATA_SIZE == 4 #define SUFFIX l #define USUFFIX l #define DATA_TYPE uint32_t #elif DATA_SIZE == 2 #define SUFFIX w #define USUFFIX uw #define DATA_TYPE uint16_t #define DATA_STYPE int16_t #elif DATA_SIZE == 1 #define SUFFIX b #define USUFFIX ub #define DATA_TYPE uint8_t #define DATA_STYPE int8_t #else #error unsupported data size #endif #if ACCESS_TYPE < (NB_MMU_MODES) #define CPU_MMU_INDEX ACCESS_TYPE #define MMUSUFFIX _mmu #elif ACCESS_TYPE == (NB_MMU_MODES) #define CPU_MMU_INDEX (cpu_mmu_index(env)) #define MMUSUFFIX _mmu #elif ACCESS_TYPE == (NB_MMU_MODES + 1) #define CPU_MMU_INDEX (cpu_mmu_index(env)) #define MMUSUFFIX _cmmu #else #error invalid ACCESS_TYPE #endif #if DATA_SIZE == 8 #define RES_TYPE uint64_t #else #define RES_TYPE uint32_t #endif #if ACCESS_TYPE == (NB_MMU_MODES + 1) #define ADDR_READ addr_code #else #define ADDR_READ addr_read #endif /* generic load/store macros */ static inline RES_TYPE glue(glue(ld, USUFFIX), MEMSUFFIX)(target_ulong ptr) { int page_index; RES_TYPE res; target_ulong addr; unsigned long physaddr; int mmu_idx; addr = ptr; page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); mmu_idx = CPU_MMU_INDEX; if (unlikely(env->tlb_table[mmu_idx][page_index].ADDR_READ != (addr & (TARGET_PAGE_MASK | (DATA_SIZE - 1))))) { res = glue(glue(__ld, SUFFIX), MMUSUFFIX)(addr, mmu_idx); } else { physaddr = addr + env->tlb_table[mmu_idx][page_index].addend; res = glue(glue(ld, USUFFIX), _raw)((uint8_t *)physaddr); } return res; } #if DATA_SIZE <= 2 static inline int glue(glue(lds, SUFFIX), MEMSUFFIX)(target_ulong ptr) { int res, page_index; target_ulong addr; unsigned long physaddr; int mmu_idx; addr = ptr; page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); mmu_idx = CPU_MMU_INDEX; if (unlikely(env->tlb_table[mmu_idx][page_index].ADDR_READ != (addr & (TARGET_PAGE_MASK | (DATA_SIZE - 1))))) { res = (DATA_STYPE)glue(glue(__ld, SUFFIX), MMUSUFFIX)(addr, mmu_idx); } else { physaddr = addr + env->tlb_table[mmu_idx][page_index].addend; res = glue(glue(lds, SUFFIX), _raw)((uint8_t *)physaddr); } return res; } #endif #if ACCESS_TYPE != (NB_MMU_MODES + 1) /* generic store macro */ static inline void glue(glue(st, SUFFIX), MEMSUFFIX)(target_ulong ptr, RES_TYPE v) { int page_index; target_ulong addr; unsigned long physaddr; int mmu_idx; addr = ptr; page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); mmu_idx = CPU_MMU_INDEX; if (unlikely(env->tlb_table[mmu_idx][page_index].addr_write != (addr & (TARGET_PAGE_MASK | (DATA_SIZE - 1))))) { glue(glue(__st, SUFFIX), MMUSUFFIX)(addr, v, mmu_idx); } else { physaddr = addr + env->tlb_table[mmu_idx][page_index].addend; glue(glue(st, SUFFIX), _raw)((uint8_t *)physaddr, v); } } #endif /* ACCESS_TYPE != (NB_MMU_MODES + 1) */ #if ACCESS_TYPE != (NB_MMU_MODES + 1) #if DATA_SIZE == 8 static inline float64 glue(ldfq, MEMSUFFIX)(target_ulong ptr) { union { float64 d; uint64_t i; } u; u.i = glue(ldq, MEMSUFFIX)(ptr); return u.d; } static inline void glue(stfq, MEMSUFFIX)(target_ulong ptr, float64 v) { union { float64 d; uint64_t i; } u; u.d = v; glue(stq, MEMSUFFIX)(ptr, u.i); } #endif /* DATA_SIZE == 8 */ #if DATA_SIZE == 4 static inline float32 glue(ldfl, MEMSUFFIX)(target_ulong ptr) { union { float32 f; uint32_t i; } u; u.i = glue(ldl, MEMSUFFIX)(ptr); return u.f; } static inline void glue(stfl, MEMSUFFIX)(target_ulong ptr, float32 v) { union { float32 f; uint32_t i; } u; u.f = v; glue(stl, MEMSUFFIX)(ptr, u.i); } #endif /* DATA_SIZE == 4 */ #endif /* ACCESS_TYPE != (NB_MMU_MODES + 1) */ #undef RES_TYPE #undef DATA_TYPE #undef DATA_STYPE #undef SUFFIX #undef USUFFIX #undef DATA_SIZE #undef CPU_MMU_INDEX #undef MMUSUFFIX #undef ADDR_READ