/* * Linux Boot Option ROM for fw_cfg DMA * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * Copyright (c) 2015-2016 Red Hat Inc. * Authors: * Marc MarĂ­ * Richard W.M. Jones */ asm( ".text\n" ".global _start\n" "_start:\n" " .short 0xaa55\n" " .byte 3\n" /* desired size in 512 units; signrom.py adds padding */ " .byte 0xcb\n" /* far return without prefix */ " .org 0x18\n" " .short 0\n" " .short _pnph\n" "_pnph:\n" " .ascii \"$PnP\"\n" " .byte 0x01\n" " .byte (_pnph_len / 16)\n" " .short 0x0000\n" " .byte 0x00\n" " .byte 0x00\n" " .long 0x00000000\n" " .short _manufacturer\n" " .short _product\n" " .long 0x00000000\n" " .short 0x0000\n" " .short 0x0000\n" " .short _bev\n" " .short 0x0000\n" " .short 0x0000\n" " .equ _pnph_len, . - _pnph\n" "_manufacturer:\n" " .asciz \"QEMU\"\n" "_product:\n" " .asciz \"Linux loader DMA\"\n" " .align 4, 0\n" "_bev:\n" " cli\n" " cld\n" " jmp load_kernel\n" ); #include "../../include/hw/nvram/fw_cfg_keys.h" /* QEMU_CFG_DMA_CONTROL bits */ #define BIOS_CFG_DMA_CTL_ERROR 0x01 #define BIOS_CFG_DMA_CTL_READ 0x02 #define BIOS_CFG_DMA_CTL_SKIP 0x04 #define BIOS_CFG_DMA_CTL_SELECT 0x08 #define BIOS_CFG_DMA_ADDR_HIGH 0x514 #define BIOS_CFG_DMA_ADDR_LOW 0x518 #define uint64_t unsigned long long #define uint32_t unsigned int #define uint16_t unsigned short #define barrier() asm("" : : : "memory") typedef struct FWCfgDmaAccess { uint32_t control; uint32_t length; uint64_t address; } __attribute__((packed)) FWCfgDmaAccess; static inline void outl(uint32_t value, uint16_t port) { asm("outl %0, %w1" : : "a"(value), "Nd"(port)); } static inline void set_es(void *addr) { uint32_t seg = (uint32_t)addr >> 4; asm("movl %0, %%es" : : "r"(seg)); } #ifdef __clang__ #define ADDR32 #else #define ADDR32 "addr32 " #endif static inline uint16_t readw_es(uint16_t offset) { uint16_t val; asm(ADDR32 "movw %%es:(%1), %0" : "=r"(val) : "r"((uint32_t)offset)); barrier(); return val; } static inline uint32_t readl_es(uint16_t offset) { uint32_t val; asm(ADDR32 "movl %%es:(%1), %0" : "=r"(val) : "r"((uint32_t)offset)); barrier(); return val; } static inline void writel_es(uint16_t offset, uint32_t val) { barrier(); asm(ADDR32 "movl %0, %%es:(%1)" : : "r"(val), "r"((uint32_t)offset)); } static inline uint32_t bswap32(uint32_t x) { return ((x & 0x000000ffU) << 24) | ((x & 0x0000ff00U) << 8) | ((x & 0x00ff0000U) >> 8) | ((x & 0xff000000U) >> 24); } static inline uint64_t bswap64(uint64_t x) { return ((x & 0x00000000000000ffULL) << 56) | ((x & 0x000000000000ff00ULL) << 40) | ((x & 0x0000000000ff0000ULL) << 24) | ((x & 0x00000000ff000000ULL) << 8) | ((x & 0x000000ff00000000ULL) >> 8) | ((x & 0x0000ff0000000000ULL) >> 24) | ((x & 0x00ff000000000000ULL) >> 40) | ((x & 0xff00000000000000ULL) >> 56); } static inline uint64_t cpu_to_be64(uint64_t x) { return bswap64(x); } static inline uint32_t cpu_to_be32(uint32_t x) { return bswap32(x); } static inline uint32_t be32_to_cpu(uint32_t x) { return bswap32(x); } /* clang is happy to inline this function, and bloats the * ROM. */ static __attribute__((__noinline__)) void bios_cfg_read_entry(void *buf, uint16_t entry, uint32_t len) { FWCfgDmaAccess access; uint32_t control = (entry << 16) | BIOS_CFG_DMA_CTL_SELECT | BIOS_CFG_DMA_CTL_READ; access.address = cpu_to_be64((uint64_t)(uint32_t)buf); access.length = cpu_to_be32(len); access.control = cpu_to_be32(control); barrier(); outl(cpu_to_be32((uint32_t)&access), BIOS_CFG_DMA_ADDR_LOW); while (be32_to_cpu(access.control) & ~BIOS_CFG_DMA_CTL_ERROR) { barrier(); } } /* Return top of memory using BIOS function E801. */ static uint32_t get_e801_addr(void) { uint16_t ax, bx, cx, dx; uint32_t ret; asm("int $0x15\n" : "=a"(ax), "=b"(bx), "=c"(cx), "=d"(dx) : "a"(0xe801), "b"(0), "c"(0), "d"(0)); /* Not SeaBIOS, but in theory a BIOS could return CX=DX=0 in which * case we need to use the result from AX & BX instead. */ if (cx == 0 && dx == 0) { cx = ax; dx = bx; } if (dx) { /* DX = extended memory above 16M, in 64K units. * Convert it to bytes and return. */ ret = ((uint32_t)dx + 256 /* 16M in 64K units */) << 16; } else { /* This is a fallback path for machines with <= 16MB of RAM, * which probably would never be the case, but deal with it * anyway. * * CX = extended memory between 1M and 16M, in kilobytes * Convert it to bytes and return. */ ret = ((uint32_t)cx + 1024 /* 1M in K */) << 10; } return ret; } /* Force the asm name without leading underscore, even on Win32. */ extern void load_kernel(void) asm("load_kernel"); void load_kernel(void) { void *setup_addr; void *initrd_addr; void *kernel_addr; void *cmdline_addr; uint32_t setup_size; uint32_t initrd_size; uint32_t kernel_size; uint32_t cmdline_size; uint32_t initrd_end_page, max_allowed_page; uint32_t segment_addr, stack_addr; bios_cfg_read_entry(&setup_addr, FW_CFG_SETUP_ADDR, 4); bios_cfg_read_entry(&setup_size, FW_CFG_SETUP_SIZE, 4); bios_cfg_read_entry(setup_addr, FW_CFG_SETUP_DATA, setup_size); set_es(setup_addr); /* For protocol < 0x203 we don't have initrd_max ... */ if (readw_es(0x206) < 0x203) { /* ... so we assume initrd_max = 0x37ffffff. */ writel_es(0x22c, 0x37ffffff); } bios_cfg_read_entry(&initrd_addr, FW_CFG_INITRD_ADDR, 4); bios_cfg_read_entry(&initrd_size, FW_CFG_INITRD_SIZE, 4); initrd_end_page = ((uint32_t)(initrd_addr + initrd_size) & -4096); max_allowed_page = (readl_es(0x22c) & -4096); if (initrd_end_page != 0 && max_allowed_page != 0 && initrd_end_page != max_allowed_page) { /* Initrd at the end of memory. Compute better initrd address * based on e801 data */ initrd_addr = (void *)((get_e801_addr() - initrd_size) & -4096); writel_es(0x218, (uint32_t)initrd_addr); } bios_cfg_read_entry(initrd_addr, FW_CFG_INITRD_DATA, initrd_size); bios_cfg_read_entry(&kernel_addr, FW_CFG_KERNEL_ADDR, 4); bios_cfg_read_entry(&kernel_size, FW_CFG_KERNEL_SIZE, 4); bios_cfg_read_entry(kernel_addr, FW_CFG_KERNEL_DATA, kernel_size); bios_cfg_read_entry(&cmdline_addr, FW_CFG_CMDLINE_ADDR, 4); bios_cfg_read_entry(&cmdline_size, FW_CFG_CMDLINE_SIZE, 4); bios_cfg_read_entry(cmdline_addr, FW_CFG_CMDLINE_DATA, cmdline_size); /* Boot linux */ segment_addr = ((uint32_t)setup_addr >> 4); stack_addr = (uint32_t)(cmdline_addr - setup_addr - 16); /* As we are changing critical registers, we cannot leave freedom to the * compiler. */ asm("movw %%ax, %%ds\n" "movw %%ax, %%es\n" "movw %%ax, %%fs\n" "movw %%ax, %%gs\n" "movw %%ax, %%ss\n" "movl %%ebx, %%esp\n" "addw $0x20, %%ax\n" "pushw %%ax\n" /* CS */ "pushw $0\n" /* IP */ /* Clear registers and jump to Linux */ "xor %%ebx, %%ebx\n" "xor %%ecx, %%ecx\n" "xor %%edx, %%edx\n" "xor %%edi, %%edi\n" "xor %%ebp, %%ebp\n" "lretw\n" : : "a"(segment_addr), "b"(stack_addr)); }