/* * Emulation of Linux signals : SPARC specific code * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include #include #include #include #include "qemu.h" #include "qemu-common.h" #include "signal-common.h" #include "target_signal.h" #define __SUNOS_MAXWIN 31 /* This is what SunOS does, so shall I. */ struct target_sigcontext { abi_ulong sigc_onstack; /* state to restore */ abi_ulong sigc_mask; /* sigmask to restore */ abi_ulong sigc_sp; /* stack pointer */ abi_ulong sigc_pc; /* program counter */ abi_ulong sigc_npc; /* next program counter */ abi_ulong sigc_psr; /* for condition codes etc */ abi_ulong sigc_g1; /* User uses these two registers */ abi_ulong sigc_o0; /* within the trampoline code. */ /* Now comes information regarding the users window set * at the time of the signal. */ abi_ulong sigc_oswins; /* outstanding windows */ /* stack ptrs for each regwin buf */ char *sigc_spbuf[__SUNOS_MAXWIN]; /* Windows to restore after signal */ struct { abi_ulong locals[8]; abi_ulong ins[8]; } sigc_wbuf[__SUNOS_MAXWIN]; }; /* A Sparc stack frame */ struct sparc_stackf { abi_ulong locals[8]; abi_ulong ins[8]; /* It's simpler to treat fp and callers_pc as elements of ins[] * since we never need to access them ourselves. */ char *structptr; abi_ulong xargs[6]; abi_ulong xxargs[1]; }; typedef struct { struct { abi_ulong psr; abi_ulong pc; abi_ulong npc; abi_ulong y; abi_ulong u_regs[16]; /* globals and ins */ } si_regs; int si_mask; } __siginfo_t; typedef struct { unsigned long si_float_regs [32]; unsigned long si_fsr; unsigned long si_fpqdepth; struct { unsigned long *insn_addr; unsigned long insn; } si_fpqueue [16]; } qemu_siginfo_fpu_t; struct target_signal_frame { struct sparc_stackf ss; __siginfo_t info; abi_ulong fpu_save; abi_ulong insns[2] __attribute__ ((aligned (8))); abi_ulong extramask[TARGET_NSIG_WORDS - 1]; abi_ulong extra_size; /* Should be 0 */ qemu_siginfo_fpu_t fpu_state; }; struct target_rt_signal_frame { struct sparc_stackf ss; siginfo_t info; abi_ulong regs[20]; sigset_t mask; abi_ulong fpu_save; unsigned int insns[2]; stack_t stack; unsigned int extra_size; /* Should be 0 */ qemu_siginfo_fpu_t fpu_state; }; #define UREG_O0 16 #define UREG_O6 22 #define UREG_I0 0 #define UREG_I1 1 #define UREG_I2 2 #define UREG_I3 3 #define UREG_I4 4 #define UREG_I5 5 #define UREG_I6 6 #define UREG_I7 7 #define UREG_L0 8 #define UREG_FP UREG_I6 #define UREG_SP UREG_O6 static inline abi_ulong get_sigframe(struct target_sigaction *sa, CPUState *env, unsigned long framesize) { abi_ulong sp; sp = env->regwptr[UREG_FP]; /* This is the X/Open sanctioned signal stack switching. */ if (sa->sa_flags & TARGET_SA_ONSTACK) { if (!on_sig_stack(sp) && !((target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size) & 7)) sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } return sp - framesize; } static int setup___siginfo(__siginfo_t *si, CPUState *env, abi_ulong mask) { int err = 0, i; err |= __put_user(env->psr, &si->si_regs.psr); err |= __put_user(env->pc, &si->si_regs.pc); err |= __put_user(env->npc, &si->si_regs.npc); err |= __put_user(env->y, &si->si_regs.y); for (i=0; i < 8; i++) { err |= __put_user(env->gregs[i], &si->si_regs.u_regs[i]); } for (i=0; i < 8; i++) { err |= __put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]); } err |= __put_user(mask, &si->si_mask); return err; } #if 0 static int setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ CPUState *env, unsigned long mask) { int err = 0; err |= __put_user(mask, &sc->sigc_mask); err |= __put_user(env->regwptr[UREG_SP], &sc->sigc_sp); err |= __put_user(env->pc, &sc->sigc_pc); err |= __put_user(env->npc, &sc->sigc_npc); err |= __put_user(env->psr, &sc->sigc_psr); err |= __put_user(env->gregs[1], &sc->sigc_g1); err |= __put_user(env->regwptr[UREG_O0], &sc->sigc_o0); return err; } #endif #define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7))) void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUState *env) { abi_ulong sf_addr; struct target_signal_frame *sf; int sigframe_size, err, i; /* 1. Make sure everything is clean */ //synchronize_user_stack(); sigframe_size = NF_ALIGNEDSZ; sf_addr = get_sigframe(ka, env, sigframe_size); sf = lock_user(VERIFY_WRITE, sf_addr, sizeof(struct target_signal_frame), 0); if (!sf) goto sigsegv; //fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]); #if 0 if (invalid_frame_pointer(sf, sigframe_size)) goto sigill_and_return; #endif /* 2. Save the current process state */ err = setup___siginfo(&sf->info, env, set->sig[0]); err |= __put_user(0, &sf->extra_size); //err |= save_fpu_state(regs, &sf->fpu_state); //err |= __put_user(&sf->fpu_state, &sf->fpu_save); err |= __put_user(set->sig[0], &sf->info.si_mask); for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { err |= __put_user(set->sig[i + 1], &sf->extramask[i]); } for (i = 0; i < 8; i++) { err |= __put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]); } for (i = 0; i < 8; i++) { err |= __put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]); } if (err) goto sigsegv; /* 3. signal handler back-trampoline and parameters */ env->regwptr[UREG_FP] = sf_addr; env->regwptr[UREG_I0] = sig; env->regwptr[UREG_I1] = sf_addr + offsetof(struct target_signal_frame, info); env->regwptr[UREG_I2] = sf_addr + offsetof(struct target_signal_frame, info); /* 4. signal handler */ env->pc = ka->_sa_handler; env->npc = (env->pc + 4); /* 5. return to kernel instructions */ if (ka->sa_restorer) env->regwptr[UREG_I7] = ka->sa_restorer; else { uint32_t val32; env->regwptr[UREG_I7] = sf_addr + offsetof(struct target_signal_frame, insns) - 2 * 4; /* mov __NR_sigreturn, %g1 */ val32 = 0x821020d8; err |= __put_user(val32, &sf->insns[0]); /* t 0x10 */ val32 = 0x91d02010; err |= __put_user(val32, &sf->insns[1]); if (err) goto sigsegv; /* Flush instruction space. */ //flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0])); // tb_flush(env); } unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); return; #if 0 sigill_and_return: force_sig(TARGET_SIGILL); #endif sigsegv: //fprintf(stderr, "force_sig\n"); unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); force_sig(TARGET_SIGSEGV); } static inline int restore_fpu_state(CPUState *env, qemu_siginfo_fpu_t *fpu) { int err; #if 0 #ifdef CONFIG_SMP if (current->flags & PF_USEDFPU) regs->psr &= ~PSR_EF; #else if (current == last_task_used_math) { last_task_used_math = 0; regs->psr &= ~PSR_EF; } #endif current->used_math = 1; current->flags &= ~PF_USEDFPU; #endif #if 0 if (verify_area (VERIFY_READ, fpu, sizeof(*fpu))) return -EFAULT; #endif #if 0 /* XXX: incorrect */ err = __copy_from_user(&env->fpr[0], &fpu->si_float_regs[0], (sizeof(unsigned long) * 32)); #endif err |= __get_user(env->fsr, &fpu->si_fsr); #if 0 err |= __get_user(current->thread.fpqdepth, &fpu->si_fpqdepth); if (current->thread.fpqdepth != 0) err |= __copy_from_user(¤t->thread.fpqueue[0], &fpu->si_fpqueue[0], ((sizeof(unsigned long) + (sizeof(unsigned long *)))*16)); #endif return err; } void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { fprintf(stderr, "setup_rt_frame: not implemented\n"); } long do_sigreturn(CPUState *env) { abi_ulong sf_addr; struct target_signal_frame *sf; uint32_t up_psr, pc, npc; target_sigset_t set; sigset_t host_set; int err, i; sf_addr = env->regwptr[UREG_FP]; if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) goto segv_and_exit; #if 0 fprintf(stderr, "sigreturn\n"); fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]); #endif //cpu_dump_state(env, stderr, fprintf, 0); /* 1. Make sure we are not getting garbage from the user */ if (sf_addr & 3) goto segv_and_exit; err = __get_user(pc, &sf->info.si_regs.pc); err |= __get_user(npc, &sf->info.si_regs.npc); if ((pc | npc) & 3) goto segv_and_exit; /* 2. Restore the state */ err |= __get_user(up_psr, &sf->info.si_regs.psr); /* User can only change condition codes and FPU enabling in %psr. */ env->psr = (up_psr & (PSR_ICC /* | PSR_EF */)) | (env->psr & ~(PSR_ICC /* | PSR_EF */)); env->pc = pc; env->npc = npc; err |= __get_user(env->y, &sf->info.si_regs.y); for (i=0; i < 8; i++) { err |= __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]); } for (i=0; i < 8; i++) { err |= __get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]); } /* FIXME: implement FPU save/restore: * __get_user(fpu_save, &sf->fpu_save); * if (fpu_save) * err |= restore_fpu_state(env, fpu_save); */ /* This is pretty much atomic, no amount locking would prevent * the races which exist anyways. */ err |= __get_user(set.sig[0], &sf->info.si_mask); for(i = 1; i < TARGET_NSIG_WORDS; i++) { err |= (__get_user(set.sig[i], &sf->extramask[i - 1])); } target_to_host_sigset_internal(&host_set, &set); sigprocmask(SIG_SETMASK, &host_set, NULL); if (err) goto segv_and_exit; unlock_user_struct(sf, sf_addr, 0); return env->regwptr[0]; segv_and_exit: unlock_user_struct(sf, sf_addr, 0); force_sig(TARGET_SIGSEGV); } long do_rt_sigreturn(CPUState *env) { fprintf(stderr, "do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; }