/* * QEMU System Emulator * * Copyright (c) 2003-2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #ifndef QEMU_NET_UTIL_H #define QEMU_NET_UTIL_H /* * Structure of an internet header, naked of options. */ struct ip { #ifdef HOST_WORDS_BIGENDIAN uint8_t ip_v:4, /* version */ ip_hl:4; /* header length */ #else uint8_t ip_hl:4, /* header length */ ip_v:4; /* version */ #endif uint8_t ip_tos; /* type of service */ uint16_t ip_len; /* total length */ uint16_t ip_id; /* identification */ uint16_t ip_off; /* fragment offset field */ #define IP_DF 0x4000 /* don't fragment flag */ #define IP_MF 0x2000 /* more fragments flag */ #define IP_OFFMASK 0x1fff /* mask for fragmenting bits */ uint8_t ip_ttl; /* time to live */ uint8_t ip_p; /* protocol */ uint16_t ip_sum; /* checksum */ struct in_addr ip_src, ip_dst; /* source and dest address */ } QEMU_PACKED; static inline bool in6_equal_net(const struct in6_addr *a, const struct in6_addr *b, int prefix_len) { if (memcmp(a, b, prefix_len / 8) != 0) { return 0; } if (prefix_len % 8 == 0) { return 1; } return a->s6_addr[prefix_len / 8] >> (8 - (prefix_len % 8)) == b->s6_addr[prefix_len / 8] >> (8 - (prefix_len % 8)); } #define TCPS_CLOSED 0 /* closed */ #define TCPS_LISTEN 1 /* listening for connection */ #define TCPS_SYN_SENT 2 /* active, have sent syn */ #define TCPS_SYN_RECEIVED 3 /* have send and received syn */ /* states < TCPS_ESTABLISHED are those where connections not established */ #define TCPS_ESTABLISHED 4 /* established */ #define TCPS_CLOSE_WAIT 5 /* rcvd fin, waiting for close */ /* states > TCPS_CLOSE_WAIT are those where user has closed */ #define TCPS_FIN_WAIT_1 6 /* have closed, sent fin */ #define TCPS_CLOSING 7 /* closed xchd FIN; await FIN ACK */ #define TCPS_LAST_ACK 8 /* had fin and close; await FIN ACK */ /* states > TCPS_CLOSE_WAIT && < TCPS_FIN_WAIT_2 await ACK of FIN */ #define TCPS_FIN_WAIT_2 9 /* have closed, fin is acked */ #define TCPS_TIME_WAIT 10 /* in 2*msl quiet wait after close */ int net_parse_macaddr(uint8_t *macaddr, const char *p); #endif /* QEMU_NET_UTIL_H */